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Abstract

Let f(x) = f(x1, . . . , xn) =
∑

|S|≤k aS

∏
i∈S xi be an n-variate real multilinear polynomial of

degree at most k, where S ⊆ [n] = {1, 2, . . . , n}. For its one-block decoupled version,

f̆(y, z) =
∑

|S|≤k

aS

∑

i∈S

yi

∏

j∈S\{i}

zj ,

we show tail-bound comparisons of the form

Pr

[∣∣∣f̆(y, z)
∣∣∣ > Ckt

]
≤ Dk Pr

[
|f(x)| > t

]
.

Our constants Ck, Dk are significantly better than those known for “full decoupling”. For example,

when x, y, z are independent Gaussians we obtain Ck = Dk = O(k); when x, y, z are ±1 random

variables we obtain Ck = O(k2), Dk = kO(k). By contrast, for full decoupling only Ck = Dk =

kO(k) is known in these settings.

We describe consequences of these results for query complexity (related to conjectures of

Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening

of the DFKO Inequality).
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1 Introduction

Broadly speaking, decoupling refers to the idea of analyzing a complicated random sum

involving dependent random variables by comparing it to a simpler random sum where some

independence is introduced between the variables. For perhaps the simplest example, if

(aij)n
i,j=1 ∈ ❘ and x1, . . . , xn, y1, . . . , yn are independent uniform ±1 random variables, we

might ask how the moments of

n∑

i,j=1

aijxixj , and its “decoupled version”

n∑

i,j=1

aijxiyj

compare. The theory of decoupling inequalities developed originally in the study of Banach

spaces, stochastic processes, and U -statistics, mainly between the mid-’80s and mid-’90s;

see [10] for a book-length treatment.
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2 Polynomial Bounds for Decoupling, with Applications

The powerful tool of decoupling seems to be relatively under-used in theoretical computer

science. ([7] proves a variant of Hanson-Wright Inequality using decoupling inequalities with

degree two; a recent work of Makarychev and Sviridenko [31] provides another exception,

though they use a much different kind of decoupling than the one studied in this paper.)

In this work we will observe several places where decoupling can be used in a “black-box”

fashion to solve or simplify problems quite easily.

The main topic of the paper, however, is to study a partial form decoupling that we

call “one-block decoupling”. The advantage of one-block decoupling is that for degree-k

polynomials we can achieve bounds with only polynomial dependence on k, as opposed to

the exponential dependence on k that arises for the standard full decoupling. Although

one-block decoupling does not introduce as much independence as full decoupling does, we

show several applications where one-block decoupling is sufficient.

The applications we describe in this paper are the following:

(Theorem 2.5.) Aaronson and Ambainis’s conjecture concerning the generality of their [5,

Theorem 4] holds. I.e., there is a sublinear-query algorithm for estimating any bounded,

constant-degree Boolean function.

(Theorem 2.8.) The Aaronson–Ambainis Conjecture [2, 4] holds if and only if it holds

for one-block decoupled functions. We also show how the best known result towards

the conjecture can be proven extremely easily (1) in the case of one-block decoupled

functions.

(Corollary 3.5.) An optimal form of the DFKO Fourier Tail Bound [13]: any bounded

Boolean function f that is far from being a junta satisfies
∑

|S|>k f̂(S)2 ≥ exp(−O(k2)).

Relatedly (Corollary 3.4), any degree-k real-valued Boolean function with Ω(1) variance

and small influences must exceed 1 in absolute value with probability at least exp(−O(k2));

this can be further improved to exp(−O(k)) if f is homogeneous.

1.1 Definitions

Throughout this section, let f denote a multilinear polynomial of degree at most k in n

variables x = (x1, . . . , xn), with coefficients aS from a Banach space:

f(x) =
∑

S⊆[n]
|S|≤k

aSxS ,

where we write xS =
∏

i∈S xi for brevity. (The coefficients aS will be real in all of our

applications; however we allow them to be from a Banach space since the proofs are no more

complicated.)

We begin by defining our notion of partial decoupling:

◮ Definition 1.1. The one-block decoupled version of f , denoted f̆ , is the multilinear

polynomial over 2n variables y = (y1, . . . , yn) and z = (z1, . . . , zn) defined by

f̆(y, z) =
∑

S⊆[n]
1≤|S|≤k

aS

∑

i∈S

yizS\i.

In other words, each monomial term like x1x3x7 is replaced with y1z3z7 + z1y3z7 + z1z3y7.

In case f is homogeneous we have the relation f̆(x, x) = kf(x).

Let us also recall the traditional notion of decoupling:
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◮ Definition 1.2. The (fully) decoupled version of f , which we denote by f̃ , is a multilinear

polynomial over k blocks x(1), . . . , x(k) of n variables; each x(i) is x(i) = (x
(i)
1 , . . . , x

(i)
n ). It is

formed as follows: for each monomial xS in f , we replace it with the average over all ways of

assigning its variables to different blocks. More formally,

f̃(x(1), . . . , x(k)) = a∅ +
∑

S⊆[n]
1≤|S|≤k

(k − |S|)!
k!

· aS

∑

injective
b:S→[k]

∏

i∈S

x
(b(i))
i .

The definition is again simpler if f is homogeneous. For example, if f is homogeneous of

degree 3, then each monomial in f like x1x3x7 is replaced in f̃ with

1

6
(w1y2z3 + w1z2y3 + y1w2z3 + y1z2w3 + z1w2y3 + z1y2w3) .

(Here we wrote w, y, z instead of x(1), x(2), x(3), for simplicity.) Note that f̃(x, x, . . . , x) =

f(x) always holds, even if f is not homogeneous.

We conclude by comparing the two kinds of decoupling. Assume for simplicity that f is

homogeneous of degree k. The fully decoupled version f̃(x(1), . . . , x(k)) is in “block-multilinear

form”; i.e., each monomial contains exactly one variable from each of the k “blocks”. This

kind of structure has often been recognized as useful in theoretical computer science; see,

e.g., [24, 29, 21, 5]. By contrast, the one-block decoupling f̆(y, z) does not have such a simple

structure; we only have that each monomial contains exactly one y-variable. Nevertheless

we will see several examples in this paper where having one-block decoupled form is just as

useful as having fully decoupled form. And as mentioned, we will show that it is possible to

achieve one-block decoupling with only poly(k) parameter losses, whereas full decoupling in

general suffers exponential losses in k.

◮ Remark. We have also chosen different “scalings” for the two kinds of decoupling. For

example, in the homogeneous case, we have f̃(y, z, z, . . . , z) = 1
k · f̆(y, z) and also Var[f̃ ] =

1
k·k! Var[f̆ ] for f : {±1}n → ❘.

1.2 A useful inequality

Several times we will use the following basic inequality from analysis of Boolean functions,

which relies on hypercontractivity; see [33, Theorems 9.24, 10.23].

◮ Theorem 1.3. Let f(x) =
∑

|S|≤k aSxS be a nonconstant n-variate multilinear polynomial

of degree at most k, where the coefficients aS are real. Let x1, . . . , xn be independent uniform

±1 random variables. Then

Pr
[
f(x) > E[f ]

]
≥ 1

4 e−2k.

This also holds if some of the xi’s are standard Gaussians.1 Finally, if the xi’s are not

uniform ±1 random variables, but they take on each value ±1 with probability at least λ, then

we may replace 1
4 e−2k by 1

4 (e2/2λ)−k.

1 Although it is not stated in [33], an identical proof works since Gaussians have the same hypercontractivity
properties as uniform ±1 random variables.

CCC’16



4 Polynomial Bounds for Decoupling, with Applications

2 Decoupling theorems, and query complexity applications

2.1 Classical decoupling inequalities, and an application in query

complexity

Traditional decoupling inequalities compare the probabilistic behavior of f and f̃ under

independent random variables (usually symmetric ones; e.g., standard Gaussians). The

easier forms of the inequalities compare expectations under a convex test function; e.g.,

they can be used to compare p-norms. The following was essentially proved in [9]; see [10,

Theorem 3.1.1,(3.4.23)–(3.4.27)]:

◮ Theorem 2.1. Let Φ : ❘≥0 → ❘
≥0 be convex and nondecreasing. Let x = (x1, . . . , xn)

consist of independent real random variables with all moments finite, and let x(1), . . . , x(k)

denote independent copies of x. Then

E
[
Φ
(∥∥∥f̃

(
x(1), . . . , x(k)

)∥∥∥
)]

≤ E
[
Φ
(

Ck ‖f (x)‖
)]

,

where Ck = kO(k) is a constant depending only on k.

◮ Remark. A reverse inequality also holds, with worse constant Ck = k−O(k2).

Another line of research gave comparisons between tail bounds for f and f̃ . This culminated

in the following theorem from [11, 18]; see also [10, Theorem 3.4.6]:

◮ Theorem 2.2. In the setting of Theorem 2.1, for all t > 0,

Pr
[∥∥∥f̃

(
x(1), . . . , x(k)

)∥∥∥ > Ckt
]

≤ Dk Pr
[
‖f (x)‖ > t

]
,

where Ck = Dk = kO(k). The analogous reverse bound also holds.

◮ Remark. Kwapień [28] showed that when the xi’s are α-stable random variables, the

constant Ck in Theorem 2.1, can be improved to kk/α/k!; this is kk/2/k! for standard

Gaussians. Furthermore, for uniform ±1 random variables Kwapień’s proof goes through

as if they were 1-stable; thus in this case one may take Ck = kk/k! ≤ ek. In the Gaussian

setting with homogeneous f , Kwapień obtains Ck = kk/2/k! and Dk = 2k for Theorem 2.2.

For function f(x) =
∑

|S|≤k aSxS where coefficients aS are real, we denote its p-norm

‖f‖p = E[f(x)p]1/p. Furthermore if f is a bounded function with input x, we denote the

infinity norm

‖f‖∞ = lim
p→∞

‖f‖p = sup
x

|f(x)|.

◮ Corollary 2.3. In the setting of Theorem 2.1, it holds that ‖f̃‖∞ ≤ kO(k)‖f‖∞. Further,

if f : {±1}n → ❘ then ‖f̃‖∞ ≤ (2e)k‖f‖∞.

Proof. The first statement is an immediate corollary of either Theorem 2.1 (taking Φ(u) = up

and p → ∞) or Theorem 2.2 (taking t = ‖f‖∞). The second statement is immediate from

Remark 2.1, with the better constant kk/k! in case f is homogeneous. In the general case,

we use the fact that if f=j denotes the degree-j part of f , then ‖f=j‖∞ ≤ 2j‖f‖∞; this is

also proved by Kwapień [28, Lemma 2]. Then

∥∥∥f̃
∥∥∥

∞
=

∥∥∥∥∥∥

k∑

j=0

f̃=j

∥∥∥∥∥∥
∞

≤
k∑

j=0

∥∥∥f̃=j
∥∥∥

∞
≤

k∑

j=0

(jj/j!)
∥∥f=j

∥∥
∞

≤
k∑

j=0

(jj/j!)2j ‖f‖∞ ≤ (2e)k‖f‖∞.◭



R. O’Donnell and Y. Zhao 5

◮ Remark. Classical decoupling theory has not been too concerned with the dependence of

constants on k, and most statements like Theorem 2.2 in the literature simply write Dk = Ck

to conserve symbols. However there are good reasons to retain the distinction, since making

Ck small is usually much more important than making Dk small. For example, we can

deduce Corollary 2.3 from Theorem 2.2 regardless of Dk’s value.

Let us give an example application of these fundamental decoupling results. In a

recent work comparing quantum query complexity to classical randomized query complexity,

Aaronson and Ambainis [5] proved2 the following:

◮ Theorem 2.4. Let f be an N -variate degree-k homogeneous block-multilinear polynomial

with real coefficients. Assume that under uniformly random ±1 inputs we have ‖f‖∞ ≤ 1.

Then there is a randomized query algorithm making 2O(k)(N/ǫ2)1−1/k nonadaptive queries

to the coordinates of x ∈ {±1}N that outputs an approximation to f(x) that is accurate to

within ±ǫ (with high probability).

The authors “strongly conjecture[d]” that the assumption of block-multilinearity could be

removed, and gave a somewhat lengthy proof of this conjecture in the case of k = 2, using [13]

. We note that the full conjecture follows almost immediately from full decoupling:

◮ Theorem 2.5. Aaronson and Ambainis’s Theorem 2.4 holds without the assumption of

block-multilinearity or homogeneity.

Proof. Given a non-block-multilinear f on N variables ranging in {±1}, consider its full

decoupling f̃ on kN variables. By Corollary 2.3 we have ‖f̃‖∞ ≤ (2e)k. Let g = (2e)−kf̃ ,

so that g : {±1}kN → [−1, +1] is a degree-k block-multilinear polynomial with f(x) =

(2e)kg(x, x, . . . , x). Now given query access to x ∈ {±1}N and an error tolerance ǫ, we apply

Theorem 2.4 to g(x, x, . . . , x) with error tolerance ǫ1 = (2e)−kǫ; note that we can simulate

queries to (x, x, . . . , x) using queries to x. This gives the desired query algorithm, and it

makes 2O(k)(kN/ǫ2
1)1−1/k = 2O(k)(N/ǫ2)1−1/k queries as claimed. There is one more minor

point: Theorem 2.4 requires its function to be homogeneous in addition to block-multilinear.

However this assumption is easily removed by introducing k dummy variables treated as +1,

and padding the monomials with them. ◭

2.2 Our one-block decoupling theorems, and the AA Conjecture

We now state our new versions of Theorems 2.1, 2.2 which apply only to one-block decoupling,

but that have polynomial dependence of Ck on k. Proofs are deferred to Section 4.

As before, let f(x) =
∑

|S|≤k aSxS be an n-variate multivariate polynomial of degree at

most k with coefficients aS in a Banach space; let x = (x1, . . . , xn) consist of independent

real random variables with all moments finite, and let y, z be independent copies. We

consider three slightly different hypotheses:

H1: x1, . . . , xn ∼ N(0, 1) are standard Gaussians.

H2: x1, . . . , xn are uniformly random ±1 values.

H3: x1, . . . , xn are uniformly random ±1 values and f is homogeneous.

2 Actually, there is a small gap in their proof. In the line reading “By the concavity of the square root
function. . . ”, they claim that ‖X‖1 ≥ ‖X‖2 when X is a degree-k polynomial of uniformly random ±1
bits. In fact the inequality goes the other way in general. But the desired inequality does hold up to a
factor of e

k by [33, Theorem 9.22], and this is sufficient for their proof.

CCC’16



6 Polynomial Bounds for Decoupling, with Applications

◮ Theorem 2.6. If Φ : ❘≥0 → ❘
≥0 is convex and nondecreasing, then

E
[
Φ
(∥∥∥f̆ (y, z)

∥∥∥
)]

≤ E
[
Φ
(

Ck ‖f (x)‖
)]

.

Also, if t > 0 (and we assume f ’s coefficients aS are real under H2, H3), then

Pr
[∥∥∥f̆ (y, z)

∥∥∥ > Ckt
]

≤ Dk Pr
[
‖f (x)‖ > t

]
.

Here

Ck =





O(k) under H1,

O(k2) under H2,

O(k3/2) under H3,

Dk =

{
O(k) under H1,

kO(k) under H2, H3.

◮ Remark. It may seem that for the Φ-inequality in the Gaussian case, Kwapień’s result

mentioned in Remark 2.1 is better than ours, since he achieves full decoupling with a better

constant than we get for one-block decoupling. But actually they are incomparable; the

reason is the different scaling mentioned in Remark 1.1.

◮ Remark. As we will explain later in Remark 3.1, the bound Ck = O(k) under H1 is best

possible (assuming that Dk ≤ exp(O(k2))).

An immediate consequence of the above theorem, as in Corollary 2.3, is the following:

◮ Corollary 2.7. If f : {±1}n → ❘ then ‖f̆‖∞ ≤ O(k2)‖f‖∞.

Let us now give an example of how one-block decoupling can be as useful as full decoupling,

and why it is important to obtain Ck = poly(k). A very notable open problem in analysis

of Boolean functions is the Aaronson–Ambainis (AA) Conjecture, originally proposed in

2008 [2, 4]:

AA Conjecture. Let f : {±1}n → [−1, +1] be computable by a multilinear polynomial of

degree at most k, f(x) =
∑

|S|≤k aSxS. Then MaxInf i[f ] ≥ poly(Var[f ]/k).

Here we use the standard notations for influences and variance:

MaxInf i[f ] = max
i∈[n]

{Inf i[f ]} , Inf i[f ] =
∑

S∋i

a2
S , Var[f ] =

∑

S 6=∅

a2
S , ‖f‖2

2 =
∑

S

a2
S .

The AA Conjecture is known to imply (and was directly motivated by) the following

folklore conjecture concerning the limitations of quantum computation, dated to 1999 or

before [4]:

Quantum Conjecture. Any quantum query algorithm solving a Boolean decision problem

using T queries can be correctly simulated on a 1 − ǫ fraction of all inputs by a classical

query algorithm using poly(T/ǫ) queries.

Because of their importance for quantum computation, Aaronson has twice listed these

conjectures as “semi-grand challenges for quantum computing theory” [1, 3].

The best known result in the direction of the AA Conjecture [4] obtains an influence

lower bound of poly(Var[f ])/ exp(O(k)), using the DFKO Inequality [13]. Here we observe
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that there is a “one-line” deduction of this bound under the assumption that f is one-block

decoupled.3 To see this, suppose that f is indeed one-block decoupled, so it can be written as

f(y, z) =
∑n

i=1 yigi(z), where gi(z) =
∑

S∋i aSzS\i is the ith “derivative” of f . Observe that

‖gi‖2
2 = Inf i[f ] and hence

∑n
i=1 ‖gi‖2

2 ≥ Var[f ]. Also note that for any z ∈ {±1}n we must

have
∑n

i=1 |gi(z)| ≤ 1, as otherwise we could achieve |f(y, z)| > 1 by choosing y ∈ {±1}n

appropriately. Taking expectations we get
∑n

i=1 ‖gi‖1 ≤ 1, and hence

ek−1 ≥ ek−1
n∑

i=1

‖gi‖1 ≥
n∑

i=1

‖gi‖2 ≥
∑n

i=1 ‖gi‖2
2

maxn
i=1 ‖gi‖2

≥ Var[f ]

maxn
i=1

√
Inf i[f ]

⇒ MaxInf [f ] ≥ e2−2k Var[f ]2, (1)

where the second inequality used the basic fact in analysis of Boolean functions [33, Theo-

rem 9.22] that ‖g‖2 ≤ ek−1‖g‖1 for g : {±1}n → ❘ of degree at most k − 1.

The above gives a good illustration of how even one-block decoupling can already greatly

simplify arguments in analysis of Boolean functions. We feel that (1) throws into sharp relief

the challenge of improving exp(−O(k)) to 1/poly(k) for the AA Conjecture. We now use

our results to show that the assumption that f is one-block decoupled is completely without

loss of generality.

◮ Theorem 2.8. The AA Conjecture holds if and only if it holds for one-block decoupled

functions f .

Proof. Suppose f : {±1}n → [−1, +1] has degree at most k. By Corollary 2.7 we get that

‖f̆‖∞ ≤ Ck = O(k2). Now g = C−1
k f̆ is one-block decoupled and has range [−1, +1]. Assum-

ing the AA Conjecture holds for it, we get some i ∈ [2n] such that Inf i[g] ≥ poly(Var[g]/k).

Certainly this implies Inf i[f̆ ] ≥ poly(Var[f̆ ]/k). It is easy to see that Inf i[f ] = Inf i[f̆ ] and

Inf i[f ] ≥ Inf i+n[f̆ ]/(k − 1) for all i ∈ [n]. Therefore letting i′ = max{i, i − n} ∈ [n], we

have Inf i′ [f ] ≥ Inf i[f̆ ]/(k − 1), and also Var[f̆ ] ≥ Var[f ]. Thus Inf i′ [f ] ≥ poly(Var[f ]/k),

confirming the AA Conjecture for f . ◭

In particular, by combining this with (1) we recover the known poly(Var[f ])/ exp(O(k))

lower bound for the AA Conjecture as applied to general f .

3 Tight versions of the DFKO theorems

This section is concerned with analysis of Boolean functions f : {±1}n → ❘. We will use

traditional Fourier notation, writing f(x) =
∑

S⊆[n] f̂(S)xS . A key theme in this field is the

dichotomy between functions with “Gaussian-like” behavior and functions that are essentially

“juntas”. Recall that f is said to be an (ǫ, C)-junta if ‖f − g‖2
2 ≤ ǫ for some g : {±1}n → ❘

depending on at most C input coordinates. Partially exemplifying this theme is a family of

theorems stating that any Boolean function f which is not essentially a junta must have a

large “Fourier tail” — something like
∑

|S|>k f̂(S)2 > δ. Examples of such results include

Friedgut’s Average Sensitivity Theorem [15], the FKN Theorem [17] (sharpened in [19, 33]),

the Kindler–Safra Theorem [27, 25], and the Bourgain Fourier Tail Theorem [8]. The last

of these implies that any f : {±1}n → {±1} which is not a (.01, kO(k))-junta must satisfy∑
|S|>k f̂(S)2 > k−1/2+o(1). This k−1/2+o(1) bound was made more explicit in [23], and the

optimal bound of Ω(k−1/2) was obtained in [26]. These “Fourier tail” theorems have had

3 This observation is joint with John Wright.

CCC’16



8 Polynomial Bounds for Decoupling, with Applications

application in fields such as PCPs and inapproximability [22, 12], sharp threshold theory [16],

extremal combinatorics [14], and social choice [17].

All of the aforementioned theorems concern Boolean-valued functions; i.e., those with

range {±1}. By contrast, the DFKO Fourier Tail Theorem [13] is a result of this flavor for

bounded functions; i.e., those with range [−1, +1].

DFKO Fourier Tail Theorem. Suppose f : {±1}n → [−1, +1] is not an (ǫ, 2O(k)/ǫ2)-junta.

Then

∑

|S|>k

f̂(S)2 > exp(−O(k2 log k)/ǫ).

Most applications do not use this Fourier tail theorem directly. Rather, they use a key

intermediate result, [13, Theorem 3], which we will refer to as the “DFKO Inequality”. This

was the case, for example, in a recent work on approximation algorithms for the Max-kXOR

problem [6].

DFKO Inequality. Suppose f : {±1}n → ❘ has degree at most k and Var[f ] ≥ 1. Let

t ≥ 1 and suppose that MaxInf [f ] ≤ 2−O(k)/t2. Then Pr[|f(x)| > t] ≥ exp(−O(t2k2 log k)).

Returning to the theme of “Gaussian-like behavior” versus “junta” behavior, we may add

that the DFKO results straightforwardly imply (by the Central Limit Theorem) analogous,

simpler-to-state results concerning functions on Gaussian space and Hermite tails. We record

these generic consequences here; see, e.g., [33, Sections 11.1, 11.2] for a general discussion of

such implications, and the definitions of Hermite coefficients f̂(α).

◮ Corollary 3.1. Any f : ❘n → [−1, +1] satisfies the Hermite tail bound

∑

|α|>k

f̂(α)2 > exp(−O(k2 log k)/ Var[f ]).

Furthermore, suppose z is a standard n-dimensional Gaussian random vector and t ≥ 1.

Then any n-variate polynomial f of degree at most k with Var[f(z)] ≥ 1 satisfies Pr[|f(z)| >

t] ≥ exp(−O(t2k2 log k)).

Even though the Gaussian results in Corollary 3.1 are formally easier than their Boolean

counterparts, we are not aware of any way to prove them — even in the case n = 1 — except

via DFKO.

Tightness of the bounds. In [13, Section 6] it is shown that the results in Corollary 3.1

are tight, up to the log k factor in the exponent; this implies the same statement about the

DFKO Fourier Tail Theorem and the DFKO Inequality. The tight example in both cases is

essentially the univariate, degree-k Chebyshev polynomial.4 In the next section we will show

how to use our one-block decoupling result to remove the log k in the exponential from both

DFKO theorems. The results immediately transfer to the Gaussian setting, and we therefore

obtain the tight exp(−Θ(k2)) bound for all versions of the inequality.

4 Formally speaking, [13, Section 6] only argues tightness of the Boolean theorems, but their constructions
are directly based on the degree-k Chebyshev polynomial applied to a single standard Gaussian.
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Our method of proof is actually to first prove the results in the Gaussian setting, where

the one-block decoupling makes the proofs quite easy. Then we can transfer the results to

the Boolean setting by using the Invariance Principle [32]. This methodology — proving the

more natural Gaussian tail bound first, then transferring the result to the Boolean setting

via Invariance — is quite reminiscent of how the optimal form of Bourgain’s Fourier Tail

Theorem was recently obtained [26].

There is actually an additional, perhaps unexpected, bonus of our proof methodology;

we show that the bound in the DFKO Inequality can be improved from exp(−O(t2k2)) to

exp(−O(t2k)) whenever f is homogeneous.

3.1 Proofs of the tight DFKO theorems

We begin with a tail-probability lower bound for one-block decoupled polynomials of Gaus-

sians.

◮ Lemma 3.2. Suppose f(y, z) =
∑n

i=1 yigi(z) is a one-block decoupled polynomial on n + n

variables, with real coefficients and degree at most k. Let y, z ∈ N(0, 1)n be independent

standard n-dimensional Gaussians and write

σ2 = Var[f(y, z)] =
n∑

i=1

‖gi‖2
2. (2)

Then for u > 0 we have Pr[|f(y, z)| > u] ≥ exp(−O(k + u2/σ2)).

Proof. Let v(z) =
∑n

i=1 gi(z)2, a polynomial of degree at most 2(k − 1) in z1, . . . , zn. By (2)

we have E[v(z)] = σ2. We now use Theorem 1.3 to get

Pr[v(z) > σ2] ≥ 1

4
e−2(2k−1) = exp(−O(k)).

On the other hand, for any outcome z = z we have that f(y, z) ∼ N(0, v(z)). Thus

v(z) > σ2 =⇒ Pr[|f(y, z)| > u] ≥ Ω(e−u2/2σ2

).

Combining the previous two statements completes the proof, since y and z are independent.

◭

We can now prove an optimal version of the DFKO Inequality in the Gaussian setting. It

is also significantly better in the homogeneous case.

◮ Theorem 3.3. Let f : ❘n → ❘ be a polynomial of degree at most k, and let x ∼ N(0, 1)n

be a standard n-dimensional Gaussian vector. Assume Var[f(x)] ≥ 1. Then for t ≥ 1 it holds

that Pr[|f(x)| > t] ≥ exp(−O(t2k2)). Furthermore, if f is multilinear and homogeneous then

the lower bound may be improved to exp(−O(t2k)).

Proof. For any n-variate polynomial of Gaussians, we can find an N -variate multilinear

polynomial of Gaussians of no higher degree that is arbitrarily close in Lévy distance (see,

e.g., [20, Lemma 15], or use the CLT to pass to ±1 random variables, then Invariance to pass

back to Gaussians). Note, however, that this transformation does not preserve homogeneity.

In any case, we can henceforth assume f is multilinear, f(x) =
∑

|S|≤k aSxS .

For independent y, z ∼ N(0, 1)n, observe that

Var[f̆(y, z)] =
k∑

j=1

j
∑

|S|=j

a2
S ≥

∑

S 6=∅

a2
S = Var[f(x)] ≥ 1,

CCC’16
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and if f is homogeneous we get the better bound Var[f̆(y, z)] ≥ k. By our Theorem 2.6 on

one-block decoupling, we have

Pr
[∣∣∣f (x)

∣∣∣ > t
]

≥ D−1
k Pr

[∣∣∣f̆ (y, z)
∣∣∣ > Ckt

]
,

where Ck = Dk = O(k). The theorem is now an immediate consequence of Lemma 3.2. ◭

◮ Remark. A consequence of this proof is that — assuming Dk ≤ exp(O(k2)) — it is

impossible to asymptotically improve on our Ck = O(k) in Theorem 2.6 in the Gaussian

setting H1. Otherwise, we would achieve a bound of exp(−o(k2)) in Theorem 3.3, contrary

to the example in [13, Section 6].

We can now obtain the sharp DFKO Inequality in the Boolean setting by using the Invariance

Principle.

◮ Corollary 3.4. Theorem 3.3 holds when x ∼ {±1}n is uniform and we additionally assume

that MaxInf [f ] ≤ exp(−Ct2k2), or just exp(−Ct2k) in the homogeneous case. Here C is a

universal constant.

Proof. This follows immediately from the Lévy distance bound in [32, Theorem 3.19, Hy-

pothesis 4]. We only need to ensure that the Lévy distance is noticeably less than the target

lower bound we’re aiming for. (We also remark that the Invariance Principle transformation

preserves variance and homogeneity.) ◭

Next, we obtain the sharp DFKO Fourier Tail Theorem. Its deduction from the DFKO

Inequality in [13] is unfortunately not “black-box”, so we will have to give a proof.

◮ Corollary 3.5. Suppose f : {±1}n → [−1, +1] is not an (ǫ, 2O(k2/ǫ))-junta. Then

∑

|S|>k

f̂(S)2 > exp(−O(k2)/ǫ). (3)

Proof. We use notation and basic results from [33]. Given f : {±1}n → [−1, +1], let

J = {i ∈ [n] : Inf
≤k
i [f ] > exp(−Ak2/ǫ)}, where A is a large constant to be chosen later.

Since ‖f‖2
2 ≤ 1 it follows easily that |J | ≤ 2O(k2/ǫ). Now define g = f − f⊆J ; note that

g has range in [−2, +2] since f⊆J has range in [−1, +1], being an average of f over the

coordinates outside J . If ‖g‖2
2 < ǫ/2 then f is ǫ/2-close to the 2O(k2/ǫ)-junta f⊆J and we

are done. Otherwise, ‖g‖2
2 ≥ ǫ/2 and we let h = g≤k. If ‖h − g‖2

2 > ǫ/4 then we immediately

conclude that
∑

|S|>k f̂(S)2 > ǫ/4, which is more than enough to be done. Otherwise

‖h − g‖2
2 ≤ ǫ/4, from which we conclude ‖h‖2

2 ≥ ǫ/4. Now h has degree at most k and

satisfies Inf i[h] ≤ exp(−Ak2/ǫ) for all i 6∈ J . Let h̃ denote the mixed Boolean/Gaussian

function which has the same multilinear form as h, but where we think of the coordinates

in J as being ±1 random variables and the coordinates not in J as being standard Gaussians.

We now “partially” apply the Invariance Principle [32, Theorem 3.19] to h, in the sense that

we only hybridize over the coordinates not in J . We conclude that the Lévy distance between

h and h̃ is at most exp(−Ω(Ak2/ǫ)). Our goal is now to show that

Pr[|h̃| > 3] ≥ exp(−O(k2/ǫ)), (4)

where the constant in the O(·) does not depend on A. Having shown this, by taking A large

enough the Lévy distance bound lets us deduce (4) for h as well. But then since |g| ≤ 2

always, we may immediately deduce ‖g − h‖2
2 ≥ exp(−O(k2)/ǫ) and hence (3).
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It remains to verify (4). For each restriction xJ to the J-coordinates, the function

h̃xJ
is a multilinear polynomial in independent Gaussians with some variance σ2

xJ
. From

Theorem 3.3 we can conclude that Pr[|h̃xJ
| > 3] ≥ exp(−O(k2/σ2

xJ
)). Thus if we can show

σ2
xJ

≥ Ω(ǫ) with probability at least 2−O(k) when xJ ∈ {±1}J is uniformly random, we will

have established (4). But this follows similarly as in Lemma 3.2. Note that σ2
xJ

= E[h̃2
xJ

],

since h has no constant term. Now σ2
xJ

is a degree-2k polynomial in xJ , and its expectation

is simply ‖h‖2
2 ≥ ǫ/4, so Theorem 1.3 indeed implies that Pr[σ2

xJ
≥ ǫ/4] ≥ 2−O(k) and we

are done. ◭

◮ Remark. We comment that the dependence of MaxInf [f ] on t in Corollary 3.4, and the

junta size in Corollary 3.5, are not as good as in [13]. This seems to be a byproduct of the

use of Invariance.

A similar (but easier) proof can be used to derive the following Gaussian version of Corol-

lary 3.5; alternatively, one can use a generic CLT argument, noting that the only “junta” a

Gaussian function can be close to is a constant function:

◮ Corollary 3.6. Any f : ❘n → [−1, +1] satisfies the Hermite tail bound

∑

|α|>k

f̂(α)2 > exp(−O(k2)/ Var[f ]).

This strictly improves upon Corollary 3.1.

4 Proofs of our one-block decoupling theorems

In this section we prove Theorem 2.6. The key idea of the proof is to express f̆(y, z) as a

“small” linear combination of expressions of the form f(αix + βiy), where α2
i + β2

i = 1 (in the

Gaussian case) or |αi| + |βi| = 1 (in the Boolean case). The following is the central lemma.

◮ Lemma 4.1. In the setting of Theorem 2.6, there exists m = O(k) and α, β, c ∈ ❘m such

that

f̆(y, z) =
∑m

i=1 cif(αiy + βiz);
∑m

i=1 |ci| ≤ Ck;

α2
i + β2

i = 1 for all i ∈ [m] under H1, and |αi| + |βi| = 1 for all i ∈ [m] under H2, H3;

|αi|, |βi| ≥ 1/O(Ck) for all i ∈ [m].

With Lemma 4.1 in hand, the proof of Theorem 2.6 is quite straightforward in the

Gaussian case, and not much more difficult in the Boolean case. We show these deductions

first.

Proof of Theorem 2.6 under Hypothesis H1 . By Lemma 4.1, for any convex nondecreasing

CCC’16
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function Φ : ❘≥0 → ❘
≥0 we have

E
[
Φ
(∥∥∥f̆ (y, z)

∥∥∥
)]

= E
[
Φ
(∥∥∥

m∑

i=1

cif (αiy + βiz)
∥∥∥
)]

≤ E
[
Φ
( m∑

i=1

|ci|
∥∥∥f (αiy + βiz)

∥∥∥
)]

≤
m∑

i=1

|ci|
Ck

E [Φ (Ck‖f(αiy + βiz)‖)]

=
m∑

i=1

|ci|
Ck

E[Φ(Ck‖f(x)‖)]

≤ E[Φ(Ck‖f(x)‖].

Here the inequalities follow from the convexity and monotonicity of Φ, and the second

equality holds because αiy + βz ∼ N(0, 1)n due to α2
i + β2

i = 1.

As for the tail-bound comparison, by Lemma 4.1, whenever y, z are such that ‖f̆(y, z)‖ >

Ckt, the triangle inequality implies that there must exist at least one i ∈ [m] with

‖f(αiy + βiz)‖ > t. It follows that there must exist at least one i ∈ [m] such that

Pr[‖f(αiy + βiz)‖ > t] ≥ 1

m
Pr[‖f̆(y, z)‖ > Ckt].

This completes the proof, since αiy + βiz ∼ N(0, 1)n and m = O(k). ◭

Proof of Theorem 2.6 under Hypotheses H2, H3 . We define ±1 random variables as fol-

lows:

x
(i)
j =

{
sgn(αi)yj with probability |αi|,
sgn(βi)zj with probability |βi|,

for all i ∈ [m] and j ∈ [n] independently. Notice that each x(i) is distributed uniformly on

{±1}n, though they are not independent. To prove the desired inequality concerning Φ, we

can repeat the proof in the Gaussian case, except that we no longer have the identity

E [Φ (Ck‖f(αiy + βiz)‖)] = E[Φ(Ck‖f(x)‖)].

In fact we will show that the left-hand side is at most the right-hand side. Notice that for all

fixed y, z ∈ {±1}n, the multilinearity of f implies that

f(αiy + βiz) = E[f(x(i)) | (y, z) = (y, z)]. (5)

Thus

E [Φ (Ck‖f(αiy + βiz)‖)] = E
y,z

[
Φ

(
Ck

∥∥∥∥ E
x(i)|y,z

[
f(x(i))

]∥∥∥∥
)]

≤ E
y,z

E
x(i)

[
Φ
(

Ck‖f(x(i))‖
)]

= E [Φ (Ck‖f(x)‖)] ,

as claimed, where we used convexity again.

As for the tail-bound comparison, recall that we are now assuming f has real coefficients.

As in the Gaussian case there is at least one i ∈ [m] with

Pr[|f(αiy + βiz)| > t] ≥ 1

O(k)
Pr[|f̆(y, z)| > Ckt].
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Now suppose y, z are such that |f(αiy + βiz)| > t and consider the conditional distribution

on x(i). If we can show that, conditionally, Pr[|f(x(i))| > t] ≥ k−O(k) then we are done. But

from (5) we have that
∣∣E[f(x(i))]

∣∣ > t; therefore the desired result follows from Theorem 1.3

and the fact that min(|αi|, |βi|) ≥ 1/O(Ck) = 1/poly(k). ◭

4.1 Proof of Lemma 4.1

The proof of Lemma 4.1 involves minimizing
∑m

i=1 |ci| by carefully setting the ratios of αi

and βi to be a hyperharmonic progression.

Proof of Lemma 4.1. The main work involves treating the homogeneous case.

Homogeneous case. Our goal for homogeneous f is to write

f̆(y, z) =
k+1∑

i=1

cif(αiy + βiz).

Comparing the expressions term by term, it is equivalent to say that for any S ⊆ [n] with

|S| = k,

∑

j∈S

yjzS/j =
k+1∑

i=1

ci

∏

j∈S

(αiyj + βizj).

We can further simplify this to the conditions

k+1∑

i=1

ciα
k−t
i βt

i =

{
1 if t = k − 1

0 otherwise
(6)

for all integers 0 ≤ t ≤ k. Let us write ∆i = βi

αi
and introduce the Vandermonde matrix

V =




1 1 . . . 1

∆1 ∆2 · · · ∆k+1

· · · · · · · · · · · ·
∆k−1

1 ∆k−1
2 · · · ∆k−1

k+1

∆k
1 ∆k

2 · · · ∆k
k+1




.

We will also write A for the diagonal matrix diag(αk
1 , αk

2 , . . . , αk
k+1), and write ek for the indi-

cator vector of the kth coordinate, ek = (0, 0, . . . , 0, 1, 0). Then the necessary conditions (6)

are equivalent to the matrix equation V Ac = ek. Assuming all the ∆i’s are different, V

is invertible and there is an explicit formula for its inverse [30]. This yields the following

expression for the c1, . . . , ck+1 in terms of α and β:

ci = (A−1V −1ek)i =
1

αk
i

·
∆i −

∑k+1
j=1 ∆j

∏k+1
j=1,j 6=i(∆i − ∆j)

. (7)

The main illustrative case: Hypothesis H1 and k odd. We will now assume that k is odd;

this assumption will be easily removed later. It will henceforth be convenient to replace our

indices 1, . . . , k + 1 with the following slightly peculiar but symmetric set of indices:

I =
{

±1, ±2, . . . , ± k−1
2 , ± 1

2

}
.
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Now under Hypothesis H1, we will choose

αi =
i√

k2 + i2
, βi =

k√
k2 + i2

=⇒ ∆i =
k

i

for all i ∈ I. These choices satisfy α2
i + β2

i = 1 and |αi|, |βi| ≥ 1/O(Ck), so it remains to

prove that for c defined by (7) we have
∑ |ci| ≤ O(k).

Let us upper-bound all |ci|. Since it easy to see that |ci| = |c−i| for all i ∈ I, it will suffice

for us to consider the positive i ∈ I. For 1 ≤ i ≤ k−1
2 , we have

∣∣∣∣∣∣

∏

j∈I,j 6=i

(∆i − ∆j)

∣∣∣∣∣∣
= (∆1/2 − ∆i)(∆i − ∆−1/2) ·

(k−1)/2∏

j=1,j 6=i

|∆i − ∆j | ·
−1∏

j=−(k−1)/2

(∆i − ∆j)

=

(
2k − k

i

)(
2k +

k

i

)
·

(k−1)/2∏

j=1,j 6=i

∣∣∣∣
k

i
− k

j

∣∣∣∣ ·
(k−1)/2∏

j=1

(
k

i
+

k

j

)

= kk

(
4 − 1

i2

)
·

(k−1)/2∏

j=1,j 6=i

|j − i|
ij

·
(k−1)/2∏

j=1

j + i

ij

=
kk

ik−2

(
4 − 1

i2

) (k−1
2 + i

)
!
(

k−1
2 − i

)
!(

k−1
2

)
!2

.

Thus from (7),

|ci| =

(√
k2 + i2

i

)k

· k

i
· ik−2

kk
· 1

4 − 1/i2
·

(
k−1

2

)
!2(

k−1
2 + i

)
!
(

k−1
2 − i

)
!

=
k

i3

(
1 +

i2

k2

)k/2
1

4 − 1/i2

(
k−1

2

)
!2(

k−1
2 + i

)
!
(

k−1
2 − i

)
!
.

When 1 ≤ i ≤
√

k, we have

|ci| =
k

i3

(
1 +

i2

k2

)k/2
1

4 − 1/i2

(
k−1

2

)
!2(

k−1
2 + i

)
!
(

k−1
2 − i

)
!

≤ k

i3

(
1 +

1

k

)k/2

≤
√

ek

i3
.

For
√

k ≤ i ≤ k−1
2 , consider the ratio between (i + 1)3|ci+1| and i3|ci|; it satisfies

(i + 1)3|ci+1|
i3|ci|

≤ (k2 + (i + 1)2)k/2

(k2 + i2)k/2
·

k−1
2 − i

k−1
2 + i + 1

=

(
1 +

2i + 1

k2 + i2

)k/2

· k − 1 − 2i

k + 1 + 2i

≤
(

1 +
2i + 1

k2

)k/2

· k − 1 − 2i

k

≤ e
2i+1

2k

(
1 − 2i + 1

k

)
≤ 1.

The last inequality holds since ex/2(1−x) ≤ 1 for all 0 ≤ x ≤ 1. Thus we have (i+1)3|ci+1| ≤
i3|ci|, and hence by induction that

|ci| ≤
√

ek

i3
∀ 1 ≤ i ≤ k−1

2 . (8)
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We now need to bound c1/2. Similarly to the above, we have
∣∣∣∣∣∣

∏

j∈I,j 6= 1
2

(∆1/2 − ∆j)

∣∣∣∣∣∣
= (∆ 1

2
− ∆−1/2) ·

(k−1)/2∏

j=1

(∆1/2 − ∆j) ·
−1∏

j=−(k−1)/2

(∆ 1
2

− ∆j)

= 4k ·
(k−1)/2∏

j=1

(
2k − k

j

)
·

(k−1)/2∏

j=1

(2k +
k

j
)

= 4kk ·
(k−1)/2∏

j=1

2j − 1

j
·

(k−1)/2∏

j=1

2j + 1

j

= 4kk (k − 2)!!k!!(
k−1

2

)
!2

Thus from (7) we get

|c1/2| =
(
√

k2 + (1/2)2)k

(1/2)k
· 2k · 1

4kk
·
(

k−1
2

)
!2

(k − 2)!!k!!

=

(
1 +

1

4k2

)k/2(
(k − 1)!!

(k − 2)!!

)2

≤ 4k. (9)

Now combining (8), (9), we obtain

∑

i

|ci| = 2

(k−1)/2∑

i=1

|ci| + 2|c1/2| ≤ 2
√

e

(k−1)/2∑

i=1

k

i3
+ 8k ≤ 20k,

as needed.

Handling even k. If k is even, we define our index set to be

I =
{

0, ±1, ±2, . . . , ± k−2
2 , ± 1

2

}
.

For i ∈ I \{0} we define αi and βi as before; we also define α0 = 1, β0 = 0, and hence ∆0 = 0.

It is easy to check that c0 = 0 (and hence we haven’t actually violated |βi| ≥ 1/O(Ck)), and

the upper bounds for the other |ci| still hold. This completes the proof of the homogeneous

case under Hypothesis H1.

Hypotheses H3. We explain the case of k odd; the same trick as before can be used for

even k. For Hypothesis H3 we use

αi =
i

k3/2 + |i| , βi =
k3/2

k3/2 + |i| =⇒ ∆i =
k3/2

i
,

which satisfy |αi| + |βi| = 1 and |αi|, |βi| ≥ 1/O(k3/2). Analysis similar to before shows that∑
i |ci| ≤ O(k3/2). This completely finishes the proof under Hypothesis H3.

Hypothesis H2, the homogeneous case. Here we do something slightly different. For even

or odd k we let the index set be I = {1, 2, . . . , k, 1
2 } and then define

αi =
i2

k2 + i2
, βi =

k2

k2 + i2
=⇒ ∆i =

k2

i2
.

Now we have |αi| + |βi| = αi + βi = 1 and |αi|, |βi| ≥ 1/O(k2). Again, similar analysis shows

that
∑

i |ci| ≤ O(k2).
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Extending to the non-homogeneous case under H2. Now we need to be concerned with

the terms at degree k′ < k. Here a key observation is that, since αi + βi = 1 for all i, the

following holds for all k′ < k:

∑

i

ciα
k′−t
i βt

i =
∑

i

ciα
k′−t
i βt

i (αi + βi) =
∑

i

ciα
k′−t+1
i βt

i +
∑

i

ciα
k′−t
i βt+1

i .

Thus an induction shows that in fact

∑

i

ciα
k′−t
i βt

i =





k − k′ if t = k′

1 if t = k′ − 1

0 otherwise

for all k′ ≤ k. This is almost exactly what we need to treat the non-homogeneous case using

all the same choices for c, α, β, except for the t = k′ case. But we can use a simple trick to

fix this:

1

2

∑

i

ciα
k′−t
i βt

i − 1

2

∑

i

ci(−αi)
k′−tβt

i =
1 − (−1)k′−t

2

∑

i

ciα
k′−t
i βt

i =

{
1 if t = k′ − 1

0 otherwise

From this we get

f̆(y, z) =

m∑

i=1

cif(αiy + βiz)

even in the non-homogeneous case, with all the desired conditions and m = 2(k + 1).

Extending to the non-homogeneous case under H1. The trick here for handling degree

k′ < k is similar. Using the fact that α2
i + β2

i = 1 for all i, we get that for all k′ < k,

∑

i

ciα
k′−t
i βt

i =
∑

i

ciα
k′−t
i βt

i (α2
i + β2

i ) =
∑

i

ciα
k′−t+2
i βt

i +
∑

i

ciα
k′−t
i βt+2

i .

Then by induction, the we conclude that

k+1∑

i=1

ciα
k′−t
i βt

i =

{
1 if t = k′ − 1

0 otherwise

holds for all 0 ≤ k′ ≤ k such that k − k′ is even. We are therefore almost done: we have

established the H1 case of Lemma 4.1 for all polynomials with only odd-degree terms or only

even-degree terms. Finally, for a general polynomial f we can decompose it as f = fodd+feven,

where fodd (respectively, feven) contains all the terms in f with odd (respectively, even)

degree. We know that there exist some vectors α, β, c and α′, β′, c′ satisfying

f̆odd(y, z) =

k+1∑

i=1

cifodd(αiy + βiz), f̆even(y, z) =

k+1∑

i=1

c′
ifeven(α′

iy + β′
iz),



R. O’Donnell and Y. Zhao 17

and
∑

i |ci|,
∑

i |c′
i| ≤ 20k. Thus

f̆(y, z) = f̆odd(y, z) + f̆even(y, z)

=

k+1∑

i=1

cifodd(αiy + βiz) +

k+1∑

i=1

c′
ifeven(α′

iy + β′
iz)

=

k+1∑

i=1

1

2
ci(f(αiy + βiz) − f(−αiy − βiz)) +

k+1∑

i=1

1

2
c′

i(f(α′
iy + β′

iz) + f(−α′
iy − β′

iz))

=

4(k+1)∑

i=1

c′′
i f(α′′

i y + β′′
i z),

where c′′ = (c/2, −c/2, c′/2, c′/2), α′′ = (α, −α, α′, −α′), β′′ = (β, −β, β′, −β′) and
∑

i |c′′
i | ≤

40k. ◭
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