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ABSTRACT
DC testing of parametric faults in non-linear analog circuits
based on polynomial approximation of the functionality of
fault free circuit is presented. Classification of circuit under
test (CUT) is based on comparison of estimates of polyno-
mial coefficients with those of the fault free circuit. The
method needs very little augmentation of circuit to make it
testable as only output parameters are used for classifica-
tion. Possible fault diagnosis using the proposed method in
conjunction with sensitivity of polynomial coefficients is also
presented.

Categories and Subject Descriptors
B.7.3 [Hardware]: Integrated Circuits—Reliability and Test-
ing [Test generation]; B.8.1 [Hardware]: Performance and
Reliability—Reliability, Testing, and Fault-Tolerance

General Terms
Experimentation, Reliability, Theory

Keywords
DC test; Parametric faults; Non-linear circuit test; Curve
fitting; Polynomial

1. INTRODUCTION
Analog circuits can be primarily classified into two types,

namely linear and non-linear circuits. Linear circuits in
general obey the superposition principle. Typically linear
circuits are exclusively made up of passive elements. Main
examples include LC, RC filters and attenuators. Linear
circuit testing for parametric faults making use of Linear
Time Invariance (LTI) property of these circuits is avail-
able in literature. The prominent ones being the transfer
function coefficient estimates based test [1] and signal flow
graph based test [2]. On the other hand non-linear circuits
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do not obey the superposition principle and consist of com-
bination of passive and active devices. As one would expect,
large number of electronic circuits like active elliptic filters,
mixers, logarithmic amplifiers, etc., are non-linear. Further,
tests which use the LTI properties of CUT cannot be used
for non-linear circuits. In this paper, we will address testing
of non-linear circuits at DC for parametric faults in circuit
components.

Non-linear circuit testing has been studied and different
methods have been proposed for finding parametric faults [3,
4, 5, 6, 7, 8, 9, 10]. Prominent among them in the indus-
try is the IDDQ based testing where current from the supply
rail is monitored and sizable deviation from its quiescent
value is reported. However this requires augmentation of
the CUT. For example, in the simplest case a regulator sup-
plying power to any sizable circuit has to be augmented
with a current sensing resistor and an ADC (for digital out-
put) and then there is subsequent analysis to be performed
on sensed current. Further IDDQ is suitable only for catas-
trophic faults as the current drawn from the supply is dis-
tinguishable only when there is some “big enough” fault so
as to change the current drawn from the supply from its
quiescent value to a region where it is distinguishable. For
example with resistor R2 being open in Figure 1, the current
drawn from supply can change by 50% of its quiescent value.
Such faults can typically be found by monitoring IDDQ using
a current sensor. However parametric deviations say lesser
than 10% from its nominal value cannot be observed using
this scheme, specially so in the deep submicron era where
the leakage currents can be comparable with defect induced
current [11]. It is therefore interesting to develop a method
to detect parametric faults while DC testing with lesser cir-
cuit augmentation.

To address the issue of parametric deviation, we would
typically need more observables to have an idea about the
parametric drift in circuit parameters. This would mean an
increase in complexity of the sensing circuit. However, we
would also want only little augmentation to tap any of the
internal circuit nodes or currents. To overcome these seem-
ingly contrasting requirements the method intended should
have some way of “seeing through” the circuit with only the
outputs and inputs at its disposal. References [1, 12] have
accomplished this sort of a strategy for linear circuits in a
different context as described next.

Savir and Guo describe a method [1] based on transfer
function description of CUT. The transfer function, H(s),
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of the CUT is expressed as in (1):

H(s) =

M∑
i=0

ais
i

N∑
i=0

bisi

(M < N) (1)

Here, ai and bi are referred to as transfer function coeffi-
cients (TFCs). The CUT is subjected to frequency rich in-
put signals and the output at these frequencies is observed.
With these input-output pairs they estimate the TFCs of
CUT. These coefficients are now compared with the ideal
circuit TFCs, which are known a priori. The CUT is clas-
sified faulty if any of the estimated coefficients are beyond
the tolerable range. This method necessarily needs the CUT
to be linear, as transfer functions are possible only for LTI
systems.

To extend the above idea to more general non-linear cir-
cuits we adopt a strategy where we expand the function of
the circuit as a polynomial by the Taylor’s series expansion
about the input voltage vin = 0 as follows:

vout = f(vin) = f(0) + f ′(0)
1!

vin + f ′′(0)
2!

v2
in + f ′′′(0)

3!
v3

in+

· · · + f(n)(0)
n!

vn
in + · · ·

(2)
where f(x) is a real function x. Ignoring the higher order
terms in (2), we can expand vout up to the nth power of vin,
which gives us the approximation in (3):

vout = a0 + a1vin + a2v
2
in + · · · + anv

n
in (3)

where a0, a1, a2, . . . , an are all real-valued functions of cir-
cuit parameters pk∀k. Further assume that normal param-
eter variations (normal drift) in a good circuit are within a
fraction α of their nominal value, where α << 1. This means
that every parameter pi is allowed to vary within the range
pk,nom(1−α) < pk < pk,nom(1 + α) ∀k, where pk,nom is the
nominal value of parameter pk. Whenever one or more of
the coefficient values slip outside its individual hyper-cube
we get a different set of coefficients that reflects a detectable
fault. Therefore, equation (4) describes a hypercube for all
parameters that correspond to either good machine values
or undetectable parameter faults [1, 4, 10]:

ai,min < ai < ai,max ∀ai, 0 ≤ i ≤ n (4)

This paper is organized as follows. Section 2 deals with the
analysis of the nature of coefficients resulting from polyno-
mial expansion of function f(vin) and notions of detectable
fault sizes of parameters. In Section 3 we describe the prob-
lem at hand and discuss the proposed solution with an exam-
ple. In Section 4 we generalize the solution to an arbitrarily
large circuit. Section 5 presents the simulation results for
some standard circuits. Section 6 outlines the method of
fault diagnosis using the said method and we conclude in
Section 7.

2. PRELIMINARIES
The coefficients ai∀0 ≤ i ≤ n are in general non-linear

functions of circuit parameters pk∀k. The rationale in using
these coefficients as metrics in classifying CUT as faulty or
fault free is based on the premise of dependence of coeffi-
cients on circuit parameters.

2.1 Analysis of Polynomial Coefficients
Theorem 1. If coefficient ai is a monotonic function of

all parameters, then ai takes its limit (maximum and min-
imum) values when at least one or more of the parameters
are at the boundaries of their individual hypercube.
Lemma 1. If coefficient ai is a non-monotonic function of
one or more circuit parameters pi, then ai can take its limit
values anywhere inside the hypercube enclosing the param-
eters.
By Theorem 1 and Lemma 1 it is clear that by exhaustively
searching the space in the hypercube of each parameter we
can get the maximum and minimum values of the polynomial
coefficient. Typically this can be formulated as a non-linear
optimization problem to find the maximum and minimum
values of coefficient with constraints on parameters allowing
only a normal drift.
Theorem 2. In polynomial expansion of Non-Linear Analog
circuit there exists at least one coefficient that is a mono-
tonic function of all the circuit parameters.
In conclusion, from Lemma 1 and Theorem 2, circuit param-
eter deviations have a bearing on coefficients and the mono-
tonically varying coefficients can be used to detect paramet-
ric faults of the circuit parameters.

2.2 Some Definitions
Definition 1: A minimum size detectable fault, MSDF ρ,

of a parameter is defined as the minimum fractional devia-
tion of the circuit parameter from its nominal value for it to
be detectable with all other parameters held at their nominal
values. The fractional deviation can be positive or negative
and is named upside-MSDF (UMSDF) or downside-MSDF
(DMSDF) accordingly.

Definition 2: A nearly minimum size detectable fault, or
NMSDF ρ∗, of a parameter is defined as some fractional
deviation of the circuit parameter from its nominal value,
with all the other parameters being held at their nominal
values, that is close to its MSDF with an infinitesimally
small error, ε. Thus,

ε = |ρ− ρ∗| ε << 1 (5)

NMSDF also has notions of upside and downside as in case
of MSDF. In (5), ε can be perceived as a coefficient of uncer-
tainty about the MSDF of a parameter. If ψ is the set of all
coefficient values spanned by the parameters while varying
within their normal drifts, i.e.,

ψ = {υ0, υ1, · · · , υn |υ0 ∈ A0, υ1 ∈ A1, · · · , υn ∈ An}
∀k pk,nom(1 − α) < pk < pk,nom(1 + α)

then by definitions 1 and 2, ψ includes all possible values
of coefficients that are not detectable. Any parametric fault
inducing coefficient value outside the set ψ will result in a
detectable fault.

3. PROBLEM AND APPROACH
We shall first illustrate with an example the calculation

of limits of the polynomial coefficients for a simple circuit
using MOS transistors. We shall follow this up with MSDF
values for the circuit parameters.

Example 1. Two stage amplifier Consider the cascaded
amplifier shown in Figure 1. The output voltage Vout in
terms of input voltage results in a fourth degree polynomial
equation as in (6).
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Figure 1: Cascaded amplifier.

vout = a0 + a1vin + a2v
2
in + a3v

3
in + a4v

4
in (6)

Where the constants a0, a1, a2, a3 are defined symbolically
in (6) for M1 and M2 operating in saturation region. Nom-
inal values of VDD=1.2V, VT= 400mV,

(
W
L

)
1

= 1
2

(
W
L

)
2

=

20, and K = 100µA/V2 are substituted to get coefficients in
terms of parameters R1 and R2 as stated in (8).

a0 = VDD −R2K
(

W
L

)
2

⎧⎨
⎩

(VDD − VT )2 +

R2
1K

2
(

W
L

)2

1
V 4

T −
2(VDD − VT )R1

(
W
L

)
1
V 2

T

⎫⎬
⎭

a1 = R2K
(

W
L

)
2

{
4R2

1K
2
(

W
L

)2

1
V 3

T

+2(VDD − VT )R1K
(

W
L

)
1
VT

}

a2 = R2K
(

W
L

)
2

{
2(VDD − VT )R1K

(
W
L

)
1

−6R2
1K

2
(

W
L

)2

1
V 2

T

}

a3 = 4VTK
3
(

W
L

)2

1

(
W
L

)2

2
R2

1R2

a4 = −K3
(

W
L

)2

1

(
W
L

)2

2
R2

1R2

(7)

a0 = 1.2 −R2

(
2.56 × 10−3 + 1.024 × 10−7R2

1

−5.12 × 10−4R1

)

a1 = 4.096 × 10−9R2
1R2 + 5.12 × 10−6R1R2

a2 = 1.28 × 10−5R1R2 − 1.536 × 10−8R2
1R2

a3 = 2.56 × 10−8R2
1R2

a4 = 1.6 × 10−8R2
1R2

(8)

To find the limit values of the coefficient a0 we assume the
parameters R1 and R2 deviate by a fraction x and y from
their nominal values respectively. To maximize a0 we have
the objective function as given by (9) subject to constraints
in (10). Note that here we have set out to find MSDF of R1.
Similar approach can be used to find the MSDF of R2.

Table 1: MSDF for cascaded amplifier of Figure 1
with α = 0.05.

Circuit %upside %downside
parameter MSDF MSDF

Resistor R1 10.3 7.4
Resistor R2 12.3 8.5

1.2 −R2,nom(1 + y)

⎧⎨
⎩

2.56 × 10−3+
1.024 × 10−7R2

1,nom(1 + x)2

−5.12 × 10−4R1,nom(1 + x)

⎫⎬
⎭
(9)

4.096 × 10−9R2
1,nom(1 + x)2R2,nom (1 + y)

+5.12 × 10−6R1,nom(1 + x)R2,nom(1 + y)
= 4.096 × 10−9R2

1,nom(1 + ρ)2R2,nom

+ 5.12 × 10−6R1,nom(1 + ρ)R2,nom

(10)

1.28 × 10−5R1,nom(1 + x)R2,nom(1 + y)
−1.536 × 10−8R2

1,nom(1 + x)2R2,nom (1 + y)
= 1.28 × 10−5R1,nom(1 + ρ)R2,nom

− 1.536 × 10−8R2
1,nom(1 + ρ)2R2,nom

(11)

2.56 × 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 2.56 × 10−8R2
1,nom(1 + ρ)2R2,nom

(12)

1.6 × 10−8R2
1,nom(1 + x)2R2,nom(1 + y)

= 1.6 × 10−8R2
1,nom(1 + ρ)2R2,nom

(13)

−α ≤ x, y ≤ α (14)

The extreme values for x and y on solving the set of equa-
tions in (9-13) we have x = −α and y = −α, this gives us
the MSDF value for R2, ρ in (14).

ρ = (1 − α)1.5 − 1 ≈ 1.5α − 0.375α2 (15)

Table 1 gives the MSDF for R1 and R2 based on above
calculation.

4. GENERALIZATION
In general, calculation as above cannot be done for arbi-

trarily large circuits. Such circuits are handled by obtaining
a nominal numeric polynomial expansion of the desired cir-
cuit. This is done by sweeping the input voltage across all
possible values and noting the corresponding output volt-
ages. Now, the output voltage is plotted against the input
voltage. A polynomial is fit to this curve and the coefficients
of this polynomial are taken to be the nominal coefficients of
the desired polynomial. The circuit is simulated for differ-
ent drifts in the parameter values at equally spaced points
from inside the hypercube enclosing each circuit parameter,
spaced ε apart. Polynomials coefficients are obtained for
each of these simulations. The maximum and minimum val-
ues of coefficient in this search are taken as the limit value
on that coefficient. Once the limit values on all coefficients
have been determined the CUT is subjected to DC sweep
at the input. Its response to the DC sweep is curve fitted
to a polynomial of order same as the fault free circuit. If
there are any coefficients that lay outside the limit values
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Start

Stop

Find min-max 
values of each coefficient (Ci) 

from i =1…N across all 
simulations

Simulate for all parametric 
faults at the 

simplex of hypercube

Apply DC sweep to input
and note corresponding

output voltage levels

Polynomial Curve fit the 
obtained I/O data --

find the coefficient values 
of fault free circuit

Figure 2: Flow chart showing fault simulation pro-
cess and bounding of coefficients.

of corresponding coefficients of the fault free circuit, we can
conclude the CUT is faulty with a high probability that is
inversely proportional to coefficient of uncertainty ε. The
converse is also true. Flow chart in Figure 2 summarizes the
process of numerically finding the polynomial and finding
the bounds on coefficients. Flow chart in Figure 3 outlines
the procedure to test CUT using the polynomial coefficient
method. The bounds on coefficients of fault free circuit are
found a priori as shown in flowchart of Figure 2.

5. SIMULATION RESULTS
We subjected an elliptic filter shown in Figure 4 to poly-

nomial coefficient based test. The circuit parameter values
are as in the benchmark circuit maintained by Stroud et
al. [13]. Figure 5 shows the computed response and the fol-
lowing estimated polynomial obtained by curve fitting:

vout = 4.5341 − 3.498vin − 2.5487v2
in

+ 2.1309v3
in − 0.50514v4

in + 0.039463v5
in

(16)

The combinations of parameter values leading to limits on
the coefficients are as shown in Tables 2 and 3. Some of the
circuit parameters are not shown in the table because they
do not appear in any of the coefficients and are kept at their
nominal values. Further, results on pass/fail detectability of
some injected faults in tabulated in Table 4.

6. FAULT DIAGNOSIS
Fault diagnosis using sensitivity of output to circuit pa-

rameters has been investigated [14]. We have extended this

Start

Polynomial Curve 
fit the obtained I/O data

Apply DC sweep to input
and note corresponding

output voltage levels

|Ci| > |Cin(1+pi)| or 
|Ci| < |Cin(1-pi)|

i = 0

i = i+1

i < N ?

Subject CUT
to further tests

CUT is faulty

No

Yes

No

Yes

Stop

Figure 3: Flow chart of test procedure for CUT.
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+
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+
Vout

Vin
R1

R2

R4

R5

R3 R7

R6

R8

R9

R10

R11 R12

R13

R14

R15

C1

C3

C4

C5

C6 C7

C2

Figure 4: Elliptic filter.

approach of diagnosis exploiting the sensitivity of polyno-
mial coefficients to circuit parameters. The advantage of
this approach is improved fault diagnosis without circuit
augmentation. Sensitivity of ith coefficient Ci to kth pa-
rameter pk is represented by SCi

pk
and is expressed as,

SCi
Pk =

pk

Ci

∂Ci

∂pk
(17)

Figure 6 shows a possible scenario.

6.1 Computation of Sensitivities
Numerical computation of sensitivities given by (17) is

accomplished by introducing fractional drifts (= α) in each
component (pk ∀k); simulating the circuit and measuring
the fractional drift in each coefficient of the polynomial re-
sulting from curve fitting operation. This way the numerical
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Table 2: Parameter combinations leading to maxi-
mum values of coefficients with α = 0.05.

Circuit a0 a1 a2 a3 a4 a5

Parameter
(Ω)

R1 = 19.6k 18.6k 20.5k 20.5k 20.5k 18.6k 18.6k
R2 = 196k 186k 205k 186k 186k 186k 205k
R3 = 147k 139k 154k 154k 154k 139k 154k
R4 = 1k 950 1010 1010 1010 1010 1010
R5 = 71.5 70 80 80 70 80 70
R6 = 37.4k 37.4k 37.4k 37.4k 37.4k 37.4k 37.4k
R7 = 154k 161k 161k 146k 161k 146k 146k
R11 = 110k 115k 115k 104k 115k 104k 104k
R12 = 110k 104k 115k 104k 104k 104k 104k

sensitivities are computed and a dictionary is maintained for
sensitivities. The order of complexity in computation of sen-
sitivities is linear in the number of circuit parameters (N),
i.e., O(N).

6.2 Diagnosing Parametric Faults
Restricting to single parametric faults, we find the de-

scending order of sensitivities of all coefficients to parame-
ters, depending on the coefficients that have exceeded their
limit values. The parameter with highest sensitivity is said
to be at fault with a probability P(δpk|δCi), which can be
interpreted as the confidence in diagnosing the fault:

P(δpk|δCi) =
SCi

Pkδpk

δCi
(18)

where δpk is the suspected drift in parameter pk and δCi

is the measured drift in coefficient. Single parametric faults
in the elliptic filter of Figure 4 were diagnosable with up to
95% confidence level. The results are tabulated in Table 5
for several injected single parametric faults.

Table 3: Parameter combinations leading to mini-
mum values of coefficients with α = 0.05.

Circuit a0 a1 a2 a3 a4 a5

Parameter
(Ω)

R1 = 19.6k 20.5k 18.6k 18.6k 20.5k 20.5k 20.5k
R2 = 196k 205k 186k 205k 205k 205k 186k
R3 = 147k 150k 139k 139k 146k 154k 139k
R4 = 1k 1010 950 950 950 950 950
R5 = 71.5 80 70 70 80 70 80
R6 = 37.4k 39.2k 39.2k 39.2k 39.2k 35.5k 39.2k
R7 = 154k 146k 146k 161k 146k 161k 161k
R11 = 110k 104k 104k 115k 104k 115k 115k
R12 = 110k 115k 104k 115k 115k 115k 115k

Table 4: Results for some injected faults.

Circuit Out of bound Fault
Parameter coefficients detected?

R1 down 25% a0 − a4 Yes
R2 down 15% a2, a5 Yes
R3 up 10% a1, a2, a3 Yes

R4 down 25% a0 − a4 Yes
R5 up 15% a0, a4 Yes
R7 up 10% a1, a2 Yes
R11 up 10% a4, a5 Yes

R12 down 10% a4, a5 Yes

7. CONCLUSION
A new approach for testing non-linear circuits based on

polynomial expansion of the circuit has been proposed. The
minimum size detectable faults of some of the parameters in
circuits are as low as 10% which implies impressive fault cov-
erage. The method has been extended to sensitivity based
fault diagnosis with probabilistic confidence levels in param-
eter drifts. The method of polynomial expansion at DC, as
described here, may not detect certain types of faults, such
as, parametric faults of a capacitor. To overcome that de-
ficiency, in our ongoing work, we are generalizing this tech-
nique to multiple frequencies.

Table 5: Parametric fault diagnosis with 95% confi-
dence level.

Fault Coefficient Diagnosed
Injected status fault sites

R1 down 25% a0 − a4 R1 or R4
R2 down 15% a2, a5 R2

R3 up 10% a1, a2, a3 R3

R4 down 25% a0 − a4 R1 or R4
R5 up 15% a0, a4 R5

R7 up 10% a1, a2 R7

R11 up 10% a4, a5 R11 or R12

R12 down 10% a4, a5 R11 or R12
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APPENDIX
Theorem 1. If coefficient ai is a monotonic function of all
parameters, then ai takes its limit (maximum and minimum)
values when at least one or more of the parameters are at
the boundaries of their individual hypercube.

Proof. Let ai be a function of three parameters say x, y
and z. Let ai reach its maximum value for (x0, y0, z0).
Further let x0, y0 �= α. Now if we can show that the
maximum value of the coefficient ai occurs at the z0 = α
we have proved the theorem. From definition of mono-
tonic dependence of ai on circuit parameters, it follows that
ai(x0, y0, α) ≥ ai(x0, y0, z0), ∀z0 ≤ α. Because the max-
imum value taken by z is α, it follows that z0 = α. With
similar arguments we can show that the minimum value for
the coefficient occurs when z0 = −α. Hence, the statement
of theorem follows.

Theorem 2. In polynomial expansion of a non-linear analog
circuit there exists at least one coefficient that is a monotonic
function of all of the circuit parameters.

Proof. Consider the block diagram in Figure 7, which
models an 2nth order non-linear analog circuit. It has an
input x and an output y. Constants a1 · · · an are added at
the input of each stage. The coefficient corresponding to
input x raised to the 2nth power is given by G, as follows:

G =

n∏
i=1

g2i
i (19)

where gi ∀i = 1 . . .n are the monotonic gains of individual
stages in the cascaded blocks. As the product of two or
more monotonic functions is also monotonic we have G to
be a monotonic function. G constitutes the coefficient of
the nth power of x in this expansion, as it lines in the main
signal flow path from input to output. Thus, it is proved
that there is at least one monotonically varying coefficient
in a polynomial expansion of a Non-Linear analog circuit.
Further, in general the coefficient of 2nth power of such a
polynomial expansion is monotonic.
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