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Abstract— Yield-driven optimization is important in micro-
wave design due to the uncertainties introduced in the
manufacturing process. For the first time, we extend in this paper
the use of polynomial chaos (PC) approach from electromag-
netic (EM)-based yield estimation to EM-based yield optimization
of microwave structures. We first formulate a novel objective
function for yield-driven EM optimization. By incorporating
the PC coefficients into the formulation, the objective function
is analytically related to yield optimization variables, which
are the nominal point. We then derive the sensitivity formu-
las of the PC coefficients with respect to the nominal point,
following which we derive the sensitivities of the optimization
objective function with respect to yield optimization variables.
These sensitivities are then used in gradient-based optimization
algorithms to find the optimal yield solution iteratively. The
proposed objective function requires fewer EM simulations to
provide reliable yield representation than that in the conventional
Monte Carlo-based yield optimization approach. As a result,
the number of EM simulations required to find the update
direction and suitable step size for the change of the nominal
point is reduced at each iteration of optimization. This allows
the proposed approach to achieve similar yield increase using
much fewer EM simulations or greater yield increase using
similar number of EM simulations compared to the conventional
yield optimization approach. The advantages of our proposed
approach are demonstrated by yield-driven EM optimization of
three waveguide filter examples.

Index Terms— Electromagnetic (EM) optimization, EM sen-
sitivities, microwave filters, polynomial chaos (PC), statistical
analysis, yield estimation, yield optimization.

I. INTRODUCTION

U
NCERTAINTIES, introduced in the manufacturing

process, pose inherent randomness on both geometrical

dimensions and material properties of microwave components.

Under this consideration, performing yield-driven optimization
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becomes an essential step in manufacturability-driven designs

in a time-to-market development environment [1], [2]. The

two decades after 1970 have witnessed the development of

various yield optimization approaches, such as Monte Carlo-

based approaches [1]–[5] and geometrical approaches [6]–[8].

These methods are developed mostly for circuit-based yield-

driven design.

Since 1990s, electromagnetic (EM) simulations have

been increasingly used in microwave design [9]–[14].

However, compared with the circuit-based yield-driven design,

EM-based yield optimization is much more challenging.

Simply replacing circuit simulations by EM simulations in

conventional yield optimization approaches is not suitable

because the requirement of a large number of EM simulations

in yield optimization is computationally prohibitive. To alle-

viate this difficulty, space mapping optimization method has

been introduced to the yield-driven design of microwave struc-

tures. Space mapping employs computationally fast coarse

models to reduce the evaluation cost of the computationally

expensive EM fine models. The number of EM simulations

required in yield optimization is expected to be reduced

as all the EM simulations are attributed to calibrating the

coarse model at each space mapping iteration. In [15], space

mapping neuromodels have been used in an efficient EM-based

yield optimization procedure. In [16], space mapping has

been combined with a modified ellipsoidal technique, and

then, applied to yield optimization of microwave circuits.

A response corrected tuning space mapping surrogate has been

used for yield estimation and optimization in [17]. In [18],

the generalized space mapping surrogate is reconstructed

during yield optimization by parameter extraction. Jacobian

matrixes of the EM responses are evaluated and used in the

parameter extraction optimization process to enhance surrogate

models. However, all the aforementioned space mapping-based

approaches require the availability of an equivalent circuit

coarse model. In many practical cases, equivalent circuit

coarse models are not always available [19]. In this paper,

we address the challenge of performing yield-driven EM

optimization when explicit equivalent circuit coarse models

are not available. More recently, feature-based methods have

been studied and applied to yield estimation and optimization

of microwave structures. In [20] and [21], a yield estimation

technique exploiting feature-based statistical analysis has been

presented. Yield optimization is then performed by optimizing

the feature-based model using a pattern search algorithm.

In [22], a correction method for feature parameters has been
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described to allow yield estimation of microwave filters. Yield

optimization is then formulated as a constrained optimization

problem and solved accordingly.

At each iteration of yield optimization, the prediction of

yield values (also referred to as yield estimation) is typ-

ically involved. Recently, approaches based on polynomial

chaos (PC) [23] have emerged as favorable alternatives for

yield estimation and statistical analysis in the microwave area,

such as those in [24]–[34]. In [24], for example, PC has

been used to expand the time-domain electric and magnetic

fields into orthogonal PC basis functions of uncertain mesh

parameters. In [25], a decoupled PC and its applications to

statistical analysis and yield estimation of high-speed intercon-

nects have been reported. In [26], a nonintrusive formulation of

the PC approach has been applied to quantify the uncertainties

in deterministic models of the indoor radio channel. It has

been demonstrated that the PC approach shows significant

computational advantages over the traditional Monte Carlo

analysis and can be regarded as a powerful tool in yield

estimation and statistical analysis of microwave structures.

Compared to yield estimation, yield optimization has addi-

tional challenges. Unlike yield estimation where one fixed

nominal point (usually regarded as the mean values of statisti-

cal parameters) is considered, in yield optimization, the nom-

inal point is a variable that is updated iteratively, resulting

in many nominal points to be considered. At each iteration

of yield optimization, yield estimation needs to be performed

with respect to one nominal point, and the update direction and

suitable step size for the change of the nominal point need to

be determined. These tasks have to be done repetitively from

iteration to iteration during optimization, requiring a large

number of EM simulations if we directly apply the conven-

tional Monte Carlo-based or geometrical yield optimization

approaches. Considering the computational advantages that PC

offers in yield estimation, it is of great interest to explore the

use of PC for yield optimization. However, how to use PC

to facilitate the EM-based yield optimization of microwave

structures still remains an open subject in the literature.

This paper proposes a novel PC-based approach to yield-

driven EM optimization. For the first time, the use of PC

approach is elevated from the EM-based yield estimation

to EM-based yield optimization. The proposed approach

provides systematic formulation and sensitivity formulas of

EM-based yield optimization and does not require the avail-

ability of a coarse model. In the proposed approach, we first

formulate a novel objective function for yield-driven EM

optimization. By incorporating PC coefficients into the for-

mulation, the objective function is analytically related to yield

optimization variables, which are the nominal point. We then

derive the sensitivity formulas of the PC coefficients with

respect to the nominal point. The sensitivities of the objective

function with respect to the nominal point are derived based on

the sensitivity formulas of the PC coefficients. These sensitiv-

ities are then used in gradient-based optimization algorithms

to find the optimal yield solution iteratively. The proposed

objective function requires fewer EM simulations to provide

reliable yield representation than that in the conventional

Monte Carlo-based yield optimization approach. As a result,

the number of EM simulations required to find the update

direction and proper step size for the change of the nomi-

nal point is reduced at each iteration of optimization. This

allows the proposed approach to achieve similar yield increase

using much fewer EM simulations or greater yield increase

using similar number of EM simulations compared to the

conventional yield optimization approach. Three waveguide

filter examples are used to demonstrate the advantages of our

proposed approach.

This paper is organized as follows. In Section II, we briefly

review the formulations of the PC approach and establish

necessary notations for the descriptions of the proposed

approach. In Section III, the proposed PC-based yield opti-

mization approach is described in detail. Both the formulation

and the sensitivity formulas of the proposed PC-based objec-

tive function for yield-driven EM optimization are presented.

In Section IV, we demonstrate the advantages of the pro-

posed approach using yield-driven EM optimization of three

waveguide filter examples. In Section V, we conclude the

paper.

II. FORMULATIONS OF PC APPROACH

In this section, we give a brief overview of formulations

of the PC approach and establish necessary notations for the

descriptions of the proposed approach.

Let x represent the vector of n design parameters

(e.g., geometrical parameters) of the EM structure, where

x = [x1, x2, . . . , xn]T . Let x
0 be the nominal point of x. For

statistical analysis of EM structures, the actual values of design

parameters of the manufactured devices are spread around x
0

following certain (uniform, normal, etc.) distributions. A key

component of PC-based statistical analysis is performing a

transformation of parameters from the original random para-

meters x to independent standard random parameters ξ and

then applying the stochastic expansion in the transformed

space (i.e., the “ξ -space”) [35]. Let ξ = [ξ1, . . . , ξn ]T be

the vector of the independent standard random parameters.

For example, ξ1, . . . , ξn are with zero mean and unit variance

if x1, x2, . . . , xn have normal distributions, or with support

[−1, 1] if x1, x2, . . . , xn are uniformly distributed. In the con-

text of EM-based yield optimization, the change of x
0 should

be considered when performing the transformation as the

nominal point is a variable. We thus denote this transformation

as ξ = T (x
0, x) with the reverse transformation denoted as

x = T −1(x
0, ξ ). (1)

The design goals are typically defined by a set of spec-

ifications imposed on the response of the EM structure at

each frequency of interest. Let S j be the j th design speci-

fication sample, where j = 1, . . . , m. The symbol m denotes

the number of specification samples, including samples for

upper specifications and samples for lower specifications.

Let mu be the number of upper specification samples. For

convenience of description, we assume that S1, . . . , Smu are

upper specification samples and that Smu+1, . . . , Sm are lower

specification samples. Let R j (x) be the EM response at the

frequency of interest that corresponds to S j . As we focus on
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yield optimization where the nominal point x
0 is a variable,

we intend to write R j (x) in a form where x
0 is explicitly

presented. Substituting the reverse transformation (1) into

R j (x) allows us to have R j (x) = R j (T −1(x
0, ξ )). An error

vector e(x) can be defined to measure the degree to which the

response satisfies the design specifications as follows:

e(x) = e(T −1(x
0, ξ )) = [e1 e2 · · · emu · · · em]T (2)

where the j th element in the error vector, e j (T −1(x
0, ξ )),

is given as

e j (T −1(x
0, ξ ))=

{

R j (T −1(x
0, ξ )) − S j , if 1 ≤ j ≤ mu

S j − R j (T −1(x
0, ξ )), if mu < j ≤ m.

(3)

In practice, it is possible to impose both an upper specification

and a lower specification on the response at a common

frequency of interest. For example, if S j1 and S j2 are the

upper specification and the lower specification at a common

frequency, respectively, then the responses R j1(T −1(x
0, ξ ))

and R j2(T −1(x
0, ξ )) have the same values.

In PC-based statistical analysis of EM structures, the sto-

chastic quantity of interest is R j (x). The functional form

between R j (x) and ξ is approximated by the sum of weighted

orthogonal basis polynomials in terms of the standard random

parameters ξ as follows [23]:

R j (x) = R j (T −1(x
0, ξ )) =

P
∑

i=0

ai j (x
0)�i (ξ ) (4)

where �i (·) is the generalized PC basis function. The optimal

bases to construct the multivariate basis depend on the contin-

uous probability distribution types of the design parameters.

For example, Hermite polynomials are optimal for normal dis-

tribution while Legendre polynomials correspond to uniform

distribution [35]. ai j (x
0) is the weighting coefficient for the

i th basis function �i of the j th EM response R j (T −1(x
0, ξ )).

P + 1 is the number of terms in (4), given as [23]:

P + 1 =
(n + D)!
n! · D!

(5)

where n is the dimentionality of x, and D is the highest

polynomial order in the expansion.

In this paper, we focus on the nonintrusive stochastic

collocation scheme (more specifically, the spectral projection

approach) to compute the PC coefficients ai j (x
0). Using

the orthogonality condition of the PC basis functions �i (ξ ),

the PC coefficients ai j (x
0) can be found by projection [26]

ai j (x
0) =

∫

�n R j (T −1(x
0, ξ ))�i (ξ )ρ(ξ )dξ

∫

�n �2
i (ξ )ρ(ξ )dξ

(6)

where �n is the n-dimensional space of all possible values

of ξ . ρ(ξ ) is the joint probability density function (PDF) of

the standard random parameters ξ . The definition of ρ(ξ ) is

given as ρ(ξ ) =
∏n

d=1 f (ξd), where f (ξd ) is the PDF of

ξd , d = 1, 2, . . . , n. Equation (6) is the same as that in [26]

except that the change of the nominal point is considered.

As x
0 changes during yield optimization, the PC coefficients

ai j need to be reevaluated from iteration to iteration.

The multidimensional integration in (6) can be evaluated

using numerical quadrature (see [26])

∫

�n

R j (T −1(x
0, ξ ))�i (ξ )ρ(ξ )dξ

≈
M

∑

l=1

R j (T −1(x
0, ξ (l)))�i (ξ

(l))w(l) (7)

∫

�n

�2
i (ξ )ρ(ξ )dξ ≈

M
∑

l=1

�2
i (ξ

(l))w(l) (8)

where ξ (l) and w(l) are the integration quadrature points

(also called “nodes”) and weights in the "ξ -space," respec-

tively. M is the total number of integration quadrature points.

R j (T −1(x
0, ξ (l))) is the EM response evaluated at the lth

sampling point in the original random space. As an exam-

ple, assuming that the design parameters are independently

Gaussian distributed with mean values x0
1 , x0

2 , . . . , x0
n and stan-

dard deviations σ1, σ2, . . . , σn , the lth sample in the original

space is given as

T −1(x
0, ξ (l)) = x

0 + Ŵξ (l) (9)

where Ŵ is a diagonal matrix containing the standard

deviations for all the design parameters, i.e., Ŵ = diag

{σ1 σ2 · · · σn}. To reduce the computational costs for mul-

tidimensional numerical integration in (7) and (8), sparse

grid techniques based on the Smolyak algorithm are typically

applied [36]. In many cases, this can accurately approximate

multidimensional integrals with substantially fewer quadrature

points.

As the change of x
0 does not affect the numerical quadrature

in (8), for notational convenience, we define bi as follows:

bi =
M

∑

l=1

�2
i (ξ

(l))w(l). (10)

bi is problem independent. It only depends on M and the

distribution types of standard random parameters ξ . Therefore,

bi can be determined before one performs yield optimization.

Based on (6)–(8) and (10), the PC coefficients can be com-

puted from

ai j (x
0) =

1

bi

M
∑

l=1

R j (T −1(x
0, ξ (l)))�i (ξ

(l))w(l) (11)

where �i (ξ
(l)) and w(l) are the constants for yield

optimization.

One valuable feature of the PC approach is that once the

coefficients ai j (x
0) are computed, the statistical properties of

the stochastic quantity R j (T −1(x
0, ξ )), e.g., mean µ j (x

0) and

variance σ 2
j (x

0) can be obtained analytically through these

coefficients in a simple closed form [26]

µ j (x
0) = E(R j ) = a0 j (x

0) (12)

σ 2
j (x

0) = E[(R j − µ j )
2] =

P
∑

i=1

a2
i j (x

0)bi . (13)
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III. PROPOSED PC-BASED YIELD

OPTIMIZATION APPROACH

In this section, our proposed PC-based yield optimization

approach is presented in detail. In Section III-A, we incor-

porate the PC coefficients into the objective function for

yield-driven EM optimization. By taking full advantage of

the statistical properties provided by the PC coefficients,

the number of EM simulations required to achieve reliable

yield representation is reduced. In Section III-B, we derive the

sensitivity formulas of the PC coefficients with respect to the

nominal point, followed by the derivation of the sensitivities

for the proposed objective function. These sensitivities are then

used in the gradient-based optimization algorithms to find the

optimal yield solution iteratively. Finally, the proposed yield

optimization process is summarized into a stepwise algorithm.

A. Formulation of the Objective Function for Yield-Driven

EM Optimization Incorporating PC Coefficients

Bandler and Chen [1] presented a one-sided least pth

objective function U(x
0) that was well suited to acceler-

ating yield optimization. The objective function U(x
0) is

congregated from the simulated responses related to design

specifications for all the circuit outcomes randomly generated

around the nominal point. Increase of the yield can be achieved

by minimizing U(x
0) since such minimization leads to a

better center in the feasible region [2]. In this paper, we use

the formulation in [1] as a starting point and propose a

new and different objective function to facilitate yield-driven

EM optimization.

In the statistical approach to microwave design, we consider

that the random outcomes of the design parameters x are

actually spread around the nominal point x
0 following their

statistical distributions and tolerances [15]. The kth random

outcome of x can be denoted as

x
k = T −1(x

0, ξ k), k = 1, . . . , N (14)

where N is the total number random outcomes of x. ξ k is

the vector of standard random parameters, which corresponds

to x
k. In this paper, to distinguish the random outcomes of x

in the Monte Carlo analysis from the sparse grid samples of

x in the PC approach, we use k (k = 1, . . . , N) to represent

the index of random outcomes and use l (l = 1, . . . , M) to

represent the index of sparse grid samples.

Suppose that Hp(·) represents the one-sided least pth func-

tion. Following [1], the objective function U(x
0) for the Monte

Carlo-based yield optimization is given as [1]

U(x
0) = Hp(u(x

0)) (15)

where u = [u1, u2, . . . , uN ]T . The kth component in u is

defined as

uk = αk Hq(e(T −1(x
0, ξ k))), k = 1, . . . , N (16)

where q is an index indicating the norm used for e while p is

an index indicating the norm used for u. The specific definition

of the least pth norms (p = 1, 2, . . . ,∞) can be found in [1].

If we use p = 1 and q = 1 (as used in [1]) and take the

weighting factor αk = 1, the objective function U(x
0) will

take the following form [1]:

U(x
0) =

∑

k∈K

∑

j∈J(xk)

e j (T −1(x
0, ξ k)) (17)

J(x
k) = { j |e j (T −1(x

0, ξ k)) > 0} (18)

K = {k|J(x
k) �= ∅}. (19)

The objective function defined in (17) typically requires the

number of outcomes N to be reasonably sufficient to make

the minimization of (17) effective. It works efficiently if the

computation of responses is by circuit simulations. However,

it is not computationally efficient to directly apply (17) to

yield-driven EM optimization. The reason is that in each

iteration of yield optimization, the EM simulations need to be

done N times, where N is the number of random outcomes

of x. Furthermore, those simulations have to be redone from

iteration to iteration as the nominal point x
0 is changed,

resulting in a large number of EM simulations.

To alleviate this difficulty, we propose a new formulation of

the objective function inspired by the fact that the statistical

properties of the EM response can be obtained analytically

through the PC coefficients. Provided that the computation

of the PC coefficients is accurate and not too expensive,

we can take full advantage of the statistical properties offered

by PC such that the number of EM simulations required to

achieve reliable yield representation is reduced. In terms of

nonintrusive PC approaches, it has been shown that the number

of integration samples M required to obtain accurate PC coeffi-

cients is much fewer than the number of outcomes N required

in the Monte Carlo analysis [26]. Thus, if we can use the PC

coefficients properly to formulate a new objective function,

the computational costs to achieve reliable yield representation

can be reduced and the overall yield optimization process can

be expedited. In the subsequent descriptions, we follow this

idea to propose our PC-based yield optimization approach.

As shown in (4), for each specification sample S j , we have

one response R j (T −1(x
0, ξ )) and one corresponding set of PC

coefficients ai j , i = 0, 1, . . . , P. In order to incorporate the

PC coefficients into EM-based yield optimization, we need

to reorganize the objective function defined in (17) into a

form where the error element e j (T −1(x
0, ξ k)) is accumulated

first with respect to each specification sample S j then with

respect to each set of design parameters of the outcomes x
k .

By doing this, the statistical properties of the responses com-

puted from the PC coefficients can be exploited. To achieve

this, we rewrite the original objective function U(x
0) in (17)

by swapping the order of the summations, and at the same

time rearrange the elements in J and K as follows:

U(x
0) =

∑

j∈J̄

∑

k∈K̄ j

e j (T −1(x
0, ξ k)) (20)

K̄ j = {k|e j (T −1(x
0, ξ k)) > 0} (21)

J̄ = { j |K̄ j �= ∅} (22)

where K̄ j is a set containing all the indices of the outcomes

whose responses violate the specification sample S j . J̄ is a set
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containing all the indices of the specification samples that are

violated by at least one outcome.

As shown in (3), the error element e j (T −1(x
0, ξ k)) is

calculated differently for upper and lower specifications. For

convenience of description, we divide the reorganized objec-

tive function (20) into two parts according to the design

specification type of S j as follows:

U(x
0) =

∑

j∈J̄u

∑

k∈K̄ j

e j (T −1(x
0, ξ k))

+
∑

j∈J̄l

∑

k∈K̄ j

e j (T −1(x
0, ξ k)) (23)

where J̄u and J̄l contain the indices of the upper and lower

specification samples that are violated by at least one outcome,

respectively, that is,

J̄u = { j | j ∈ J̄, 1 ≤ j ≤ mu} (24)

J̄l = { j | j ∈ J̄, mu < j ≤ m}. (25)

It can be noted that J̄u ∪ J̄l = J̄.

Let N fail
j be the number of elements in K̄ j . N fail

j rep-

resents the number of outcomes whose responses fail to

satisfy the specification S j . If the total number of out-

comes N goes to infinity, then the statistical properties of
∑

k∈K̄ j
e j (T −1(x

0, ξ k)) can be represented more accurately

by an integral form as follows:

lim
N→∞

1

N

∑

k∈K̄ j

e j (T −1(x
0, ξ k))

=
1

N
E(e j (T −1(x

0, ξ )) · N fail
j

= E[(R j − S j ) | R j > S j ] ·
N fail

j

N

=

∫ ∞
S j

(R j − S j ) f (R j )dR j
∫ ∞

S j
f (R j )dR j

·
N fail

j

N

=

∫ ∞
S j

(R j − S j ) f (R j )dR j

N fail
j /N

·
N fail

j

N

=
∫ ∞

S j

(R j − S j ) f (R j )dR j

= −S j

∫ ∞

S j

f (R j )dR j +
∫ ∞

S j

R j f (R j )dR j (26)

where j ∈ J̄u , R j = R j (T −1(x
0, ξ )), which can be expressed

as truncated series expansion as shown in (4) if we apply the

PC approach. E[(R j − S j ) | R j > S j ] represents the mean

value of (R j − S j ) conditional on R j > S j . f (R j ) denotes the

PDF of R j .

Similarly, the statistical properties of
∑

k∈K̄ j
e j

(T −1(x
0, ξ k)), j ∈ J̄l , can be represented more accurately by

an integral form as follows:

lim
N→∞

1

N

∑

k∈K̄ j

e j (T −1(x
0, ξ k))

= S j

∫ S j

−∞
f (R j )dR j −

∫ S j

−∞
R j f (R j )dR j . (27)

It is noted that (26) and (27) have different intervals for

the integration, i.e., (26) has interval [S j ,∞) while (27) has

interval (−∞, S j ].
For notational convenience, we define ū j (x

0) as a yield

indicator with respect to the specification sample S j as

follows:

ū j (x
0)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−S j

∫ ∞

S j

f (R j )dR j +
∫ ∞

S j

R j f (R j )dR j , j ∈ J̄u

S j

∫ S j

−∞
f (R j )dR j −

∫ S j

−∞
R j f (R j )dR j , j ∈ J̄l .

(28)

ū j (x
0) can be regarded as an indicator of the yield because a

small value of ū j (x
0) basically represents that there are few

outcomes whose responses violate the specification sample S j ,

indicating a high yield. Therefore, reducing ū j (x
0) is expected

to lead to an increase of the yield.

Given µ j , σ 2
j , and higher moments of R j [35], f (R j )

in (28) can be approximated using the existing PDF estimation

techniques, e.g., the moment matching technique [37] and

the maximum entropy technique [38]. Then, the integrals in

ū j (x
0) can be evaluated by applying the Gauss quadratures

developed in [39]. In this paper, to analytically relate ū j (x
0)

to the nominal point through the PC coefficients, we consider

a special case where the EM response R j follows normal

distribution with µ j and σ j as its mean and standard deviation,

respectively. In the following descriptions, we show how

ū j (x
0) is analytically related to the nominal point through

PC coefficients under such consideration.

Based on (12) and (13), the first term of ū j (x
0), j ∈ J̄u ,

can be related to the nominal point x
0 through PC coefficients

as follows:

−S j

∫ ∞

S j

f (R j )dR j = S j

⎛

⎝φ

⎛

⎝

S j − a0 j (x
0)

√

∑P
i=1 a2

i j (x0)bi

⎞

⎠− 1

⎞

⎠

(29)

where φ(·) is the cumulative distribution function of the stan-

dard normal distribution. a0 j and ai j are the PC coefficients

as functions of yield optimization variables x
0.

For notational convenience, let γ j (x
0) be defined as

γ j (x
0) =

S j − a0 j (x
0)

√

∑P
i=1 a2

i j (x0)bi

, j ∈ J̄u ∪ J̄l . (30)

φ(γ j (x
0)) represents the probability that R j satisfies the

specification S j in case j ∈ J̄u or violates S j in case

j ∈ J̄l .

To analytically relate the second term of ū j (x
0), j ∈ J̄u ,

to the nominal point through PC coefficients, we are interested

in finding the mean value of the EM response R j under

the condition that R j violates the upper specification S j . Let

E(R j | R j > S j ) be the mean value of R j conditional on

R j > S j . Then,
∫ ∞

S j
R j f (R j )dR j can be analytically related
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to the nominal point x
0 as follows [40]:

∫ ∞

S j

R j f (R j )dR j

= E(R j | R j > S j ) ·
∫ ∞

S j

f (R j )dR j

= µ j (1 − φ(γ j (x
0))) +

1
√

2π
σ j · e

− 1
2
γ 2

j (x0)
(31)

where µ j and σ j can be computed from PC coefficients as

given by (12) and (13).

The PC coefficients are incorporated into ū j (x
0) for the

upper specifications by substituting (12)–(13) and (29)–(31)

into ū j (x
0), j ∈ J̄u , as follows:

ū j (x
0) =

√

√

√

√

P
∑

i=1

a2
i j (x0)bi ·

[

(φ(γ j (x
0)) − 1)γ j (x

0)

+
1

√
2π

e
− 1

2 γ 2
j (x

0)

]

. (32)

Following similar derivations, we can incorporate the PC

coefficients into ū j (x
0) for the lower specifications, j ∈ J̄l ,

as follows:

ū j (x
0) =

√

√

√

√

P
∑

i=1

a2
i j (x0)bi ·

[

φ(γ j (x
0))γ j (x

0)

+
1

√
2π

e
− 1

2 γ 2
j (x

0)

]

. (33)

The proposed PC-based objective function Ū(x
0) for

yield-driven EM optimization including both upper and lower

specifications is given as

Ū(x
0) =

∑

j∈J̄u

ū j (x
0) +

∑

j∈J̄l

ū j (x
0) (34)

where ū j (x
0) is given by (32) and (33) for upper ( j ∈ J̄u )

and lower specifications ( j ∈ J̄l ), respectively. By substituting

(32) and (33) into (34), the proposed optimization objective

function can be written in a more convenient form

Ū(x
0) =

∑

j∈J̄

V j (x
0) +

∑

j∈J̄u

(a0 j (x
0) − S j ) (35)

where V j (x
0) is computed from the PC coefficients as follows:

V j (x
0) =

√

√

√

√

P
∑

i=1

a2
i j (x0)bi ·

[

φ(γ j (x
0))γ j (x

0)

+
1

√
2π

e
− 1

2 γ 2
j (x

0)

]

. (36)

Note that ai j (x
0) are the PC coefficients, and γ j (x

0) is

computed from the PC coefficients ai j (x
0) as shown in (30).

It is pointed out that through (20)–(36), we have changed

the original objective function defined in (17) into a new form

where the PC coefficients are incorporated. The PC coeffi-

cients are able to provide the statistical properties and approxi-

mate the PDF of the EM response with fewer EM samples than

that required by the Monte Carlo analysis. Therefore, the new

Fig. 1. Illustration of the movement of sparse grid samples in PC between two
consecutive iterations during yield optimization. The two black dots represent
the nominal points between two successive iterations. The circles represent
the integration samples around the nominal points following the sparse grid

technique. In yield optimization, the nominal point x
0 is a variable which

is updated iteratively. As the nominal point moves from x
0 to x

0
new, all the

sparse grid samples move accordingly.

PC-based formulation requires fewer EM simulations to obtain

accurate yield representation than the original formulation

(which is based on assembling the responses evaluated at

Monte Carlo samples). This advantage allows our proposed

objective function to be able to facilitate the overall EM-based

yield optimization process more efficiently.

B. Derivation of Sensitivity Formulas for the

Proposed Objective Function

To use the proposed objective function formulated earlier in

yield-driven EM optimization, the derivatives of the proposed

objective function Ū(x
0) with respect to the varying nominal

point x
0 need to be derived so that a gradient-based optimiza-

tion algorithm (e.g., quasi-Newton method) can be employed.

In this section, we first derive the sensitivity formulas of PC

coefficients with respect to x
0, then derive the sensitivities for

the objective function based on the sensitivity formulas of the

PC coefficients.

At each iteration of the proposed yield optimization algo-

rithm, a set of EM design parameters X is generated around

the current nominal point x
0 following the sparse grid tech-

nique, that is,

X = {T −1(x
0, ξ (1)), . . . , T −1(x

0, ξ (M))}. (37)

Then, the PC coefficients are numerically evaluated using

the EM responses simulated at these design parameters. The

sparse grid samples are formed based on the Smolyak algo-

rithm [41], which selectively combines the tensor products

of lower order quadrature rules to cover the parameter space

more efficiently [26]. As illustrated in Fig. 1, as the nominal

point moves from x
0 to x

0
new, the sparse grid samples in the

original parameter space move accordingly, forming a new set

of sparse grid samples Xnew. In other words, the movement

of the nominal point affects the location of every sparse grid



3192 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 66, NO. 7, JULY 2018

point in the original parameter space, which in turn affects

each PC coefficient ai j .

In this paper, we consider the design parameters to be

Gaussian (normal) distributed and that the standard deviation

is σd for the dth design parameter, d = 1, 2, . . . , n. Then,

the reverse transformation in (9) takes the following form:

T −1(x
0, ξ (l)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x0
1

x0
2

...

x0
n

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ1ξ
(l)
1

σ2ξ
(l)
2

...

σnξ
(l)
n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(38)

where l = 1, . . . , M . Note that σd and ξ
(l)
d are the predeter-

mined constants for yield optimization.

Based on (11) and (38), we can obtain the derivatives of

each PC coefficient ai j (x
0) with respect to the nominal point

x
0 as follows:

∂ai j (x
0)

∂x0
=

1

bi

M
∑

l=1

�i (ξ
(l))w(l) ∂R j (x)

∂x
|x=x(l) (39)

where x
(l) = T −1(x

0, ξ (l)). (∂R j (x)/∂x) |x=x(l) represents

the EM sensitivities of R j (x) evaluated at the lth sparse

grid point x
(l) in the original parameter space. These EM

sensitivities can be obtained from the existing EM solvers

with sensitivity analysis feature. bi , �i (ξ
(l)), and w(l) are the

predetermined constants for yield optimization.

From (35) and (36), we can deduce the derivatives of the

proposed objective function Ū(x
0) with respect to each PC

coefficient ai j as follows:

∂Ū(x
0)

∂ai j

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − φ(γ j (x
0)), for i = 0, j ∈ J̄u

−φ(γ j (x
0)), for i = 0, j ∈ J̄l

2ai j bi
1

√
2π

1
√

∑P
p=1 a2

pj (x0)bp

· e
− 1

2 γ 2
j (x

0)
,

for i = 1, . . . , P, j ∈ J̄u ∪ J̄l .

(40)

The derivatives of the proposed objective function Ū(x
0)

with respect to the varying nominal point x
0 can be found by

∂Ū(x
0)

∂x0
=

P
∑

i=0

∑

j∈J̄

∂Ū(x
0)

∂ai j

∂ai j (x
0)

∂x0
(41)

where (∂Ū(x
0)/∂ai j ) and (∂ai j (x

0)/∂x
0) are given by

(39) and (40), respectively.

C. PC-Based Yield Optimization Algorithm

In this section, we provide the detailed algorithm for the

proposed PC-based yield-driven EM optimization.

First, a set of M samples {ξ (1), ξ (2), . . . , ξ (M)} is generated

in the “ξ -space” following the rules of the sparse grid tech-

nique. These samples are generated only once and would be

reused in the subsequent iterations. The distribution pattern of

the samples follows the rules of sparse grid techniques [36].

M is related to the accuracy level in sparse grid techniques.

Increasing the accuracy level improves the multidimensional

integration accuracy but results in a larger M , and thus requires

more EM simulations. It is recommended that one fulfills the

PC model construction at the initial nominal point before

performing yield optimization for a specific EM structure

to obtain the required minimal accuracy level. The minimal

accuracy level can be obtained by starting from a small value

and increasing it gradually until no significant integration

difference can be observed between two successive accuracy

levels.

Next, the M samples are transformed into EM geomet-

rical parameter samples {T −1(x
0, ξ (1)), T −1(x

0, ξ (2)), . . .,

T −1(x
0, ξ (M))} using (38). Then, an existing EM simulator

is driven to evaluate the EM responses R j (T −1(x
0, ξ (l))) and

the EM sensitivities (∂R j (x)/∂x) |x=x(l) , for l = 1, 2, . . . , M .

Since the responses and the sensitivities for different sam-

ples can be obtained independently, we evaluate the EM

responses and the EM sensitivities at those M samples in

parallel [42], [43]. By using this parallel computation scheme,

we achieve additional speed up for EM-based yield optimiza-

tion. Then, the PC coefficients ai j (x
0) are numerically evalu-

ated using (6)–(8) and the derivatives of each PC coefficient

with respect to the nominal point are evaluated according

to (39). Afterward, the proposed PC-based objective function

Ū(x
0) is evaluated using (35) and (36), while the derivatives

(∂Ū(x
0)/∂x

0) are evaluated following (39)–(41).

Finally, Ū(x
0) and (∂Ū(x

0)/∂x
0) are used in a gradient-

based optimization algorithm (such as the quasi-Newton

method) to find the update direction and suitable step size for

the change of the nominal point from the current point x
0 to a

new point. Let the new nominal point be denoted as x
0
new. The

optimization terminates if the iteration counter Niter exceeds

the maximum iteration count Nmax
iter or the difference of x

0

between subsequent iterations is sufficiently small, that is,

Niter > Nmax
iter (42)

or
∥

∥x
0
new − x

0
∥

∥ < ε (43)

where Niter = 0, 1, . . .. ε is a user-defined threshold. Fig. 2

shows the flowchart of the proposed PC-based yield optimiza-

tion algorithm. The proposed algorithm can be summarized

into the following steps.

Step 1: Set the initial nominal point x
0
ini as the start-

ing point for yield optimization, i.e., x
0 = x

0
ini.

Typically, x
0
ini should be the optimal solution of

nominal EM optimization. Initialize the iteration

counter Niter as 0. Set the maximum iteration

number Nmax
iter and the stopping criteria ε.

Step 2: Generate M samples {ξ (1), ξ (2), . . . , ξ (M)} in the

“ξ -space” following the rules of the sparse grid

technique.

Step 3: Transform {ξ (1), ξ (2), . . . , ξ (M)} into a set of EM

geometrical parameter samples around the nominal

point using (38).

Step 4: Evaluate the EM responses R j (T −1(x
0, ξ (l))) and

the EM sensitivities (∂R j (x)/∂x) |x=x(l) , for

l = 1, 2, . . . , M , in parallel.
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Fig. 2. Flowchart of the proposed PC-based yield optimization algorithm.

Step 5: Numerically evaluate the PC coefficients ai j (x
0)

using (6)–(8) and the derivatives of each PC coef-

ficient with respect to the nominal point using (39).

Step 6: Evaluate the proposed PC-based objective function

Ū(x
0) defined in (35) and (36).

Step 7: Evaluate the derivatives of the proposed objective

function Ū(x
0) with respect to the nominal point

x
0 following (39)–(41).

Step 8: Find the update direction and suitable step size for

the current nominal point using the gradient-based

optimization algorithm (e.g., the quasi-Newton

method), and find the new nominal point x
0
new.

Step 9: If (42) or (43) is satisfied, go to step 10. Otherwise,

update the nominal point x
0 = x

0
new, update the

iteration count Niter = Niter + 1, and go to Step 3.

Step 10: Obtain the final optimal yield solution x
∗ = x

0
new.

Stop the optimization process.

D. Discussion

In this paper, we have used normal distributions for the

design parameters. In case other types of statistical distrib-

utions (e.g., uniform and log-normal) are needed, they can

be accommodated by supplying different values of σd and

ξ
(l)
d in (38), and using different base functions �i (·) in (4).

The values of σd are determined as the ratios between the

sparse grid samples versus the corresponding samples in the

physical/geometrical parameter space. Such ratios should be

predetermined constants, which are fixed during yield opti-

mization. The values of ξ
(l)
d represent sparse grid samples.

Different types of statistical distributions will have different

sparse grid samples, and different base functions [35]. By sup-

plying the proper values of σd and ξ
(l)
d into (38), and proper

base functions �i (·) into (4), our proposed approach can be

applied to different types of statistical distributions.

Here, we provide a further discussion on the use of normal

distributions for the design parameters in this paper. In theory,

the value of random samples of normal distributions may

have very large deviations since its domain is infinite. In our

paper, this problem is avoided in developing the PC model by

using sparse grid samples whose extreme values are defined

to be limited within 1.73 times the standard deviation [26].

In generating testing samples for yield estimation, we limited

the samples to be within three times the standard deviation.

In this way, we retain the accuracy of the yield optimization

method while avoiding values of random samples that are too

large to be meaningful for EM simulation. If the required

tolerance range is less than three times the standard deviation

in normal distribution, then the distribution required will be

truncated normal distribution. In this case, we need to treat it

as a different distribution, i.e., we will require different values

of σd and ξ
(l)
d in (38) according to a different set of sparse grid

samples, and supply different base functions �i (·) into (4) for

the new distribution.

IV. EXAMPLES

A. Yield Optimization of a Waveguide

K-Band Bandpass Filter

The first example under consideration is a waveguide

K-band bandpass filter described in ADS EMPro tutorial

document. The structure of the filter is shown in Fig. 3. The

section of the waveguide where the filter is constructed is

10.668 mm × 4.318 mm (WR-42). The heights of three

cylindrical posts are all 4.318 mm. r1 is the radius of the

two posts on the side while r2 is the radius of the post in

the middle. The two resonators placed between the cylin-

drical posts are of equal length d . The design parameters

are x = [r1 r2 d]T (mm). The design specifications are

given by |S11| ≤ −15 dB, in the frequency range from

24.935 to 25.065 GHz, and |S11| ≥ −1 dB, in the frequency

ranges from 24 to 24.75 GHz and from 25.25 to 26 GHz.

The optimal nominal solution obtained by performing nominal

EM optimization using HFSS is x
0
ini = [0.9597 1.7921

8.563]T (mm).
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Fig. 3. Structure of the K-band bandpass filter example for EM simula-
tion and yield optimization. The three design parameters of the filter are

x = [r1 r2 d]T .

For yield analysis and optimization, we assume indepen-

dent normal distribution for the design parameters, with the

standard deviation being 5 µm. Both the Monte Carlo-based

yield optimization approach presented in [1] and the proposed

PC-based yield optimization approach are used to optimize

the yield. For the proposed approach, Hermite polynomials are

used and the PC expansion is truncated at total order D = 2.

The 1-D Kronrod–Patterson [36] quadrature rule is used to

form a 3-D total-order grid. An integration accuracy level 3

is required for this example, which results in the total number

of quadrature points M being 19. To find the reasonable

value of N for the Monte Carlo-based yield optimization

approach, we run a Monte Carlo analysis to estimate the yield

at the initial nominal point. By varying the number of random

samples, a convergence on the yield value is observed when

N = 50. For comparison purpose, we use N = 19, N = 30,

and N = 50 for the Monte Carlo-based yield optimization

approach.

Quasi-Newton method is used as the gradient-based opti-

mization algorithm to find the optimal yield solution iteratively

for both approaches. At each iteration of optimization, HFSS

is driven to evaluate the EM responses and the EM sensitivities

at all the parameter samples in parallel. To find the optimal

yield solutions, we set the maximum number of iterations to be

a large number to allow both optimization approaches to con-

verge. When the optimization process terminates, we verify the

yield at the optimal yield solution by running a Monte Carlo

analysis with 100 random samples for the two approaches.

For this example, we also perform yield optimization using

a third approach, i.e., the ADS internal yield optimization tool

with EMPro. A parametrized 3-D structure of the K-band

bandbass filter is created using EMPro. Then, the nominal EM

optimization is performed in ADS to find an optimal nominal

solution. Two nominal solutions that can meet the design spec-

ifications are found, i.e., x
0
ini = [1.2069 2.1315 9.1955]T (mm)

(case 1) and x
0
ini = [1.1785 2.0811 9.1094]T (mm) (case 2).

Following this, yield estimation is conducted using the yield

estimation tool in ADS for both cases. Finally, we take

these two nominal solutions as starting points and use the

built-in yield optimization tool in ADS to optimize the yield.

We stop the yield optimization process until no significant

yield increase can be observed.

TABLE I

COMPARISON OF YIELD OPTIMIZATION RESULTS

FOR THE K-BAND BANDPASS FILTER

Table I summarizes the yield optimization results of three

yield optimization approaches for this example. As can be seen

from the table, all the three approaches achieve improvements

of the yield. However, the total number of EM simula-

tions required by the Monte Carlo-based yield optimization

approach and the proposed approach are much fewer than

that required by the built-in yield optimizer in ADS. The

reason for this is that the Monte Carlo-based yield optimization

approach and the proposed approach use sensitivity informa-

tion and gradient-based optimization algorithms in the yield

optimization process. From Table I, it can also be observed

that to achieve a similar yield increase, the proposed PC-based

approach requires much fewer EM simulations than the Monte

Carlo-based yield optimization approach. This is because by

incorporating the PC coefficients into the formulation of the

yield optimization objective function, the proposed approach

requires fewer EM simulations to find the effective direction

and suitable step size for the update of the nominal point

at each iteration of optimization than the Monte Carlo-based

yield optimization approach. Fig. 4 shows the yield before

and after optimization using the proposed approach for the

K-band bandpass filter. The optimal yield solution found by

the proposed approach is [0.9643 1.7779 8.554]T (mm).

To further demonstrate the advantages of the proposed

approach, we perform another numerical experiment by delib-

erately stopping the Monte Carlo-based yield optimizations

at certain iteration such that the total number of EM simu-

lations during optimization is similar to that in the proposed

approach. Table II gives the comparison of yield improve-

ments under this consideration. It can be seen from the table

that using similar number of EM simulations, the proposed

approach achieves a greater yield improvement than the Monte

Carlo-based yield optimization approach. The reason for this is

that the proposed PC-based approach provides more effective

direction and step size for the update of the nominal point

than that the Monte Carlo-based yield optimization approach

provides. As a result, with similar number of EM simulations,

the proposed approach is able to provide more promising

yield increase than the Monte Carlo-based yield optimization

approach.
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Fig. 4. Yield optimization results of the K-band bandpass filter.
(a) Before yield optimization. (b) After yield optimization. Gray dashed lines:
100 samples from Monte Carlo analysis. Black solid line: response evaluated
at the nominal point.

TABLE II

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER OF

EM SIMULATIONS FOR THE K-BAND BANDPASS FILTER

B. Yield Optimization of a Waveguide Bandpass

Filter With Fractal-Shaped Irises

In the second example, we consider a waveguide bandpass

filter with fractal-shaped irises (FSIs), as shown in Fig. 5 [44].

The design parameters are x = [d1 d2 d3]T (mm), where

d1, d2, and d3 represent the distances between the first,

second, and third pair of symmetrical irises, respectively.

An example of the geometrical dimensions of the FSIs is given

in Fig. 6. The section of the waveguide is a = 22.86 mm and

Fig. 5. Structure of the waveguide bandpass filter example with FSIs for EM
simulation and yield optimization. The three design parameters of the filter

are x = [d1 d2 d3]T .

Fig. 6. Details of the geometrical structure of the FSI as circled in Fig. 5.

b = 10.16 mm (WR-90). The design specification for this

filter is given by |S11| ≤ −22 dB, in the frequency range

from 9.2 to 9.8 GHz. The optimal nominal solution x
0
ini =

[9.3444 4.9203 3.7423]T (mm) is obtained by performing

nominal EM optimization [45].

We assume independent normal distributions for all design

parameters to allow yield estimation and optimization. The

standard deviation for each design parameter is assumed to

be 20 µm. The proposed approach and the Monte Carlo-

based yield optimization approach are both used to optimize

the yield. For the proposed approach, Hermite polynomials

are used and the integration accuracy level required is three

for the sparse grid technique. This results in the number of

sparse grid samples M = 19. For the Monte Carlo-based

yield optimization approach, it is found that N = 100 is

suitable to represent the statistics of all the possible outcomes.

For comparison purpose, different number of random samples

(N = 19, 50, 100) per iteration are used for the Monte Carlo-

based yield optimization approach. The maximum iteration

count is set to be a large number to allow both optimization

approaches to converge.

Table III gives a comparison between the two approaches in

terms of the final yield and the total number of EM simulations

required during optimization. From the table, we can conclude

that the proposed method achieves the greatest yield increase

among four cases of optimizations compared. It can also be
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TABLE III

COMPARISON OF YIELD OPTIMIZATION RESULTS

FOR THE WAVEGUIDE FSI FILTER

Fig. 7. Yield optimization results of the waveguide bandpass filter with
FSIs. (a) Before yield optimization. (b) After yield optimization. Gray dashed
lines:100 samples from Monte Carlo analysis. Black solid line: response
evaluated at the nominal point.

observed that to achieve a similar yield increase, the total

number of EM simulations required by the proposed approach

is less than half of that required by the Monte Carlo-based

yield optimization approach. This reduction allows us to

achieve a substantial speed up for the overall EM-based yield

optimization process. Fig. 7 shows the yield of the waveguide

FSI filter before and after optimization using the proposed

approach. The optimal yield solution found by the proposed

approach is [9.3682 4.9542 3.7585]T (mm).

TABLE IV

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER

OF EM SIMULATIONS FOR THE WAVEGUIDE FSI FILTER

Fig. 8. Structure of the four-pole waveguide filter example for EM simulation

and yield optimization, with design parameters x = [h1 h2 h3 hc1 hc2]T .

To further demonstrate the advantages of the proposed

approach, we perform another numerical experiment by delib-

erately stopping the Monte Carlo-based yield optimizations at

a certain iteration so that the total number of EM simulations

used is similar to that in the proposed approach. The yield

improvements achieved by the two approaches under this

condition are given in Table IV. It can be seen from the table

that using similar number of EM simulations, the proposed

approach achieves a greater yield improvement than the Monte

Carlo-based yield optimization approach. The reason is that the

proposed PC-based objective function provides more accurate

yield representation, and thus, more effective direction and

step size for updating the nominal point than the conventional

Monte Carlo-based yield optimization approach.

C. Yield Optimization of a Four-Pole Waveguide Filter

Finally, the proposed approach is applied to yield optimiza-

tion of a four-pole waveguide filter [45]. The structure of the

waveguide filter is shown in Fig. 8, with five design parameters

x = [h1 h2 h3 hc1 hc2]T (mm). h1, h2, and h3 represent the

heights of posts in the coupling windows, while hc1 and hc2

are the heights of posts in the resonant cavities. The thickness

of all the coupling windows is set to be 2 mm. The design

specification is given by |S11| ≤ −16 dB, in the frequency

range from 10.85 to 11.15 GHz. The optimal nominal solution

x
0
ini = [3.407 4.083 3.571 3.295 2.978]T (mm) is obtained by

performing nominal EM optimization [45].

The design parameters are assumed to be independently

normal distributed around their nominal values with 10-µm

standard deviation. Before performing yield optimization,

the Monte Carlo analysis is used to estimate the yield at the

optimal nominal solution. By varying the number of random

samples from 51 to 300, we observe a convergence on the

yield value (53%) when N = 300. For this example, Hermite

polynomials are used and the accuracy level required is three
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Fig. 9. Yield optimization results of the four-pole waveguide filter.
(a) Before yield optimization. (b) After yield optimization. Gray dashed lines:
300 samples from Monte Carlo analysis. Black solid line: response evaluated
at the nominal point.

for the sparse grid technique. This results in the number of

sparse grid samples M = 51.

Yield optimization is then performed using the proposed

approach with M = 51. For comparison purpose, we also

use the Monte Carlo-based yield optimization approach with

N = 51, 75, 100, 200 to optimize the yield. The final

yield is verified by performing a Monte Carlo analysis with

300 random samples at the optimal yield solution. Fig. 9

shows the initial yield and the yield after optimization using

the proposed approach for this example. The optimal yield

solution found by the proposed approach is [3.3913 4.1464

3.6241 3.3019 2.9776]T (mm). The yield optimization results

are summarized in Tables V and VI. It can be observed from

Table V that the proposed approach achieves the greatest yield

increase among the five cases of optimizations compared.

To achieve a similar yield increase, the proposed approach

requires much fewer EM simulations than the Monte Carlo-

based yield optimization approach. A substantial speed up

for the overall yield optimization process has been achieved.

As a further comparison given in Table VI, it can be observed

TABLE V

COMPARISON OF YIELD OPTIMIZATION RESULTS

FOR THE FOUR-POLE WAVEGUIDE FILTER

TABLE VI

COMPARISON OF YIELD IMPROVEMENTS WITH SIMILAR NUMBER OF

EM SIMULATIONS FOR THE FOUR-POLE WAVEGUIDE FILTER

that using similar number of EM simulations, the proposed

approach achieves a greater yield improvement than the Monte

Carlo-based yield optimization approach.

V. CONCLUSION

We have proposed a novel PC-based approach to yield-

driven EM optimization. The computational advantages of

the PC approach have been exploited to facilitate EM-based

yield optimization of microwave structures. The PC coeffi-

cients have been incorporated into the formulation of the

optimization objective function such that the number of EM

simulations required to obtain effective update direction and

suitable step size of the nominal point is reduced. Sensitivity

formulas have been derived for both the PC coefficients and the

proposed objective function with respect to the yield optimiza-

tion variables. Compared with the conventional Monte Carlo-

based yield optimization approach, the proposed approach is

able to achieve similar yield increase using much fewer EM

simulations or greater yield increase with similar number of

EM simulations. The proposed approach helps to achieve high-

quality solutions in shorter time for the challenging problem of

yield-driven EM optimization. As a possible future direction,

the proposed method can be applied to increase the yield in

the manufacturing process of a real microwave component.
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