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POLYNOMIAL COMPENSATION, INVERSION, AND APPROXIMATION OF 

DISCRETE TIME LINEAR SYSTEMS 

Abstract 

The least-squares transformation of a discrete-time multivariable linear 

system into a desired one by convolving the first with-a polynomial system 

yields optimal polynomial solutions to the problems of system compensation, 

inversion and approximation. The polynomial coefficients are obtained from 

the solution to a so-called normal linear matrix equation, whose coefficients 

are shown to be the weighting patterns of certain linear systems. 

turn, can be used in the recursive solution of the normal equation. 

These, in 
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1. Introduction 

The transformation of a given linear system into one having desired 

properties, by cascading it with another linear system, has been known in 

control system design as cascade compensation (see, e.g., [ l ] ) .  The problems 

of system inversion and approximation can also be formulated as system trans- 

formation problems by properly defining the roles of the systems involved. An 

exact causal transformation from the given to the desired system may not exist 

or may not be implementable because of complexity constraints and an approxi- 

mate transformation of a relatively low complexity may be desired. 

finding an approximation within the class of rational linear systems of a 

given order is, typically, a difficult parameter optimization problem involv- 

ing local extrema (see, e.g., [21) .  

However, 

In this paper we consider the transformation of discrete time, multivari- 

able linear systems by convolving them with systems having finite weighting 

patterns or, equivalently, polynomial transfer matrices. In contrast to the 

continuous-time case, discrete time polynomial systems do not present a reali- 

zation problem. 

signal processing for predicting and filtering discrete time processes (see, 

e.g., [ 31, [4] ) . The proposed approach may be viewed as the compensator 

analog of Levinson's (polynomial) approximation to Wiener's (rational) filter 

Such systems have been used extensively in statistics and in 

[5] .  

solution to the system transformation problem at hand in the form of the 

The least-squares approximation criterion yields a globally optimal 

solution to a so-called normal linear matrix equation, similar to the one 

arising in the filtering problem. 

Representing the given and the desired systems in state-space, we obtain 

the coefficients of the normal equation and of the approximation error in 

closed explicit forms and show that they are the weighting patterns of certain 
~- ~ 



linear systems. These systems can, in turn, be used in mechanizing the recur- 

sive solution of the polynomial coefficients by a multivariable version of the 

Levinson procedure [61. 

method to the problems of system compensation, inversion and approximation is 

discussed and illustrated by numerical examples. 

The applicability of the polynomial transformation 

2. Least-Squares Polynomial Compensation, Inversion and Approximation 

of Linear Systems 

System Corn pensat ion 

Given two discrete-time linear systems, having rational transfer matrices 

Q(z) and II(z), it is desired to find a system having a of the same dimensions 

polynomial transfer matrix 

n 
@ ( z )  = Tiz-i 

i=o 

that, cascaded with n(z) will approximate n(z) in some sense. Denoting by 

{Pk}, {qk} and {tk}, k L 0 ,  the weighting patterns corresponding, respec- 

tively, to a ( z ) ,  n(z) and cp(z), an approximation measure is defined by the L2 

norm 
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T where tr  denotes  trace, ( - ) *  denotes  complex conjugate  t ranspose ,  ( ) 

denotes  real t ranspose ,  and * denotes  t h e  convolut ion ope ra t ion ,  t h a t  is 

Denoting 

it can be v e r i f i e d  t h a t  t he  approximation measure (2.2) .takes the  form 

T t ~ ~ ( z ) o ( z )  - n(z)i2 = { t r ( L t  - - 9) (Lt - - q)~''~ 

where 

' L =  

0 PO 

p, 
... 

Pn Pn-1 

%+I Pn P ... 
and y = 

Minimizing (2.3) with r e spec t  to  - t y i e l d s  the normal equat ion 

(2.3) 

L L t t L q  T T - (2.4) 
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Den0 t ing 

r -  n 

n- 1 

n-2 

r 

r 

0, r 

and 

T R = L L =  

n 

where 

s = L q =  - T ['i 
-n 

m 
rA 1 

T 
rn- 1 

r2 

0 r 

T 
n-2 r 

... 

... 

... 

... 

and s -i = 2 pzqk+i k=O k=O 

the normal equation becomes 

lit = s - -  

(2.5) 

(2.6) 

(2.7) 

The optimal approximation error is obtained by substituting (2.4) into 

(2.3) as 

e = [tr(vo - 5 s~~t~)] 1 /2 

i =o 
(2.9) 
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where ti is defined by the solution of (2.8) and 

(2.10) 

Suppose that both Q(z) and X(z) are stable, then 

a0 a0 

tr p:pk < and tr qiqk < - 
k=U k=O 

implying that both 

normal equation (2.8) and the optimal error (2.9) are well defined. 

that as the polynomial degree n is increased to infinity, the optimal error 

vanishes, provided that an exact causal linear transformation between R(z) 

and n(z) exists. This can be seen immediately from the fact that the error 

ri and si have finite limit values and, consequently, the 

We note 

corresponding to the optimal sequence (tk) is minimal, while the one corre- 

sponding to the impulse response of the exact transformation converges to 

zero. e L 0 we have pk = 0, 0 I k I & - 1 and 

pe f 0 and for some m I O ,  qk = 0, 0 I k I m - 1 and p, f 0. 

systems R(z)  and n(z) are said to have, respectively, e and m delays or 

"zeros at infinity" (see, e.g., (71, p. 449). If a > m, an exact causal 

rational transformation from R(z)  to n(z> clearly does not exist and the 

error corresponding to a polynomial compensator will not vanish even when its 

degree is increased to infinity. If, on the other hand, a < m, the compensa- 

tion problem can be simplified somewhat by replacing Q(z) by z'(m-a)Q(z) and 

then multiplying the resulting compensator by 

by an example in section 4. 

Suppose that for some 

Then the 

z -(m-e). This is illustrated 
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System Inversion 

The problem of system inversion is a special case of the compensation 

problem. 

(2.1) that approximates the inverse of a given rational system a ( z ) .  An 

inversion criterion is defined by minimizing the norm 

Suppose that it is desired to find a polynomial system of the form 

which yields the normal equation 

Rt = b - -  

where R is defined by (2 .6 )  and b is the n + 1 block matrix - 
I 

0 ... 01' 

The optimal inversion error is obtained from (2 .9 )  as 

(2.12) 

where to is obtained from the solution of (2.12). In analogy with the 

equivalent problem of solving an overdetermined linear matrix equation using 

the least-squares criterion, the term pseudo-inverse seems appropriate for the 

resulting approximate inve:-se system. If for some e 2 0 we have pk = 0, 

0 I k I I - 1 How- 

ever, if the purpose of the inverse system is to reconstruct the input 

sequence from the output sequence, a more sensible approach to the inversion 

and pa f 0, the solution of (2.12) is trivial, t = 0. - 
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problem is to invert a shifted version of the system, having no delays. 

means that 

equations (2.11)-(2.13) by the sequence {pi')}, k 1 0, where pk 

This 

Q(z) is replaced by z'Q(z) and the sequence {pk} is replaced in 
( a )  - - 'k+%. 

The resulting approximate inverse system should then be viewed as operating on 

a record of the output sequence, advanced e time units (Uk+& replacing uk) 

to produce the input sequence. 

System Approximation 

Suppose that it is desired to approximate a given rational system n(z) 

by a polynomial system @(z). Writing the approximation measure as 

the problem can be seen to be a special case of the polynomial transformation 

problem with I and Q(z)  replacing Q(z) and n(z), respectively. The result- 

ing normal equation (2.8) has 

R = I and s = [po T p1 T ... - 

yielding 

T T  
Pn 1 ... T T  t - = [Po P, (2.14) 

It follows that the best polynomial approximation of a linear system has the 

first markov parameters of the system as polynomial coefficients. 

When the given system has a weighting pattern of long duration (that 

is, of relatively large values for a relatively long time) a polynomial 
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approximation, which has a finite weighting pattern, will require many poly- 

nomial coefficients for a sensible representation. 

that does not enforce a finite weighting pattern but still maintains the 

mathematical simplicity of the polynomial transformation, is to use the inver- 

sion criterion as a system approximation criterion. 

approximate system is the one whose inverse, when convolved with the given 

system, approximates the identity matrix. 

polynomial inversion problem yields an inverse system O(z) of the form (2.1 1. 

The question of interest is whether e ( z )  has a causal inverse; that is, 

whether there exists a proper rational matrix H(z) that satisfies 

An alternative approach 

This means that the 

The solution of the least squares 

It follows f rom a fundamental result for polynomial matrix equations (see, 

e.g., c71, p. 387) that a rational matrix H(z) that satisfies (2.15) exists 

if and only if To has full column rank and that one such matrix is given by 

where e(z) consists of the elements of o ( z )  corresponding to a non-singular 

minor of To having a maximal dimension. Since e(z) is a polynomial matrix, 

its inverse is obviously proper. 

output case the approximate system (2.16) is of the autoregressive (all pole) 

type 

We note that in the single input single 
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3. The Normal Equation Coefficients and its Recursive Solution 

Let ( A ,  B, C, D) and (F, C, H, E )  be state-space realizations of n(z) 

and n(z), respectively. Then, noting that 

D k = O  k = O  

k- 1 pk = (,,k-lm k > l  G k 2 l  

it can be verified that 

I where 

and 

i = o  

+ B ( A ) P B  T T i  i L 1  

(DTE + BTQG i = O  
si = 

LTHFf-'G + B T i  QF G i L 1 

T k T  k P =  ( A ) C C A  
k=O 

T k T  k A I C H F  
k=O 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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the  term vo i n  the  opt imal  error, def ined  by (2.10) can be w r i t t e n  as 

T T v = E E + G V C  0 

where 

V = z ( F ) H H F  cs T k T  k 
k=O 

(3 .5 )  

( 3 . 6 )  

. I t  can be seen t h a t  t he  matrices P ,  Q and V ,  def ined  by equat ions  (3.31, 

(3 .4)  and (3.5) are c e n t r a l  to  the  normal equat ion and the  opt imal  e r r o r .  

Suppose tha t  both 

circle. Then it can be v e r i f i e d  t h a t  t h e  matrices P, Q and V are the  l i m i t  

A and F have their eigenvalues  s t r i c t l y  i n s i d e  t h e  u n i t  

va lues  of t h e  matrices Pm, and Vm t h a t  satisfy t h e  r e c u r s i v e  equat ions  

= A P m A + C C  T T 
'm+ I 

rl, rl, 

= A'QmF + C'H %+ 1 

T T = F VmF + H H 'm+ 1 

y i e l d i n g  the a l g e b r a i c  equat ions  

and 

T T . P = A P A + C C  

T Q = A ~ Q F  + c H 

T T V = F VF + H H 

1 1  

(3.7) 

(3 .8 )  

(3.9) 

(3.10) 

(3.11) 

(3.12) 



if and only if ( F ,  H )  is observable, and Q has f u l l  rank if and only if both 

are observable. 

It can be seen from (3.1) and (3.2) that the coefficient sequence {ri), 

i 1 0  is the weighting pattern of: the system 

Equations (3.10) and (3.12) are Lyapunov equations that can be solved by 

standard methods. Equation (3.11) is not a Lyapunov equation, as the matrices 

involved are generally not symmetric. It can be solved by equating its two 

sides term by term, which results in a linear equation of the form LX = 2 ,  

where L has dimension n2 x n2. The three equations (3.10)-(3.12) can be 

put in the form of a single Lyapunov equation 

and solved by standard procedures. 

propagating equations (3.7)-(3.9) until convergence is observed. 

These equations can also be solved by 

Other alter- 

natives for the solution of Lyapunov equations can be found in the literature 

(see, e.g., 181, p. 67). 

(3.6), P has full rank if and only if ( A ,  C) is observable, V has full rank 

We note that, as can be seen from (3.31, ( 3 . 4 )  and 

T T T = A xk + (C D + A PB)uk k+ 1 X 

= B T xk + (D T D + B T PB)uk 
’k 

and, similarly, the coefficient Sequence {si}, i 1 0 

of the system ( F ,  G, DTH + BTQF,. DTE + BTQG). 

is the weighting Pattern 
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The symmetric Toeplitz structure of the normal equation (2.8) can be 

exploited in its solution. 

algorithm (see, e.g., [ 6 ] ,  pp. 241-244) the solution for a polynomial of 

degree n 

n-1. 

degree without resorting to matrix inversion, or for recursively increasing 

the polynomial order, until an error criterion is met. 

Employing a multivariable version of the Levinson 

can be obtained from the solution for a polynomial of degree 

Such procedure can be used for calculating a polynomial of a given 

We note that the key 

step of the Levinson procedure is an operation of the type 

is the i'th parameter of a polynomial of order n and n, i where t 

is defined by (3.1). In the filtering application of the Levinson 
. 'n+l-i 

algorithm, both the memory requirement of the {rk} sequence and the execution 

of (3.15) make the algorithm impractical for large n values. On the other 

hand, for the present application, both problems can be circumvented by noting 

that an 

sequence {tn,O, tn, 1, . . . tn,n, 0 ) .  

for each n by passing the polynomial coefficients of the preceding iteration 

is the final output of the system (3.14) when the input is the 

It follows that (3.15) can be executed 

through the system (3.14). 

4. Examples 

The numerical implementation of the proposed solutions to the compensa- 

tion, inversion and approximation problems has been examined by solving numer- 

ical examples. It should be emphasized that, in general, the polynomial 

degree needed for a satisfactory accuracy depends on the specific systems 

involved. 
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Example 1: System Compensation 

Suppose that it is desired to compensate a system whose transfer function 

is given by 

z + 0.2)(2 - 0.5 +0.21)(2 + 0.02 50.1 
= (z -(0.2)(2 + O.l)(z + 0.6 k0.3j)(Z - 0.1 id.3J) 

by a polynomial compensator, so as to approximate the desired system 

1 
( Z  + 0.3521)(Z - 0.8521) n ( 2 )  = 

The impulse responses of both systems are shown in Figure 1. 

representations for Q(z) and n(z) have been obtained in controller canonical 

State space 

form and the calculations described in sections 2 and 3 were carried out using 

standard software. We note that since n(z) has two zeros at infinity, it was 

multiplied by z2 and the resulting compensator was multiplied by z - ~ ,  in 

order to reduce the number of optimized polynomial coefficients. The result- 

ing polynomial compensator coefficients for degrees 4, 9, 14 and 19 are listed 

below. 

= [o o 0.8082 1.6574 1.8709 1.3566 o.5323IT 44 

49 = [0 0 1.0015 2.3625 3.3676 3.8086 3.7758 . 3.3627 2.7198 

1.9271 1.0806 0.3568IT 
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t = [O  0 1.0001 2.3603 3.3723 3.8409 3.8777 3.6051 3.2113 - 14 

2.7782 2.3621 1.9735 1.6050 1.2353 0.8560 0.4754 0. 1565IT 

and 

419 = [O 0 1.0000 2.3600 3.3716 3.8394 3.8751 3.6015 3.2078 

2.7785 2.3753 2.0179 1.71 16 1.4520 1.2317 1 .0417 0.8719 

0.7120 0.5501 0.3824 0.2128 0.0701 IT 

The approximation errors for the four compensators were obtained from (2.9) as 

The impulse responses of the compensated system are shown in Figure 2, 

along with the impulse response of the desired system. I t  can be seen that 

the compensation quality improves as the compensator’s degree is increased and 

that the compensator emphasizes matching the large initial response values, as 

should be expected. 
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21 1 

0 10 20 30 

Figure 1 The impulse responses of the given system Q(z) and the desired 

system n(z). 

Figure 2 The impulse responses o f  the compensated system Q(z)cp(z) for  poly- 

nomial compensators of degrees (a) 4, (b) 9 ,  ( c )  14, and (d)  19. 
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Example 2: System Inversion and Approximation 

Inverse polynomials of degrees 3 and 6 for the system n(z) of example 1 

were derived using the proposed method. These are given by 

and 

e6( 2)  = 0.9970 + 1 .8479z01 + 1 .8620~ '~  + 1 . 3 8 7 4 ~ - ~  + 0 . 8 4 9 9 ~ - ~  + 0 . 3 8 3 4 ~ ' ~  

+ 0 . 1 0 6 7 ~ ~ ~  

The inversion errors associated with these and with polynomials of degrees 7 

and 9 were obtained by (2.13) as 

The impulse responses of eol(z) and *zl(z) are shown in Figure 3 along with 

the impulse response of P(z). It can be seen that a close approximation 1s 

obtained even for these relatively low degree polynomials. 

perfect match was obtained for polynomials of degrees 7 or higher. 

trast to this approximation by inversion, approximation by (2.14) can be seen 

to be inadequate. 

3 

A graphically 

In con- 
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10 20 30 
-2 

0 0 10 20 30 

Figure 3 -  The impulse responses of the inverse approximate o"(z )  of Q(z) 

for polynomial degrees (a) 3 and (b) 6. 

5. Conclusion 

The least-squares parameters of a polynomial system that approximately 

transforms a discrete-time linear system into another satisfy a linear equa- 

tion, whose coefficients have been derived in terms of the state space param- 

eters of the systems involved. The resulting method has been shown to apply 

to the problems of system compensation, inversion and approximation. 
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