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Abstract

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over sym-
metric cones using a wide neighborhood of the central path. The convergence is shown for a commutative
family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and
semidefinite programs. This extends the work of Rangarajan and Todd [8], which established convergence
of infeasible-interior-point methods for self-scaled conic programs using the NT direction.

1 Introduction

There is an extensive literature on the analysis of interior-point methods (IPMs) for conic programming. In
conic programs, a linear function is minimised over the intersection of an affine space and a closed convex
cone. The foundation for solving these problems using IPMs was laid by Nesterov and Nemirovskii [6]. These
methods were primarily either primal or dual based. Later, Nesterov and Todd [7] introduced symmetric primal-
dual interior-point algorithms on a special class of cones called self-scaled cones, which allowed a symmetric
treatment of the primal and the dual. Self-scaled cones are precisely the same as symmetric cones, which have
been characterised using Jordan algebras (see Guler [3] and also Faraut and Koranyi [1]). Faybusovich [2]
analysed an interior-point algorithm over the symmetric cones using this characterisation of symmetric cones.

Nonnegative orthants, second-order cones, and positive semidefinite cones are important special cases of
symmetric cones. Monteiro and Zhang [5] gave a unified analysis of feasible-IPMs for semidefinite programs
that used the so-called commutative class of search directions. These search directions include the popular
directions such as the NT (Nesterov-Todd), theXS and theSX directions. As we shall see, symmetric cones,
when described using Jordan algebras, bear a striking resemblance to the cone of real symmetric positive
semidefinite matrices. This resemblance was exploited by Schmieta and Alizadeh [9], who extended Monteiro-
Zhang’s analysis to feasible-IPMs over symmetric cones.

Infeasible-IPMs, unlike feasible-IPMs, do not require that the iterates be feasible to the relevant linear sys-
tems, but only be in the interior of the cone constraints. As such infeasible points are easy to obtain, infeasible-
IPM are an attractive choice for practical implementations. At the same time, the analysis of infeasible-IPMs
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presents significant difficulties due to the non-orthogonality of search directions. Zhang [10] analysed the con-
vergence of an infeasible-interior-point algorithm for semidefinite programming using theXS andSX search
directions. Rangarajan and Todd [8] established convergence of an infeasible-IPM for self-scaled cones using
the Nesterov-Todd direction for a wide neighborhood of the central path.

In this paper, we show the convergence of an infeasible-IPM on symmetric cones for the commutative
class of search directions. In the process a Lyapunov lemma in this setting is established. To our knowledge
this is the first time an infeasible-interior-point method has been analysed for the NT-method using theN−∞
neighborhood for both semidefinite programming and conic programs over symmetric cones. The complexity
result obtained here for symmetric cones using the NT direction compares with the best bound obtained for
linear programs. Besides the work of Schmieta and Alizadeh, our main tool is the analysis of an NT-based
infeasible-IPM for self-scaled conic programming in Rangarajan and Todd [8].

This paper is organized as follows: We start with an introduction to the theory of Jordan algebras. Next we
outline the basics of interior-point theory that leads to the algorithm and present its analysis. We present some
conclusions in the final section.

2 Euclidean Jordan Algebras

Characterization of symmetric cones using Jordan algebras (see Theorem 2.3) forms the fundamental basis
for our analysis. This section covers the basic results in Jordan algebras, closely following Schmieta and
Alizadeh [9] in presentation. For a comprehensive treatment of Jordan algebras, the reader is referred to Faraut
and Koranyi [1]. For the purposes of illustration, we use the space of real symmetric matrices, which yields
the cone of positive semidefinite matrices. In this case, the analysis in Section 3 specialises to the case of
semidefinite programming.

Definition 2.1 LetJ be ann-dimensional vector space over the field of real numbers along with the bilinear
map • : (x, y) 7→ x • y ∈ J . Then(J , • ) is a Euclidean Jordan algebra with identity if for allx, y ∈ J

1. x • y = y • x (Commutativity).

2. x • (y • x2) = (x • y) • x2 wherex2 = x • x (Jordan Identity).

3. There exists a symmetric positive definite quadratic formQ onJ such thatQ(x • y, z) = Q(x, y • z).

4. There exists an identity elemente ∈ J , i.e.,e such thate • x = x • e for all x ∈ J .

Definition 2.2 If J is a Euclidean Jordan algebra, then its cone of squares is the set

K(J ) := {x2 : x ∈ J }.

Symmetric conesare cones that are self-dual and homogeneous: their automorphism groups act transitively
on their interiors. Symmetric cones are also precisely the class of self-scaled cones introduced by Nesterov
and Todd in [7] (see also Faybusovich [2] and Guler [3]). The following theorem relates symmetric cones and
Euclidean Jordan algebras.

Theorem 2.3 (Jordan algebraic characterization of symmetric cones).
A cone is symmetric iff it is the cone of squares of some Euclidean Jordan algebra.

2



Example Let J = Sn, the space of real symmetric matrices with the operationX • Y := XY +Y X
2 for

X, Y ∈ Sn. We can chooseQ(X, Y ) := Trace (XY ) ande to be the identity matrix. Then(J , • ) is a
Euclidean Jordan algebra with identity. We obtain the cone of symmetric positive semidefinite matrices as the
squares of real symmetric matrices.

Since • is a bilinear map, for everyx ∈ J a linear operatorL(x) can be defined such thatL(x)y = x • y
for all y ∈ J . Forx, y ∈ J , let

Qx,y := L(x)L(y) + L(y)L(x)− L(x • y) andQx := Qx,x = 2L2(x)− L(x2),

whereQx is called the quadratic representation ofx. ClearlyQx,yz andQxz are inJ for all x, y, z ∈ J .

Example For X ∈ Sn L(X) is the operator fromSn to itself such thatL(X)[Y ] = XY +Y X
2 . A further com-

putation shows thatQX,Y [Z] = XZY +Y ZX
2 andQX [Z] = XZX. QX plays an important role in the analysis

of interior-point methods for semidefinite programming. The operatorQx in Jordan algebras plays a similar
role in our analysis.

An elementx ∈ J is calledinvertible if there exists ay =
∑k

i=0 γix
i for some finitek < ∞ and real

numbersγi such thaty • x = e, and is writtenx−1. The following are some of the basic properties ofQx (see
Propositions II.3.1 and II.3.3 in [1]).

Lemma 2.4 Letx, y ∈ J . Then

1. Qxx−1 = x
(

or equivalentlyQxL(x−1) = L(x)
)
, Q−1

x = Qx−1 andQxe = x2.

2. QQyx = QyQxQy.

Using the Jordan identity, the notions of rank, the minimum and the characteristic polynomial, the trace and
the determinant can be defined in the following way.

Definition 2.5 a. For x ∈ J , let r be the smallest integer such that the set{e, x, x2, . . . , xr} is linearly
dependent. Thenr is called the degree ofx and is denoted bydeg (x).

b. The rank ofJ , denoted byrank (J ), is defined as the maximum ofdeg (x) over all x ∈ J . An element
is called regular if its degree equals the rank of the Jordan algebra.

For an elementx of degreed, there exist real numbersa1(x), . . . , ad(x) such that

xd − a1(x)xd−1 + . . . + (−1)dad(x)e = 0, where0 is the zero vector.

Then the polynomialλd − a1(x)λd−1 + . . . + (−1)dad(x) = 0 is called theminimum polynomialof x. The
characteristic polynomialis defined to be the minimum polynomial for a regular element. Using the fact that
the regular elements are dense inJ , the characteristic polynomial can be continuously extended to all ofJ
(see [1]). Therefore the characteristic polynomial is a degreer polynomial inλ, wherer is the rank ofJ .

The rootsλ1, . . . , λr of the characteristic polynomial ofx are called theeigenvaluesof x. The roots of
the minimum and the characteristic polynomial are the same except for their multiplicity and the minimum
polynomial always divides the characteristic polynomial.

Definition 2.6 Letx ∈ J andλ1, . . . , λr be its eigenvalues. Then,

1. Trace (x) := λ1 + . . . + λr is called the trace ofx;

2. Det (x) := λ1 · · ·λr is called the determinant ofx.
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Trace can be shown to be a linear function ofx. For the identity element,Trace (e) = r andDet (e) = 1 as all
its eigenvalues are unity.

Example The above definitions correspond to the usual notions of characteristic polynomials, eigenvalues,
trace and determinant of matrices. For matrices,deg (X) corresponds to the degree of the minimum polyno-
mial of X, which is the same as the number of distinct eigenvalues ofX.

Next, the concept of Jordan frames is introduced and a spectral decomposition result is presented. An
idempotentc is a nonzero element ofJ such thatc2 = c. A complete system of orthogonal idempotents is a set
{c1, . . . , ck} of idempotents, whereci • cj = 0 for all i 6= j, andc1 + . . . + ck = e. An idempotent isprimitive
if it is not the sum of two other idempotents. A complete system of orthogonal primitive idempotents is called a
Jordan frame. Note that in Jordan framesk = r, that is Jordan frames always containr primitive idempotents.

Theorem 2.7 (Spectral decomposition, Theorem III.1.2, [1]). Let J be a Euclidean Jordan algebra. For
x ∈ J there exist a Jordan framec1, . . . , cr and real numbersλ1, . . . , λr such thatx = λ1c1 + · · · + λrcr,
where theλi’s are called the eigenvalues ofx.

Using this we can define the following: (analogous to functions on the real line)

1. The square root:x1/2 := λ
1/2
1 c1 + · · ·+ λ

1/2
r cr whenever allλi ≥ 0, and undefined otherwise.

2. The inverse:x−1 := λ−1
1 c1 + · · · + λ−1

r cr whenever allλi 6= 0, and undefined otherwise. (This is
consistent with our earlier definition by Proposition II.2.4 in [1].)

3. The square:x2 := λ2
1c1 + · · ·+ λ2

rcr.

These definitions can be shown to be well-defined. Note thatx2 can be viewed as eitherx•x or as the extension
of the “square” function on the reals. Also note that(x1/2)2 = x. It can be shown that an element is in (the
interior of) the cone of squares iff all its eigenvalues are non-negative (positive).

Next, norms and inner products are defined onJ . SinceTrace (x • y) is a bilinear function, the inner
product can be defined as〈x, y〉 := Trace (x • y). For x ∈ J , with eigenvaluesλi, 1 ≤ i ≤ r, the Frobenius
norm and the spectral norm (or the 2-norm) can be defined as (see Proposition III.1.5 in [1])

‖x‖F :=

√√√√ r∑
i=1

λ2
i =

√
Trace (x2) and ‖x‖2 := max

i
|λi|.

Then the Cauchy-Schwarz inequality holds;

| 〈x, y〉 | ≤ ‖x‖F ‖y‖F .

As all the eigenvalues ofe are unity,‖e‖F =
√

r and‖e‖2 = 1.

Example For a matrixX ∈ Sn, we have the spectral decomposition that there exists a set of orthonormal
vectors{qi, 1 ≤ i ≤ n} ⊂ <n and real numbersλ1, . . . , λn such thatX =

∑
i λiqiq

T
i . It can be checked that

the matricesqiq
T
i form a primitive system of orthogonal idempotents. The inner product is the usual trace inner

product of matrices and the spectral and Frobenius norms have their usual definitions.

SinceTrace (·, ·) is associative (see Proposition II.4.1 in [1]), i.e.,Trace (x • (y • z)) = Trace ((x • y) • z),

〈L(x)p, q〉 = Trace ((x • p) • q) = Trace ((p • x) • q) = Trace (p • (x • q)) = 〈p, L(x)q〉
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shows thatL(x) is a self-adjoint operator. As the definition ofQx depends only onL(x) andL(x2), both of
which are self-adjoint,Qx is also self-adjoint.

We recall parts of Lemma 12, 13, and 14 in [9] in the next two lemmas.

Lemma 2.8 Letx = λ1c1 + · · ·+λrcr, using the spectral decomposition. Then the following statements hold.
1. The matricesL(x) andQx commute and thus share a common system of eigenvectors.

2. The eigenvalues ofL(x) have the formλi+λj

2 , 1 ≤ i ≤ j ≤ r. In particular, x ∈ K (int K) iff L(x) is

positive semidefinite (definite). However, not everyλi+λj

2 is an eigenvalue ofL(x).

3. The eigenvalues ofQx have the formλiλj , 1 ≤ i ≤ j ≤ r. However, not everyλiλj is an eigenvalue of
Qx.

Henceforth the minimum (maximum) eigenvalue ofx will be denoted byλmin(x) (λmax(x)).
Lemma 2.9 Letx ∈ J , then we have

λmin(x) = min
u

〈u, u • x〉
〈u, u〉

.

For x, y ∈ J , we have

λmin(x + y) ≥ λmin(x)− ‖y‖F

‖x • y‖F ≤ ‖x‖F ‖y‖F .

Proof : For proofs of all but the last part, see Lemma 13 and Lemma 14 in [9]. The last part follows from

‖x • y‖F = ‖L(x)y‖F ≤ ‖L(x)‖‖y‖F = ‖x‖2‖y‖F ≤ ‖x‖F ‖y‖F .

The first equality follows from the definition ofL(x), and‖L(x)‖ refers to the operator norm induced by
‖·‖F . For the second equality note that the spectral norm of a self-adjoint linear operator is‖L(x)‖ =
maxi |λi(L(x))|. By Lemma 2.8maxi |λi(L(x))| = maxi |λi(x)| = ‖x‖2. Lastly, note that 2-norm is bounded
by the Frobenius norm. �

We state two useful propositions about the operatorQx.

Proposition 2.10 (Proposition III.2.2, Faraut and Koranyi [1].)If x, y ∈ int K, thenQxy ∈ int K.

By noting thatx−1 ∈ K andQx−1 = Q−1
x (from Lemma 2.4) it follows thatQx is also onto and hence an

automorphism ofK.

Proposition 2.11 Letx, y ∈ int K, then

1. Qx1/2s andQs1/2x have the same spectrum.

2. If p ∈ int K definex̃ := Qpx and s̃ := Qp−1s, thenQx1/2s andQx̃1/2 s̃ have the same spectrum.

Furthermore,Trace (Qx1/2s) = 〈s, x〉.

Proof : See Proposition 21 in [9] for proofs of1 and2. To complete the proof of the proposition, note that if
{λi} are the eigenvalues ofQx1/2s, then using the self-adjointness ofQx1/2 we have

Trace (Qx1/2s) = Trace ((Qx1/2s) • e) = 〈Qx1/2s, e〉 = 〈s,Qx1/2e〉 = 〈s, x〉 .

�

Now we are ready to state and prove the Lyapunov Lemma for Euclidean Jordan algebras.
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Lemma 2.12 (Lyapunov Lemma for Euclidean Jordan Algebras)Suppose thatJ is a Euclidean Jordan alge-
bra. If x ∈ int K, w ∈ K then there existss ∈ K such thatx • s = w.

Proof : Let us sets = 2
∫∞
0 Qv(t)w dt, wherex =

∑r
i=1 λici, is the spectral decomposition ofx andv(t) =∑r

i=1 e−λitci. Clearlyv(t) ∈ J asci ∈ J . By expanding using the spectral decomposition and integrating
we obtains = 2

∑
i,j

1
λi+λj

Qci,cjw and hence,s is well-defined ands ∈ J . Observe thatv(t) ∈ int K as

e−λit > 0 for all t and henceQv(t) is an automorphism ofK. It follows thatQv(t)w ∈ K. Foru ∈ K, we have

〈s, u〉 = 2
〈∫ ∞

0
Qv(t)w dt, u

〉
= 2

∫ ∞

0

〈
Qv(t)w, u

〉
dt ≥ 0.

Consequentlys ∈ K. By Proposition II.3.4 in [1]Qv(t) = e−2tL(x). Therefore,

d

dt
Qv(t)w =

d

dt
e−2tL(x)w = −2L(x)e−2tL(x)w = −2L(x)Qv(t)w = −2x •Qv(t)w.

We can substitute fors in the equation and see that

x • s = 2
∫ ∞

0
x •Qv(t)w dt =

∫ ∞

0
− d

dt

(
Qv(t)w

)
dt = w.

�

The operator commutativity for a Jordan algebra is defined and an important related result is stated. The notion
of operator commutativity is not to be confused with the commutativity of elements of the Jordan algebra.

Definition 2.13 We say two elementsx, y of a Jordan algebraJ operator commute ifL(x)L(y) = L(y)L(x).
In other words,x andy operator commute if for allz, x • (y • z) = y • (x • z).

Theorem 2.14 (Theorem 27, [9])Let x andy be two elements of Euclidean Jordan algebraJ . Thenx andy
operator commute if and only if there is a Jordan framec1, . . . , cr such thatx =

∑r
i=1 λici ands =

∑r
i=1 µici

for someλi, µi.

A Jordan algebra is calledsimpleif it cannot be represented as the sum of two Jordan algebras. Simple Jor-
dan algebras have been classified into the following five cases and consequently we have a classification for
symmetric cones (see Chapter V in [1]). This classification is due to Jordan, Von Neumann and Wigner [4].

Theorem 2.15 (Chapter V, Faraut and Koranyi [1].)Let J be a simple Euclidean Jordan algebra. ThenJ
is isomorphic to one of the following algebras, where for the matrix algebras, the operation is defined by
X • Y = 1

2 (XY + Y X):

1. the algebraEn+1, the algebra of quadratic forms in<n+1 under the operationx•y = (xT y;x0ȳ +y0x̄),
wherex = (x0; x̄), y = (y0; ȳ) ∈ < × <n.

2. the algebra(Sn, • ) of n× n symmetric matrices.

3. the algebra(Hn, • ) of n× n complex Hermitian matrices.

4. the algebra(Qn, • ) of n× n quaternion Hermitian matrices.

5. the exceptional Albert algebra, i.e., the algebra(O3, • ) of 3× 3 octonian Hermitian matrices.
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3 Algorithm and Analysis

3.1 Problem background

We begin with the problem statement and discuss some of the theory relevant to developing interior-point
algorithms: the perturbed optimality conditions, central path and the Newton systems that give rise to the
commutative class of search directions. In the following subsection, we present the algorithm and analyze its
convergence.

LetJ be a Euclidean Jordan algebra of dimensionn and rankr, andK be its cone of squares. Consider the
following primal and the associated dual problem.

Primal and Dual
(P ) min{〈c, x〉 : Ax = b, x ∈ K} (3.1)

and
(D) max{〈b, y〉Y : A∗y + s = c, s ∈ K, y ∈ Y }, (3.2)

wherec ∈ J and b ∈ Y , a finite dimensional real vector space with an inner product〈·, ·〉Y . HereA is
a linear operator that mapsJ into Y . A∗ is defined to be the linear operator that mapsY to J such that
〈A∗y, x〉 = 〈Ax, y〉Y for all x ∈ J , y ∈ Y .

We callx ∈ K primal feasible ifAx = b. Similarly (s, y) ∈ K × Y is called dual feasible ifA∗y + s = c.
Let

F0(P ) := {x ∈ J : Ax = b, x ∈ int K} and

F0(D) := {(s, y) ∈ J × Y : A∗y + s = c, s ∈ int K}

represent the interior feasible solutions of the primal and the dual. For the rest of the paper, we will assume that
A is surjective,F0(P ) 6= ∅, andF0(D) 6= ∅. For a given primal feasiblex and dual feasible(s, y), 〈s, x〉 is
called the duality gap due to the well-known relation

〈b, y〉Y − 〈c, x〉 = 〈Ax, y〉Y − 〈A∗y + s, x〉 = 〈s, x〉 ≥ 0.

Since the iterates in our algorithm may not satisfy the linear constraints,〈s, x〉 will be referred to as thecom-
plementarity. Let us note that〈s, x〉 = 0 for feasible(x, s, y) is sufficient for optimality. By Lemma 2.2 in [2],
for x, s ∈ K 〈s, x〉 = 0 is equivalent tos • x = 0. Using our assumptions above, the optimality conditions for
the primal and dual problems can be written as

Ax = b
A∗y + s = c

s • x = 0
x, s ∈ K, y ∈ Y,

(3.3)

wheres • x = 0 is usually referred to as the complementary slackness condition.

The perturbed optimality conditions(PCµ) are obtained by replacings•x = 0 in (3.3) with the “perturbed”
complementary slackness condition,s • x = µe for µ > 0. Interior-point algorithms follow the solutions to
(PCµ) asµ goes to zero. The perturbed optimality conditions have unique solutions for all positiveµ, and
these solutions form the so-called central trajectory (see [2]). Note that the duality gap of the solutions is pro-
portional toµ, i.e., 〈s, x〉 = Trace (s • x) = µTrace (e) = µr. IPMs employ Newton’s method to target the
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solution of(PCσµ), whereσ ∈ (0, 1), (x, s, y) is the current iterate andµ = 〈s,x〉
r . Such algorithms are called

primal-dual path-following algorithms; primal-dual, because the primal and the dual are treated symmetrically
in the optimality conditions.

The following lemma motivates different, but equivalent, ways of forming the perturbed optimality condi-
tions, thus leading to different Newton systems.

Lemma 3.1 (Lemma 28 in [9]) Let x, s andp be in some Euclidean Jordan algebraJ , x, s ∈ int K andp
invertible. Thens • x = µ e iff Qp−1(s) •Qp(x) = µ e.

Therefore for a scalingp ∈ int K, (PCµ) can be equivalently written as

Ãx̃ = b

Ã∗y + s̃ = c̃

s̃ • x̃ = µe

x̃, s̃ ∈ K, y ∈ Y,

wherex̃ = Qpx, s̃ = Qp−1s, Ã = AQp−1 , andc̃ = Qp−1c. We restrict our attention to the following set of
scalings

C(x, s) := {p : p ∈ int K such thatQp(x) andQp−1(s) operator commute}.

Note thatp = e need not be inC(x, s). Forp = x−1/2 we get thexs-method, forp = s1/2 we get thesx-method

and for the choice ofp =
[
Qx1/2(Qx1/2s)−1/2

]−1/2
=

[
Qs−1/2(Qs1/2x)1/2

]−1/2
, we get the Nesterov-Todd

(NT) method. The Newton equations corresponding to a scaling inC(x, s) are

Scaled Newton Equations
Ã∗4y + 4s̃ = c̃− Ã∗y − s̃,

Ã4x̃ = b− Ãx̃,
s̃ • 4x̃ + 4s̃ • x̃ = σµe− s̃ • x̃.

(3.4)

ThoughC(x, s) seems to be a restrictive class, it does include some of the most interesting choices of scalings.

Our algorithm will restrict the iterates to the following neighborhood, called the minus-infinity neighbor-
hood, of the central path. For a given constantγ ∈ [0, 1]

N−∞(γ) := {(x, s, y) ∈ K ×K × Y : d−∞(x, s) ≤ γµ}, (3.5)

where

d−∞(x, s) := µ− λmin(z), µ =
〈s, x〉

r
andz = Qx1/2s.

A few observations aboutz are in order. Asx1/2 ∈ K andQx1/2 is an automorphism ofK, z ∈ K and
henceλi(z) are nonnegative. By Proposition 2.11〈s, x〉 = Trace (z) =

∑
i λi(z). The neighborhood con-

tains the central path andγ represents the size of the neighborhood as it can be shown that the setN−∞(0) ∩[
F0(P )×F0(D)

]
is exactly the central path andN−∞(1) ∩

[
F0(P )×F0(D)

]
= F0(P )×F0(D).

Now we discuss the symmetry and scale-invariance of the neighborhoods. By part (i) of Proposition 2.11,
Qx1/2s andQs1/2x have the same spectrum. Hence the centrality measured−∞(x, s) and the neighborhood
N−∞ are symmetric with respect tox ands.

Proposition 3.2 The neighborhood is scaling invariant, that is(x, s) is in the neighborhood iff(x̃, s̃) is.
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Proof : Let z̃ := Qx̃1/2 s̃. By part (ii) of Proposition 2.11λ(z̃) is the same asλ(z). Since 〈s̃, x̃〉 =〈
Qp−1s,Qpx

〉
= 〈s, x〉, the result follows by substituting the expressions in the definition ofN−∞(γ). �

Hence the scaling transformations are not just automorphisms of the cone but they also map the neighborhood
to itself. As the definition ofN−∞ is independent ofy, sometimesy in (x, s, y) is suppressed for convenience
and we write(x, s) instead, buty should be clear from the context.

3.2 Algorithm and Analysis of Convergence

Having discussed the key elements needed for the algorithm, we describe the infeasible-interior-point-method
in detail.

Algorithm IIPM :

1 Let 1 > β > σ > 0, ε∗ > 0, γ ∈ (0, 1), x0 ∈ int K, y0 ∈ Y ands0 ∈ int K be given such that
(x0, s0, y0) ∈ N−∞(γ). Setk = 0, φ0

p = 1 andφ0
d = 1.

2 Choose ap ∈ C(xk, sk) and form the corresponding scaled iterate. Solve for(4x̃k,4s̃k,4yk) from the
scaled Newton equations in (3.4) at(x̃k, s̃k, yk). Let (4xk,4sk,4yk) = (Qp−14x̃k, Qp4s̃k,4yk).

3 Let (x(α), s(α), y(α)) := (xk, sk, yk) + α(4xk,4sk,4yk). Compute the largest step length
ᾱk ∈ (0, 1] such that for allα ∈ [0, ᾱk], (x(α), s(α), y(α)) ∈ N−∞(γ),
〈s(α), x(α)〉 ≥ max(φk

p, φ
k
d)(1− α) 〈s0, x0〉, and〈s(α), x(α)〉 ≤ (1− (1− β)α) 〈sk, xk〉.

4 Choose a primal step lengthαk
p > 0 and a dual step lengthαk

d > 0 such that

(xk+1, sk+1, yk+1) := (xk + αk
p4xk, sk + αk

d4sk, yk + αk
d4yk) ∈ N−∞(γ),

〈sk+1, xk+1〉 ≥ max(φk
p(1− αk

p), φ
k
d(1− αk

d)) 〈s0, x0〉 and

〈sk+1, xk+1〉 ≤ (1− (1− β)ᾱk) 〈sk, xk〉 .

Setφk+1
p = φk

p(1− αk
p) andφk+1

d = φk
d(1− αk

d).

5 Increasek by 1. If 〈sk, xk〉 < ε∗ 〈s0, x0〉, then STOP. Otherwise, repeat step 2.

On the choice of step lengths: if we chooseαk
p = αk

d = ᾱk, all the conditions in Step 4 are satisfied. How-
ever, we are free to choose different step lengths as long we can make a comparable progress in the feasibility
and complementarity while remaining inside the neighborhood.

Using the Newton equations we can show thatφk
p andφk

d satisfy the relations

Axk − b = φk
p(Ax0 − b) and A∗yk + sk − c = φk

d(A
∗y0 + s0 − c), (3.6)

and hence they represent the relative infeasibilities at(xk, sk, yk). At every iterate we maintain the feasibility
condition,

〈sk, xk〉 ≥ max(φk
p, φ

k
d) 〈s0, x0〉 , (3.7)

which ensures that the infeasibilities approach zero as the complementarity,〈s, x〉, approaches zero. The fol-
lowing theorem forms the skeleton of the convergence argument and sets the agenda for the rest of the paper.

Theorem 3.3 If ᾱk ≥ α∗ for all k for someα∗ > 0, then theIIPM will terminate with(xk, sk, yk) such that
‖Axk − b‖ ≤ ε∗‖Ax0 − b‖, ‖A∗yk + sk − c‖ ≤ ε∗‖A∗y0 + s0 − c‖ and〈sk, xk〉 ≤ ε∗ 〈s0, x0〉 inO( 1

α∗ ln
(

1
ε∗

)
)

iterations.
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Proof : All the conditions in Step 3 ofIIPM are satisfied forα∗. Since for eachk, ᾱk ≥ α∗, if we choose

k =
⌈

1
(1−β)α∗

⌉
ln

(
1
ε∗

)
, then we have

ln(〈sk, xk〉) ≤ ln (〈sk−1, xk−1〉 (1− α∗(1− β)))

≤ ln
(
〈s0, x0〉 (1− α∗(1− β))k

)
≤ ln(〈s0, x0〉)− kα∗(1− β)
≤ ln(〈s0, x0〉) + ln(ε∗) = ln(ε∗ 〈s0, x0〉).

The first inequality follows from the decrease in complementarity condition, the second from the same applied
inductively, and the third inequality from the identity1 + ξ ≤ eξ for all ξ > −1. The fourth inequality follows
from our assumption onk.

From condition (3.7), it follows thatmax(φk
p, φ

k
d) ≤

〈sk,xk〉
〈s0,x0〉 ≤ ε∗. Then (3.6) implies that

‖Axk − b‖ ≤ ε∗ ‖Ax0 − b‖, and‖A∗yk + sk − c‖ ≤ ε∗ ‖A∗y0 + s0 − c‖.

�

In the rest of the paper, we prove that such a lower bound onα∗ exists and establish an estimate of the lower
bound that leads to the polynomial convergence result for theIIPM . For simplicity, we will often writex, y, s
andφ̄ for xk, yk, sk andmax(φk

p, φ
k
d) respectively. The indices should be clear from the context.

Let (x, s, y) ∈ N−∞(γ) and satisfy the feasibility condition (3.7). For a fixedp ∈ C(x, s), let(4x̃,4s̃,4y)
be the direction computed in Step 2 of the algorithm. We will use the following notation:

x̃(α) = x̃ + α4x̃, s̃(α) = s̃ + α4s̃,

x(α) = x + α4x, s(α) = s + α4s,

µ̃(α) = µ(x̃(α), s̃(α)) =
〈s̃(α), x̃(α)〉

r
, andz̃(α) = Qx̃(α)1/2 s̃(α).

As a word of caution, sincep need not lie inC(x(α), s(α)), x̃(α) ands̃(α) do not necessarily operator commute.
We collect some basic properties of the scaled directions and the Newton system.

Lemma 3.4 Given the Newton equations, the following identities hold:

s̃(α) • x̃(α) = (1− α) s̃ • x̃ + α σµe + α24s̃ • 4x̃,

〈s̃, x̃〉 = 〈s, x〉 , and

µ̃(α) = µ(1− α + σα) + α2 〈4s,4x〉
r

.

Proof : The first equality follows by direct expanding the third equation of the scaled Newton system. The
second follows because

〈s̃, x̃〉 =
〈
Qp−1s,Qpx

〉
= 〈s, x〉 .

For the last equation, we use the third Newton equation in (3.4) to get

µ̃(α) =
〈s̃(α), x̃(α)〉

r
=
〈s̃, x̃〉

r
+ α

〈s̃,4x̃〉+ 〈4s̃, x̃〉
r

+ α2 〈4s̃,4x̃〉
r

= µ(1− α + σα) + α2 〈4s̃,4x̃〉
r

.

�
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The following result is very essential in obtaining the bounds on the step lengths.

Lemma 3.5 Let (x, s) ∈ int K × int K. Thenλmin(s • x) ≤ λmin(z) and equality holds ifx ands operator
commute.

Proof : The proof outline follows Lemma 30 in [9]. First observe thatQx1/2,x−1/2Qx1/2 = L(x), because

Qx1/2,x−1/2Qx1/2 = Qx1/2(2L(x−1/2)L(x1/2)− I)

= 2(Qx1/2L(x−1/2))L(x1/2)−Qx1/2

= 2L2(x1/2)−Qx1/2 = L(x).

Here, we used part (a) of Lemma 2.4. As a result we haveQx1/2,x−1/2z = Qx1/2,x−1/2Qx1/2s = x • s.

In Lemma 30 in [9], it is shown thatTrace (Qx1/2,x−1/2u) = Trace (u). Note that by Lemma 2.12 we know
thatK ⊂ L(x)(K) = Qx1/2,x−1/2Qx1/2(K) = Qx1/2,x−1/2(K), asQx1/2 is an automorphism ofK. The result
follows from the following two chains of relations.

λmin(s • x) = min
u

〈u, (s • x) • u〉
〈u, u〉

= min
Trace (u2)=1

〈
u2, s • x

〉
= min

Trace (u2)=1

〈
u2, Qx1/2,x−1/2z

〉

min
Trace (u2)=1

〈
u2, Qx1/2,x−1/2z

〉
= min

Trace (u2)=1

〈
z,Qx1/2,x−1/2u2

〉
≤ min

Trace (Q
x1/2,x−1/2u2)=1

{〈
z,Qx1/2,x−1/2u2

〉
: Qx1/2,x−1/2u2 ∈ K

}
= min

{
〈z, t〉 : Trace (t) = 1, t ∈ Qx1/2,x−1/2(K)

}
≤ min {〈z, t〉 : Trace (t) = 1, t ∈ K}
= min

Trace (v2)=1

〈
z, v2

〉
= λmin(z)

The equality wheñx ands̃ operator commute is established in Lemma 30 in [9]. Hence the proof of the lemma
is complete. �

As a consequence, using Proposition 2.11 and the definition ofN−∞(γ), let us note that

λmin(s̃ • x̃) = λmin(z̃) = λmin(z) ≥ (1− γ)µ.

We find an interval for which(x(α), s(α)) lies in the neighborhood.

Lemma 3.6 Let δx = ‖4x̃‖F andδs = ‖4s̃‖F . If (x, s) ∈ N−∞(γ), then(x(α), s(α)) ∈ N−∞(γ) for all
0 ≤ α ≤ α̂1, where

α̂1 :=
γσ 〈s, x〉

2(r + 1− γ)δxδs
. (3.8)

Proof : We first bound the left and right hand side of the inequality defining the neighborhoodN−∞(γ). To
begin with a bound on the eigenvalue ofz(α), we have

λmin(z(α)) = λmin(z̃(α)) ≥ λmin(s̃(α) • x̃(α))
= λmin((1− α)s̃ • x̃ + ασµe + α24s̃ • 4x̃)
≥ (1− α)λmin(s̃ • x̃) + ασµ− α2δxδs

≥ (1− α)(1− γ)µ + ασµ− α2δxδs.

11



The first equality follows from part (ii) of Proposition 2.11, the first inequality follows from Lemma 3.5, the
second inequality follows from Lemma 2.9 and the last inequality follows because(x̃, s̃) ∈ N−∞(γ). Using
Lemma 3.4 and Cauchy-Schwarz we can see that

(1− γ)µ(α) = (1− γ)(µ(1− α + σα) + α2 〈4s,4x〉
r

)

≤ (1− γ)
[
µ(1− α + σα) + α2 δxδs

r

]
.

Using〈s, x〉 = µr, we can see that

(1− α)(1− γ)µ + ασµ− α2δxδs ≥ (1− γ)
[
µ(1− α + σα) + α2 δxδs

r

]
holds for allα ∈ [0, 2α̂1]. Since the right hand side of the inequality is positive for allα ∈ [0, α̂1], λmin(z(α)) >
0 for all α ∈ [0, α̂1]. Let α0 be the leastα ≤ α̂1 such thatx(α), s(α) ∈ K for all α ≤ α0 andx(α0) ∈ ∂K
(or s(α0) ∈ ∂K). Thenλmin(z(α0)) = 0, which is a contradiction. Hencex(α), s(α) ∈ int K. Hence
(x(α), s(α), y(α)) ∈ N−∞(γ) for all α ∈ [0, α̂1]. �

Note that the length of the interval obtained depends on the size of the scaled Newton directions.

For the feasibility condition in Step 3 we want anα̂2 such that (3.7) holds for all(x(α), s(α)), α ∈ [0, α̂2].
Using Lemma 3.4, the feasibility condition on(x, s) and Cauchy-Schwarz, we get

〈s(α), x(α)〉
〈s0, x0〉

− φ̄(1− α) =
〈s, x〉
〈s0, x0〉

(1 + α(σ − 1)) + α2 〈4s,4x〉
〈s0, x0〉

− φ̄(1− α)

=
(
〈s, x〉
〈s0, x0〉

− φ̄

)
(1− α) + ασ

〈s, x〉
〈s0, x0〉

+ α2 〈4s,4x〉
〈s0, x0〉

≥ α

〈s0, x0〉
(σ 〈s, x〉 − αδxδs) .

Therefore the condition〈s(α), x(α)〉 − φ̄(1− α) 〈s0, x0〉 ≥ 0 holds for allα ∈ [0, α̂2], where

α̂2 :=
σ 〈s, x〉
δxδs

. (3.9)

For the last condition in Step 3, Cauchy-Schwarz yields

〈s(α), x(α)〉 = 〈s, x〉 (1− α(1− σ)) + α2 〈4s,4x〉

≤ 〈s, x〉
(

1− α(1− σ) + α2 δxδs

〈s, x〉

)
.

It suffices to have[
1− α(1− σ) + α2 δxδs

〈s, x〉

]
− (1− α(1− β)) = α

(
α

δxδs

〈s, x〉
− (β − σ)

)
≤ 0.

Solving forα from the above inequality, we can see that the last condition holds for allα ∈ [0, α̂3], where

α̂3 :=
(β − σ) 〈s, x〉

δxδs
. (3.10)
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So far, we have obtained a lower bound on the step sizes in terms ofδx, δs and〈s, x〉. Now, we will obtain
a bound onδxδs

〈s,x〉 , which appears in (3.8), (3.9, and (3.10). Let us introduce the operator,G := L(s̃)−1L(x̃),
which is useful in boundingδxδs. Recall the third scaled Newton equation:

L(s̃)4x̃ + L(x̃)4s̃ = σµe− L(s̃)L(x̃)e.

Sincex̃ ands̃ operator commute, andG is a symmetric matrix, by multiplying this equation by(L(x̃)L(s̃))−1/2,
we get

G−1/24x̃ + G1/24s̃ = σµ(L(x̃)L(s̃))−1/2e−G1/2s̃ =: h.

The analysis ofIIPM is intricate because
〈
G1/24s̃, G−1/24x̃

〉
= 〈4s,4x〉 6= 0. Now let us define

t2 := ‖G1/24s̃‖2
F + ‖G−1/24x̃‖2

F .

The following proposition will lead to a bound on the size ofδxδs
〈s,x〉 .

Proposition 3.7 t2k ≤ ω 〈sk, xk〉, whereω is a constant independent ofk.

Before we prove the proposition, let us pause here to see its relevance in boundingδxδs. We state the following
technical, but useful result (Lemma 33 in [9]).

Lemma 3.8 Letu, v ∈ J andG be a positive definite self-adjoint operator. Then

‖u‖F ‖v‖F ≤ 1
2
√

κG

(
‖G1/2u‖2

F + ‖G−1/2v‖2
F

)
,

whereκG = λmax(G)
λmin(G) is the condition number ofG.

Note that in our application,κG may depend on the iteration numberk, but the following lemma provides a
bound on the condition number ofG for the methods we are interested in (see Lemma 36 in [9]).

Lemma 3.9 For the NT methodκG = 1 =: κ. For thexs and thesx methods,

if (x, s) ∈ N−∞(γ), thenκG ≤ r

1− γ
=: κ.

Using the above lemmas, we have the following bound onδxδs:

δxδs ≤
t2

2
√

κ ≤ ω

2
√

κ 〈s, x〉 . (3.11)

Now we prove the proposition.

Proof of Proposition 3.7: We first note the following identity:

‖G1/24s̃ + G−1/24x̃‖2
F = ‖G1/24s̃‖2

F + ‖G−1/24x̃‖2
F + 2

〈
G1/24s̃, G−1/24x̃

〉
= ‖G1/24s̃‖2

F + ‖G−1/24x̃‖2
F + 2 〈4s̃,4x̃〉 .

Using what we just derived and Lemmas 34 and 35 of [9], we can see that forh = σµ(L(x̃)L(s̃))−1/2e−G1/2s̃,

‖h‖2
F = t2 + 2 〈4s̃,4x̃〉 =

r∑
i

(σµ− λi(z̃))2

λi(z̃)
≤

(
1− 2σ +

σ2

1− γ

)
〈s, x〉 . (3.12)
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We take a small detour to introduce some convenient notation which helps us in stating a key claim in the
proof of this proposition, and is also used in the arguments for polynomiality of convergence. Let us assume
a reference point(u0, v0, r0) feasible to the equality constraints (and not necessarily in the cone) such that
x0 − u0, s0 − v0 ∈ int K, where(x0, s0, y0) is the initial iterate inIIPM . This condition is easily satisfied by
scaling the initial point for any given(u0, v0, r0). For a given sequence of iterates{(xk, sk, yk)} we define:

uk+1 = (1− αk
p)(uk − xk) + xk+1;

rk+1 = (1− αk
d)(rk − yk) + yk+1;

vk+1 = (1− αk
d)(vk − sk) + sk+1.

From the above definitions, we can observe the following properties:

xk+1 − uk+1 = φk+1
p (x0 − u0) ∈ int K;

sk+1 − vk+1 = φk+1
d (s0 − v0) ∈ int K;

Auk = b andA∗rk + vk = c for all k; (3.13)

A(xk +4xk − uk) = A(x +4xk)−Auk = b− b = 0;
A∗(yk +4yk − rk) + sk +4sk − vk = 0.

(The third line holds fork = 0 by assumption, and then holds for allk by induction using the last two lines.)
The following result is the key to proving the proposition:

Claim 3.10

〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ 〈4s,4x〉+ ξt
√
〈s, x〉 ≥ 0,

where

ξ = ξk :=
√

r

1− γ

[
〈s, x− u〉+ 〈s− v, x〉

〈s, x〉

]
. (3.14)

The claim is proved in the appendix. For now, we substitute〈4s,4x〉 from the inequality in (3.12), to get

t2 ≤ 〈s, x〉 χ̄ + 2
√
〈s, x〉 ξt,

where

χ̄ := 1− 2σ +
σ2

1− γ
+ 2

{
〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
is independent ofk. (3.15)

Therefore,

t2k ≤ 〈sk, xk〉
(

ξk +
√

ξ2
k + χ̄

)2

.

From Lemma 4.1 in [8], we have the following useful bound: Let(x, s, y) be any iterate generated byIIPM
and(x∗, s∗, y∗) be an optimal solution to(P ) and(D). Then

〈s, x− u〉+ 〈s− v, x〉
〈s, x〉

≤ 1 +
〈s∗, x0 − u0〉+ 〈s0 − v0, x

∗〉+ 〈s0 − v0, x0 − u0〉
〈s0, x0〉

.

Thereforeξk is uniformly bounded bȳξ where

ξ̄ =
√

r

1− γ

{
1 +

〈s∗, x0 − u0〉+ 〈s0 − v0, x
∗〉+ 〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
. (3.16)
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Hence we can chooseω to be

ω =
(

ξ̄ +
√

ξ̄2 + χ̄

)2

. (3.17)

�

Recall that the conclusion of Proposition 3.7 led to a bound onδxδs in (3.11). Hence we can bound from
below theα̂’s in (3.8), (3.9), and (3.10) in the following way:

α̂1 =
γσ 〈s, x〉

2 (r + 1− γ) δxδs
≥ γσ 〈s, x〉

2 (r + 1− γ) ω
2

√
κ 〈s, x〉

=
γσ

(r + 1− γ) ω
√

κ
=: ᾱ1, (3.18)

α̂2 =
σ 〈s, x〉
δxδs

≥ 2σ

ω
√

κ
=: ᾱ2, and (3.19)

α̂3 =
(β − σ) 〈s, x〉

δxδs
≥ 2(β − σ)

ω
√

κ
=: ᾱ3. (3.20)

Taking into account the above bounds, we define

α∗ := min
(

1,
γσ

(r + 1− γ) ω
√

κ
,

2σ

ω
√

κ
,
2(β − σ)

ω
√

κ

)
= Ω

(
1

rω
√

κ

)
. (3.21)

For this choice ofα∗, for α ∈ [0, α∗] all the conditions in Step 3 (and hence Step 4 by the remarks following the
algorithm) ofIIPM are satisfied. This bound implies the global convergence ofIIPM by Theorem 3.3. Also,
note that since〈4s̃,4x̃〉 = 0 for feasible-IPMs,(3.12) implies that

t2 ≤
(

1− 2σ +
σ2

1− γ

)
〈s, x〉 .

Henceω in the case of feasible-IPMs is replaced by a constant independent of the data and we obtainO(r
√

κ ln(1/ε))
iteration complexity for feasible-IPMs by Theorem 3.3. This is the bound obtained by Schmieta and Alizadeh
in [9].

With some restrictions on the size of initial points, we can show thatω is polynomially bounded and
consequently obtain the polynomial convergence ofIIPM . Let (u0, r0, v0) be the solution to

min{‖u‖F : Au = b} and min{‖v‖F : A∗r + v = c}, and

x0 = s0 = ρ0e ∈ int K,

wheree is the identity element of the Euclidean Jordan algebra andρ0 > max(‖u0‖2, ‖v0‖2). This implies
thatx0 − u0 ∈ int K ands0 − v0 ∈ int K. Let us assume that for some constantΨ > 0,

ρ0 ≥
1
Ψ

ρ∗ :=
1
Ψ

min{max (‖x∗‖2, ‖s∗‖2) : (x∗, s∗) solves(P ) and(D)}. (3.22)

(Note that we can always increaseρ0.) Now we can obtain a bound forω. First let us note two useful facts:
‖·‖F ≤

√
r‖·‖2 and〈s0, x0〉 = ρ2

0r. Therefore, using Cauchy-Schwarz, we can see that〈p, q〉 ≤ ‖p‖F ‖q‖F ≤
r‖p‖2‖q‖2. Now we can bound̄ξ in (3.16) as follows:

ξ̄ =
√

r

1− γ

{
1 +

〈s∗, x0 − u0〉+ 〈s0 − v0, x
∗〉+ 〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
≤

√
r

1− γ

{
1 +

2ρ∗ρ0r + 2ρ∗ρ0r + 4ρ2
0r

ρ2
0r

}
=

√
r

1− γ

{
5 + 4

ρ∗

ρ0

}
≤

√
r

1− γ
(5 + 4Ψ) (using (3.22)).
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For a bound on̄χ in (3.15), we have

χ̄ = 1− 2σ +
σ2

1− γ
+ 2

{
〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
≤ 1 +

1
1− γ

+ 2 · 4ρ2
0r

ρ2
0r

= 9 +
1

1− γ
.

Therefore,
ω =

(
ξ̄ +

√
ξ̄2 + χ̄

)2

= O(r). (3.23)

Having obtained bounds on the key quantities definingα∗ in (3.21), we state our main theorem.

Theorem 3.11 Suppose thatκG ≤ κ < ∞ for all iterations of IIPM . ThenIIPM will terminate inO(
√

κr2 ln(1/ε∗))
iterations. Hence theNT method takesO(r2 ln(1/ε∗)) iterations, and thexs and thesx methods takeO(r2.5 ln(1/ε∗))
iterations.

Proof : For anyα ∈ [0, α∗], α∗ as defined in (3.21), all the conditions in Step 3 ofIIPM are satisfied. Thus by
Theorem 3.3,IIPM will terminate ink =

⌈
1

α∗

⌉
ln

(
1
ε∗

)
= O

(√
κr2 ln (1/ε∗)

)
iterations.

The second part of the theorem follows from the bound onκ in Lemma 3.11 for thexs, thexs and the NT
method. �

4 Conclusion

We have established polynomial convergence of infeasible-interior-point methods for three important methods:
thexs, sx and the Nesterov-Todd (NT) method. To our knowledge this is the first time an infeasible-interior-
point method has been analysed for the NT-method using theN−∞ neighborhood for both semidefinite pro-
gramming and conic programs over symmetric cones. The algorithm presented here is closely related to the
algorithms used in practice to solve large-scale linear programs. The complexity obtained for the NT-method
(in this general setting) coincides with the bound obtained for linear programming by Zhang. The work by
Rangarajan and Todd shows convergence of the NT-method using another neighborhood defined globally over
the cone.
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5 Appendix

Claim 3.10

〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ 〈4s,4x〉+ ξt
√
〈s, x〉 ≥ 0,

where

ξ = ξk :=
√

r

1− γ

[
〈s, x− u〉+ 〈s− v, x〉

〈s, x〉

]
.

Proof : By expanding〈4s + s− v,4x + x− u〉 and using (3.13), we find that

〈4s,4x〉+ 〈s− v, x− u〉+ 〈4s, x− u〉+ 〈s− v,4x〉 = 0. (5.1)

We will now bound the last three terms in the expansion. First, using Cauchy-Schwarz, we see that

〈s− v,4x〉 = 〈s̃− ṽ,4x̃〉 =
〈
G1/2(s̃− ṽ), G−1/24x̃

〉
≤ ‖G1/2(s̃− ṽ)‖F ‖G−1/24x̃‖F ≤ ‖G1/2(s̃− ṽ)‖F t.

(5.2)
Next, note that

‖G1/2(s̃− ṽ)‖2
F =

〈
G1/2(s̃− ṽ), G1/2(s̃− ṽ)

〉
= 〈s̃− ṽ, G(s̃− ṽ)〉 . (5.3)

Sincex̃ ands̃ operator commute, operatorsG andQx̃ commute. Hence we have

〈s̃− ṽ, G(s̃− ṽ)〉 =
〈
Q

1/2
x̃ (s̃− ṽ), Q−1

x̃ GQ
1/2
x̃ (s̃− ṽ)

〉
≤ λmax(Q−1

x̃ G)‖Q1/2
x̃ (s̃− ṽ)‖2

F . (5.4)

We state the following lemma and prove it later (the second part is analogous to Lemma 2.2 in [8]).

Lemma 5.1 If G = L(s̃)−1L(x̃), thenλmax(Q−1
x̃ G) = 1

λmin(z̃) . If q ∈ K and q̃ = Qp−1q, then

‖Qx̃1/2 q̃‖F ≤ 〈q̃, x̃〉 = 〈q, x〉 .
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By substitutingq = s− v in the second part of Lemma 5.1, we get‖Q1/2
x̃ (s̃− ṽ)‖F ≤ 〈s− v, x〉. Using (5.3),

and (5.4), we see that

‖G1/2(s̃− ṽ)‖2
F ≤ λmax(Q−1

x̃ G)‖Q1/2
x̃ (s̃− ṽ)‖2

F ≤ 1
λmin(z)

〈s− v, x〉2 .

As (x, s) ∈ N−∞(γ), λmin(z) ≥ (1− γ)µ and from (5.2) we have

〈s− v,4x〉 ≤ ‖G1/2(s̃− ṽ)‖F ‖G−1/24x̃‖F ≤

√
1

(1− γ)µ
〈s− v, x〉 t.

Similarly it can be shown that

〈4s, x− u〉 ≤

√
1

(1− γ)µ
〈s, x− u〉 t.

Also using the feasibility condition (3.7), (3.13), andφ̄ ≤ 1, we get

〈s− v, x− u〉 ≤ φ̄2 〈s0 − v0, x0 − u0〉 ≤
〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉 .

Substituting the above bounds into (5.1) and using (3.14), we get

0 ≤ 〈4s,4x〉+
〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉+

√
1

(1− γ)µ
〈s, x− u〉 t +

√
1

(1− γ)µ
〈s− v, x〉 t

= 〈4s,4x〉+ 〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ ξt
√
〈s, x〉.

�

Proof of Lemma 5.1 : Suppose{λi : 1 ≤ i ≤ r} are the eigenvalues of̃x with eigenvectors{ci : 1 ≤ i ≤ r}
from the spectral decomposition of type II. Sincex̃ ands̃ operator commute, they share the same Jordan frame.
So, let the corresponding eigenvalues ofs̃ be{µi : 1 ≤ i ≤ r}. Then using Lemma 2.4 and Theorem 2.14, we
have the following two results:

λmax
(
Q−1

x̃ L(s̃)−1L(x̃)
)

= λmax
(
Qx̃−1L(x̃)L(s̃)−1

)
= λmax

(
L(x̃−1)L(s̃)−1

)
= max

1≤i≤j≤r

[(
1
λi

+
1
λj

)
1

µi + µj

]
, and

λmin(z̃)2 = λmin (Qz̃1/2 s̃)2 = λmin (Qx̃1/2Qs̃Qx̃1/2) = λmin (Qs̃Qx̃) = min
1≤i≤j≤r

λiλjµiµj .

It is staighforward to verify that[(
1
λi

+
1
λj

)
1

µi + µj

]
≤ max

(
1

λiµi
,

1
λjµj

)
, andλiλjµiµj ≥ min

(
λiµi)2, (λjµj)2

)
.

This proves the first part of the lemma.
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For the second part, the equality is easy to see. To show the inequality, note that

λmax(Qx̃1/2 q̃) ≤ ‖Qx̃1/2 q̃‖F .

Forp :=
Q

x̃1/2 q̃

‖Q
x̃1/2 q̃‖F

, λmax(p) ≤ 1 and hencee− p ∈ K. Since

〈q̃, x̃〉 = 〈q̃, Qx̃1/2e〉 = 〈Qx̃1/2 q̃, e〉 = 〈Qx̃1/2 q̃, e− p〉+ 〈Qx̃1/2 q̃, p〉 ,

we have

〈q̃, x̃〉 = 〈Qx̃1/2 q̃, e− p〉+ 〈Qx̃1/2 q̃, p〉 ≥ 〈Qx̃1/2 q̃, p〉 = ‖Qx̃1/2 q̃‖F .

�
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