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Polynomial composites and certain types of fields extensions

Matysiak Ł.

In this paper, we consider polynomial composites with the coefficients from K ⊂ L. We al-

ready know many properties, but we do not know the answer to the question of whether there is

a relationship between composites and field extensions. We present the characterization of some

known field extensions in terms of polynomial composites. This paper contains the open problem

of characterization of ideals in polynomial composites with respect to various field extensions. We

also present the full possible characterization of certain field extensions. Moreover, in this paper we

show that any finite group is a Galois group of some field extensions and present the inverse Galois

problem solved.
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Introduction

By a ring R we mean a commutative ring with unity. Denote by R∗ the group of all

invertible elements of R. By Irr R we denote the set of all irreducible elements of R. A Noethe-

rian ring is a ring that satisfies the ascending chain condition on ideals, that is, given any

increasing sequence of ideals I1 ⊂ I2 ⊂ . . . , there exists a natural number (positive integer) n

such that In = In+1 = . . . . There are other, equivalent, definitions: every ideal I ⊂ R is finitely

generated, every non-empty set of ideals of R has a maximal element.

Let K ⊂ L be a field extension. Let us denote by [L : K] the degree of field extension K ⊂ L.

In this paper, we will use the following extensions and let us recall their definitions:

(a) a finite extension – the extension that has a finite degree;

(b) an algebraic extension – the extension such that every element of L is algebraic over K,

i.e. every element of L is a root of some non-zero polynomial with coefficients in K;

(c) a separable extension – the algebraic extension such that the minimal polynomial of every

element of L over K is separable, i.e. has no repeated roots in an algebraic closure over K;

(d) a normal extension – the algebraic extension such that every irreducible polynomial in

K[X] that has a root in L completely factors into linear factors over L;

(e) a Galois extension – the algebraic extension such that is both separable and normal.
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If K ⊂ L is a Galois extension, then AutK L is called the Galois group of K ⊂ L and denoted

by G(L | K). For any subgroup H of G(L | K) by LH we denote the corresponding fixed field,

i.e. the set of those elements of L which are fixed by every automorphism in H. The algebraic

closure of field K is denoted by a(K).

A field K is called perfect if every finite extension of K is separable. For example, Q and C

are algebraically closed fields.

D.D. Anderson, D.F. Anderson and M. Zafrullah in [1] called object A + XB[X] as a com-

posite for A ⊂ B fields. There are a lot of manuscripts where composites are used as examples

to show some properties. But the most important are presented below.

In [2], authors considered the structures in the form D + M, where D is a domain and M is

a maximal ideal of ring R, where D ⊂ R. Later (in [7]), it was proved that in composite of the

form D + XK[X], where D is a domain, K is a field with D ⊂ K, such that XK[X] is a maximal

ideal of K[X]. Next, D. Costa, J.L. Mott and M. Zafrullah [4] considered composites of the form

D + XDS[X], where D is a domain and DS is a localization of D relative to the multiplicative

subset S. In [8], M. Zafrullah continued research on structure D + XDS[X] but he showed that

if D is a GCD-domain, then the behaviour of

D(S) =
{

a0 +∑ aiX
i | a0 ∈ D, ai ∈ DS

}

= D + XDS[X]

depends upon the relationship between S and the prime ideals P of D such that DP is

a valuation domain (see [8, Theorem 1]). In 1991, there was the article [1], that collected all

previous composites and the authors began to create a theory about composites creating re-

sults. In that paper, the structures under consideration were officially called as composites.

After this article, various minor results appeared. But the most important thing is that com-

posites have been used in many theories as examples. We have researched many properties of

composites in [7].

The main motivation of this paper is to answer the following question.

Question 1. Is there a relationship between certain field extensions K ⊂ L and polynomial

composites K + XL[X]?

In the third chapter, we present a full possible characterization of polynomial composites of

the form K + XL[X], where K, L are fields, with respect to a given extension with appropriate

additional assumptions. We also present a full possible characterization of some extensions

of fields K ⊂ L expressed in terms of polynomial composites K + XL[X] as Noetherian rings

with appropriate assumptions.

In the fourth chapter, we present the consideration of ideals in polynomial composites

K + XL[X] assuming that K ⊂ L is a certain field extension.

In the fifth chapter, we can found a full posible characterization of considered extensions

(see Theorems 4, 5).

In Galois theory, the inverse Galois problem concerns whether or not every finite group ap-

pears as the Galois group of some Galois extension of the rational numbers Q. This problem,

first posed in the early 19th century, is unsolved. The presented results can be used as mathe-

matical tools. All the propositions contained in this paper hold for a field of any characteristic,

and therefore also for finite fields. We also have a characterization of the Galois extensions

(Theorem 4, 5). The inverse Galois problem can be solved by switching to polynomial compos-

ites or to nilpotent elements.



152 Matysiak Ł.

1 Auxiliary Lemmas

Lemma 1. Let ϕ : K1 → K2 be an isomorphism of fields and Ψ : K1[X] → K2[X] be an iso-

morphism of polynomial rings. If polynomial f1 ∈ Irr K1[X], f1 has a root a1 in an extended

L1 of K1 and polynomial f2 = Ψ( f1) has a root a2 in an extended L2 of K2, then there exists

Ψ′ : K1(a1) → K2(a2), which is an extension of ϕ and Ψ′(a1) = a2 holds.

Proof. See [3, Lemma 2, p. 105].

Lemma 2. If ϕ : K → L is an embedding field K to an algebraically closed field L, and K′ is

an algebraic extension of K, then there exists an embedding Ψ : K′ → L which is an extension

of ϕ.

Proof. See [3, Lemma 4, p. 109].

Lemma 3. If L is a finite field extension of K, then L is a Galois extension of K if and only if
∣

∣G(L|K)
∣

∣ = [L : K].

Proof. See [3, Corollary 1, p. 126].

2 Characterization of field extensions in terms of polynomial composites

Let us start with an auxiliary lemma that will help us to prove the Theorem 1.

Lemma 4. If there exists a nonzero ideal I of L[X], where L is a field, that is finitely generated

as a K + XL[X]-module, then K is a field and [L : K] < ∞.

Proof. Clearly, I is finitely generated over L[X], and hence XL[X]I 6= I. For otherwise,

XL[X]L[X]XL[X] · IL[X]XL[X] = IL[X]XL[X]

therefore IL[X]XL[X] = 0, by Nakayama’s lemma. This is impossible, since 0 6= I ⊆ IL[X]XL[X] .

It follows that I/XL[X]I is a nonzero
(

L[X]/XL[X] = L
)

-module that is finitely generated as a
(

K + XL[X]/XL[X] = K
)

-module. Since L is a field, I/XL[X]I can be written as a direct sum

of copies of L. Thus, L is a finitely generated K-module. But then K is a field, since the field L

is integral over K and obviously [L : K] < ∞.

Theorem 1. Let K ⊂ L be a field extension. Put T = K + XL[X]. Then the following conditions

are equivalent:

(1) T is Noetherian;

(2) [L : K] < ∞.

Proof. (1) ⇒ (2) Since XL[X] is a finitely generated ideal of K+XL[X], it follows from Lemma 4

that [L : K] < ∞. Thus, L[X] is module-finite over the Noetherian ring K + XL[X].

(2) ⇒ (1) L[X] is Noetherian ring and module-finite over the subring K + XL[X]. This is

the situation covered by P.M. Eakin’s theorem [5].

All our considerations began with the Theorem 1. This Theorem motivated us to further

consider polynomial composites K + XL[X] in a situation where the extension of fields K ⊂ L

is algebraic, separable, normal and Galois, respectively.
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Proposition 1. Let K ⊂ L be a field extension such that LG(L|K) = K. Put T = K + XL[X]. Then

the following conditions are equivalent:

(1) T is Noetherian;

(2) K ⊂ L is an algebraic extension.

Proof. (1) ⇒ (2) Since T = K + XL[X] is Noetherian, where K ⊂ L is a field extension, then by

Theorem 1 we get that K ⊂ L is a finite extension. And every finite extension is algebraic.

(2) ⇒ (1) Assume that K ⊂ L is an algebraic extension. Assuming LG(L|K) = K, we get

directly from the definition of the Galois extension. Since K ⊂ L is the Galois extension, then

K ⊂ L is a normal extension. Every normal extension is finite, then by Theorem 1 we get that

K + XL[X] is a Noetherian.

Proposition 2. Let K ⊂ L is a field extension such that K is a perfect field. Assume that any

K-isomorphism ϕ : M → M, where ϕ(L) = L, holds for every field M such that L ⊂ M. Put

T = K + XL[X]. Then the following conditions are equivalent:

(1) T is Noetherian;

(2) K ⊂ L is a separable extension.

Proof. (1) ⇒ (2) By Theorem 1, K ⊂ L is a finite extension. Every finite extension is an algebraic

extension. Since K is the perfect field, then K ⊂ L is a separable extension.

(2) ⇒ (1) First we show that if L is a separable extension of the field K, then the smallest

normal extension M of the field K containing L is the Galois extension of the field K.

If L is a separable extension of the field K, and N is a normal extension of the field K

containing L, then let M is the largest separable extension of K contained in N. So we have

L ⊂ M and therefore it suffices to prove that M is the normal extension of K.

Let g ∈ Irr K[X] has a root a in the field M. Because N is the normal extension of K and

a ∈ N, it follows that all roots of polynomial G belong to the field N. The element a is separable

relative to K, and so belongs to M. Hence polynomial g is the product of linear polynomials

belonging to M[X], which proves that M is the normal extension of the field K.

Since M is the normal extension of K and the Galois extension of K, then L is the normal

extension of K by the assumption (see [3, Exercise 4, p. 119]).

Because L is the normal extension of K, then L is the finite extension of K. And by Theo-

rem 1 we get that K + XL[X] is Noetherian.

Proposition 3. Let K ⊂ L be a field extension and let T = K + XL[X]. Assume that if a map

ϕ : L → a(K) is K-embedding, then ϕ(L) = L. Then the following conditions are equivalent:

(1) T is Noetherian;

(2) K ⊂ L is a normal extension.

Proof. (1) ⇒ (2) By Proposition 1, K ⊂ L is the algebraic extension.

Let c be a root of polynomial g belonging to L, and b be the arbitrary root of g belong-

ing to a(K). Because g ∈ Irr K[X], by Corollary from Lemma 1 there exists K-isomorphism

ϕ′ : K(c) → K(d). By Lemma 2 it can be extended to an embedding ϕ : L → a(K). Hence

towards ϕ(L) = L and ϕ
(

K(c)
)

= ϕ′
(

K(c)
)

= K(d) we get that K(d) ⊂ L, so b ∈ L. Hence

every root of polynomial g belongs to L, so polynomial g is the product of linear polynomials

belonging to L[X].
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For every c ∈ L, let gc ∈ Irr K[X] satisfying gc(c) = 0. From the above it follows that every

root of gc belongs to the field L. Hence L is a composition of splitting field of all polynomials

gc, where c ∈ L. Hence L is the normal extension of K.

(2) ⇒ (1) If L is a normal extension of the field K, then K ⊂ L is the finite extension. Then

by Theorem 1 we get that K + XL[X] is Noetherian.

In the above proposition we can replace the assumption “if a map ϕ : L → a(K) is K-

embedding, then ϕ(L) = L” to “LG(L|K) = K”. Then we obtain the following assertion.

Proposition 4. Let K ⊂ L be a field extension such that LG(L|K) = K. If T = K + XL[X] is a

Noetherian, then K ⊂ L is a normal extension.

Proof. By Proposition 1, we get that K ⊂ L is an algebraic field extension. Assuming

LG(L|K) = K, we get directly from the definition of the Galois extension, and so normal ex-

tension.

Proposition 5. Let T = K + XL[X] be Noetherian, where K ⊂ L is a field. Assume
∣

∣G(L | K)
∣

∣ = [L : K] and any K-isomorphism ϕ : M → M, where ϕ(L) = L, holds for ev-

ery field M such that L ⊂ M. Then the following conditions are equivalent:

(1) T is Noetherian;

(2) K ⊂ L is a Galois extension.

Proof. (1) ⇒ (2) By Theorem 1, we get K ⊂ L is the finite extension. By the assumption, we can

use Lemma 3 and we get that K ⊂ L is a Galois extension.

(2) ⇒ (1) If K ⊂ L is a Galois field extension, then it is separable. By Proposition 2, we get

that K + XL[X] is Noetherian.

In the above proposition, we can swap the assumptions “
∣

∣G(L | K)
∣

∣ = [L : K] and any

K-isomorphism ϕ : M → M, where ϕ(L) = L, holds for every field M such that L ⊂ M” to

“LG(L|K) = K”. Then we obtain the following assertion.

Proposition 6. Let T = K+XL[X], where K ⊂ L is a field such that K = LG(L|K). The following

conditions are equivalent:

(1) T is Noetherian;

(2) K ⊂ L is a Galois extension.

Proof. (1) ⇒ (2) By Proposition 1, we get that K ⊂ L is the algebraic extension. Assuming

K = LG(L|K), we get directly from the definition of the Galois extension.

(2) ⇒ (1) If K ⊂ L is a Galois field extension, then K ⊂ L is a normal extension. Hence by

Proposition 4 we get that K + XL[X] is Noetherian.

Proposition 7. Let K ⊂ L ⊂ M be fields such that K is a perfect field. If K + XL[X] and

L + XM[X] are Noetherian, then K ⊂ M is separable field extension.

Moreover, if we assume that any K-isomorphism ϕ : M′ → M′, where ϕ(M) = M holds for

every field M′ such that M ⊂ M′, then K + XM[X] is a Noetherian.

Proof. By Proposition 2, we get K ⊂ L, L ⊂ M are separable extensions. Then K ⊂ M is a

separable extension. Moreover, from Proposition 2 we get K + XM[X] is Noetherian.



Composites and field extensions 155

Proposition 8. Let K ⊂ L ⊂ M be fields such that MG(M|K) = K. If K + XM[X] is Noetherian,

then L ⊂ M is a normal field extension. Moreover, L + XM[X] is Noetherian.

Proof. By Proposition 4, we have that K ⊂ M is a normal extension. Then L ⊂ M is the normal

extension. Moreover, from Proposition 2 we get that L + XM[X] is Noetherian.

Proposition 9. Let K ⊂ L be a field extension such that [L : K] = 2. Then K + XL[X] is Noethe-

rian. Moreover, if LG(L|K) = K, then K ⊂ L is normal.

Proof. Of course, from Theorem 1 we get K + XL[X] is Noetherian. By Proposition 4, we have

K ⊂ L is a normal field extension.

3 Field extensions and ideals in composites

In this chapter, let us consider how can ideals be characterized in such polynomial compos-

ites, assuming that a given field extension is a certain type.

Proposition 10. Let K ⊂ L be fields and algebraic extension such that K = LG(L|K). Then every

ideal of K + XL[X] is finite generated.

Proof. By Propositon 1, we have that K + XL[X] is Noetherian. Hence every ideal of K + XL[X]

is finite generated.

Corollary 1. Let K ⊂ L be fields and finite extension. Then every ideal of K + XL[X] is finite

generated.

Unfortunately, the following questions have arisen at the moment.

Question 2. What is the additional argument of the Proposition 10 if we assume that field

extension is separable?

Question 3. What is the additional argument of the Propostion 10 if we assume that field

extension is normal?

4 Full characterization

In this section, we present the full possible characterization of field extensions. Combining

the A.R. Magid’s results and from this paper, we get the following two theorems.

Theorem 2 ([6, Theorem 1.2.]). Let M be an algebraically closed field algebraic over K, and let

L such that K ⊆ L ⊆ M be an intermediate field. Then the following are equivalent:

(a) L is separable over K;

(b) M ⊗K L has no nonzero nilpotent elements;

(c) every element of M ⊗K L is a unit times an idempotent;

(d) as an M-algebra M ⊗K L is generated by idempotents.

Theorem 3 ([6, Theorem 1.3]). Let M be an algebraically closed field containing K, and let L be

a field algebraic over K. Then the following are equivalent:

(a) L is separable over K;

(b) M ⊗K L has no nonzero nilpotent elements;

(c) every element of M ⊗K L is a unit times an idempotent;

(d) as an M-algebra M ⊗K L is generated by idempotents.
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Below we have conclusions from the above results.

Theorem 4. If we assume LG(L|K) = K in Theorems 2 and 3, then the conditions (a) – (d) are

equivalent to

(e) K + XL[X] is Noetherian;

(f) [L : K] < ∞;

(g) K ⊂ L is an algebraic extension;

(h) K ⊂ L is a Galois extension.

Proof. (h) ⇒ (a) It is obvious.

(a) ⇒ (g) ⇒ (e)⇒ (h) If K ⊂ L is a separable extension, then it is an algebraic extension.

By Proposition 1, K + XL[X] is a Noetherian. By Proposition 6, K ⊂ L is a Galois extension.

(e) ⇒ (f) It is Theorem 1.

Theorem 5. If we assume that K is a perfect field and LG(L|K) = K in Theorem 4, then the

conditions (a) – (h) are equivalent to the following:

(g) K ⊂ L is a normal extension.

Proof. (g) ⇒ (a) If K ⊂ L is a normal extension, then it is an algebraic extension. By definition,

perfect field K ⊂ L is a separable extension.

(h) ⇒ (g) It is obvious.

Proposition 6, Theorems 4 and 5 can be used to solve the inverse Galois problem. There is

a lot of work and it is enough to solve the problem for nonabelian groups. Thus, the following

question arises.

Question 4. Can all the statements in this paper operate in noncommutative structures?

And another question also arises regarding polynomial composites.

Question 5. Under certain assumptions for any type of K ⊂ L, we get that K + XL[X] is a

Noetherian ring. When can K + XL[X] be isomorphic to any Noetherian ring?

5 The inverse Galois problem

Let us start from the following assertion.

Lemma 5. Let K be a field and G be a finite group of field automorphism of K, then K is a

Galois extension of the fixed field KG with Galois group G, moreover [K : KG] = |G|.

Proof. Pick any α ∈ K and consider a maximal subset {σ1, . . . , σn} ⊆ G for which all σiα are

distinct. Now any τ ∈ G must permute the σiα as it is an automorphism. If some τσiα 6= σjα

for all j, then we could extend our set of σ’s by adding this τσi.

So, α is a root of

fα(X) =
n

∏
i=1

(X − σiα).

Note that fα is fixed by τ by the above. So, all the coefficients of fα are in KG. By construction,

fα is a separable polynomial as the σiα were chosen distinct, note that fα also splits into linear

factors in K.
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The above was true for arbitrary α ∈ K. So we must show directly that K is a separable and

normal extension of KG, which is the definition of Galois extension. As every element of KG

is a root of a polynomial of degree n, we can not have the extension of degree [K : KG] > n.

But we also have a group of n automorphisms of K that fix KG, so [K : KG] > n and hence

[K : KG] = n.

Theorem 6. Every finite group is a Galois group.

Proof. Let K be an arbitrary field, G any finite group. Now take L = K(g′ : g ∈ G) (i.e. adjoin

all elements of G to K as indeterminates, denoted by g′). Now we have a natural action of G

on L defined via h · g′ = (hg)′ and extending K-linearly. Now L and G satisfy Lemma 5 and

hence LG ⊂ L is a Galois extension with Galois group G.

From proof we get the inverse Galois problem in the classic form.

Corollary 2. Let G be a finite group. Then there exists a field extension L of Q such that G is a

Galois group of this extension.
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У цiй статтi ми розглядаємо полiномiальнi композити з коефiцiєнтами з K ⊂ L. Нам вiдомо

багато властивостей, але ми не знаємо вiдповiдi на питання про iснування взаємозв’язку мiж

композитами та розширеннями полiв. Ми даємо характеризацiю деяких вiдомих розширень

полiв в термiнах полiномiальних композитiв. Ця стаття мiстить вiдкриту проблему про хара-

ктеризацiю iдеалiв в полiномiальних композитах у вiдношеннi до рiзних розширень полiв. Ми

також подаємо повну можливу характеризацiю деяких розширень полiв. Бiльше того, у цiй

статтi ми показуємо, що кожна скiнченна група є групою Галуа деякого розширення поля i

представляємо розв’язану обернену проблему Галуа.

Ключовi слова i фрази: розширення поля, полiном, розширення скiнченного поля, кiльце

Нетер, група Галуа.


