
Polynomial deviation bounds for recurrent Harris
processes having general state space
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Abstract

Consider a strong Markov process in continuous time, taking values in some Polish
state space. Recently, Douc, Fort and Guillin (2009) introduced verifiable conditions in
terms of a supermartingale property implying an explicit control of modulated moments
of hitting times. We show how this control can be translated into a control of polynomial
moments of abstract regeneration times which are obtained by using the coupling method
of Nummelin, extended to the time-continuous context.

As a consequence, if a p−th moment of the regeneration times exists, then we obtain
non asymptotic deviation bounds of the form

IPν

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ ≥ ε

)
≤ K(p)

1
tp/2

1
εp
‖f‖p

∞.

Here, f is a bounded function and µ is the invariant measure of the process. We give several
examples, including elliptic stochastic differential equations and stochastic differential
equations driven by a jump noise.

Key words : Harris recurrence, polynomial ergodicity, Nummelin splitting, continuous time
Markov processes, drift condition, modulated moment.
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1 Introduction

Let X be a positive Harris recurrent strong Markov process in continuous time, having invariant
probability measure µ. From the Ergodic Theorem we know that for all x ∈ IR, f ∈ L1(µ) and
ε > 0

Px

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ ≥ ε
)
→ 0 (1.1)
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as t goes to infinity. One of the purposes of this paper is to establish the rate of convergence
in (1.1), for bounded functions f.

In the existing literature, mainly the case of exponential rate of convergence (exponential
ergodicity) has been considered. But recently, there has been growing interest in studying
other possible rates such as sub-geometric or polynomial rates. We follow this direction and
study in this paper the case when the rate of convergence in (1.1) is polynomial.

The method we use is the so-called regeneration method. It appeals to the condition of inte-
grability of regeneration times. In the easiest situation where the process X has a recurrent
point x0, we may introduce a sequence of stopping times Rn, the regeneration times, such that

1. For all n, Rn <∞, Rn+1 = Rn +R1 ◦ θRn , Rn →∞ as n→∞. (Here, θ denotes the shift
operator.)

2. For all n, XRn = x0.

3. For all n, the process (XRn+t)t≥0 is independent of FRn .

In this case, paths of the process can be decomposed into i.i.d. excursions [Ri, Ri+1[, i = 1, 2, . . . ,
plus an initial segment [0, R1], and then limit theorems follow immediately from the strong law
of large numbers.

In general, recurrent points exist only in one-dimensional models. For one-dimensional recurrent
diffusions it has been shown in Löcherbach, Loukianova and Loukianov (2010) that, if for some
p > 1 the p-th moment of the regeneration time exists, then the following deviation inequality
holds: For bounded functions f and for ε > 0,

Px

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ > ε
)
≤ K(p, x)ε−pt−α/2‖f‖p

∞, (1.2)

where α = p if p ≥ 2, α = 2(p−1), if 1 < p < 2. Such a bound is of major importance for many
applications, for example non asymptotic problems for statistics of diffusions, concentration for
particular approximations of granular media equations, and many other examples.

For general multidimensional Harris recurrent processes, there is no direct way of defining
regeneration times and of proving (1.2). However, there is a well-known method of introducing
regeneration times artificially, which is known as method of “Nummelin splitting” in the case
of Markov chains and which has been extended to the case of processes in continuous time
by Löcherbach and Loukianova (2008). This method consists of constructing a bigger process
Z = (Z1, Z2, Z3) taking values in E× [0, 1]×E, along a sequence of jump times 0 = T0 < T1 <
. . . < Tn < . . . , such that

1. Z1 is a copy of the original process X, and the Tn are arrival times of a rate-1−Poisson
process, independent of Z1.

2. On each time interval [Tn, Tn+1[, Z
2 and Z3 are constant.

3. The sequence (Z3
Tn

)n is a copy of the resolvent chain XTn+1 (the process X observed after
independent exponential times).
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4. The sequence (Z2
Tn

)n is a copy of independent random variables, which are uniformly
distributed on [0, 1].

The three co-ordinates and the sequence of jump times (Tn)n are constructed in a coupled way,
inspired by the splitting technique of Nummelin (1978) and Athreya and Ney (1978) in discrete
time. We recall the whole construction in Section 3. The main point of this construction is that
there exist a measurable set C having µ(C) > 0 (C will be a petite set in the Meyn-Tweedie
terminology) and a parameter α ∈]0, 1] such that the successive visits of ZTn to C × [0, α]×E
induce regeneration times for the process Z.

To resume, for any Harris recurrent Markov process X, the following holds true: the process
X can be embedded as first co-ordinate into a new Markov process Z. This new process Z
possesses regeneration times. These regeneration times are closely related to the hitting times
of a certain petite set C, or in other words: the moments of regeneration times are closely
related to hitting time moments. Once we have a p−th moment for the regeneration times, we
obtain a control on the speed of convergence in the ergodic Theorem and (1.2) holds true.

Note that different coupling techniques in spirit of the so-called Doeblin- or Dobrushin-coupling
have been considered in the literature, for example in the case of diffusions by Veretennikov
(1997) and (2004), and for Lévy-noise driven solutions of SDE’s by Kulik (2009). These cou-
plings are more specific to the concrete models the authors are interested in – the coupling
technique presented in this paper has the advantage of being completely general, as far as
Harris recurrent processes are concerned.

Once the coupling is constructed, it remains to establish sufficient conditions on the generator
of the process ensuring that p−th moments for regeneration times exist. These conditions are
inspired by a recent work of Douc et al. (2009) on sub-geometric rates of convergence for strong
Markov processes. In this work, the authors introduce a drift condition towards a closed petite
set in the spirit of a condition of existence of a Lyapunov function. This condition provides an
upper bound on the control of sub-geometric or polynomial moments of hitting times where the
dependence on the starting point is precisely given. The drift condition also provides a verifiable
condition ensuring positive Harris recurrence of the process. We recall these results in Section
2. Section 3 is devoted to give a self-contained description of the state of the art concerning the
regeneration or Nummelin-splitting-method in the multidimensional case. Section 4 is the main
section of this paper and provides a link between the two approaches “Drift Condition” of Douc
et al. (2009) and “Nummelin splitting”. We show that the drift condition of Douc et al. (2009)
provides an upper bound on the regeneration times introduced according to the method of
Nummelin splitting. More precisely, we show in Theorem 4.1 that certain polynomial moments
up to a precise order are bounded - the bound on the order being determined by the Lyapunov
condition. The dependence upon the starting point is controlled by the Lyapunov function as
usual. So even though the moments of regeneration times can not be explicitly calculated, we
get at least upper bounds in the rate of convergence in (1.1). As a main application of this
result, in Section 5 we state and give the proof of the deviation inequality (1.2). Section 6 is
devoted to some examples: multi-dimensional diffusions and SDE’s driven by a jump noise that
are treated in the spirit of a recent work of Kulik (2009).

Acknowledgments. Eva Löcherbach has been partially supported by an ANR projet: Ce
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2 Drift-condition, Harris-recurrence and modulated mo-

ments

Consider a probability space (Ω,A, (Px)x). LetX = (Xt)t≥0 be a process defined on (Ω,A, (Px)x)
which is strong Markov, taking values in a locally compact Polish space (E, E), with càdlàg
paths. (Px)x∈E is a collection of probability measures on (Ω,A) such that X0 = x Px−almost
surely. We write (Pt)t for the transition semigroup of X. Moreover, we shall write (Ft)t for the
filtration generated by the process.

Throughout this paper, we impose the following condition on the transition semigroup (Pt)t of
X.

Assumption 2.1 There exists a sigma-finite positive measure Λ on (E, E) such that for every
t > 0, Pt(x, dy) = pt(x, y)Λ(dy), where (t, x, y) 7→ pt(x, y) is jointly measurable.

We are seeking for conditions ensuring that the processX is recurrent in the sense of Harris. The
most popular conditions for Harris-recurrence are drift conditions or more generally conditions
in terms of a supermartingale property for a functional of the Markov process. We follow Douc
et al. (2009) and impose a drift condition towards a closed petite set B which implies the Harris
recurrence of the process. Recall that a set B ∈ E is petite if there exists a probability measure
a on B(IR+) and a measure νa on (E, E) such that∫ ∞

0
Pt(x, dy)a(dt) ≥ 1B(x)νa(dy). (2.3)

Assumption 2.2 There exists a closed petite set B, a continuous function V : E → [1,∞[, an
increasing differentiable concave positive function Φ : [1,∞) → (0,∞) and a constant b < ∞
such that for any s ≥ 0, x ∈ E,

Ex(V (Xs)) + Ex

(∫ s

0
Φ ◦ V (Xu)du

)
≤ V (x) + bEx

(∫ s

0
1B(Xu)du

)
. (2.4)

Remark 2.3 If V ∈ D(A) belongs to the domain of the extended generator A of the process
X, then Theorem 3.4 of Douc et al. (2009) shows that

AV (x) ≤ −Φ ◦ V (x) + b1B(x) (2.5)

implies the above Assumption 2.2.
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By Proposition 3.1 of Douc et al. (2009), we know that under condition 2.2, the process X
is positive recurrent in the sense of Harris. We write µ for its invariant probability measure.
Hence, for any set A ∈ E such that µ(A) > 0, we have lim supt→∞ 1A(Xt) = 1 almost surely. In
particular the process is µ−irreducible.

Under condition 2.2, Douc et al. (2009) give estimates on modulated moments of hitting times.
Modulated moments are expressions of the type

Ex

∫ τ

0
r(s)f(Xs)ds,

where τ is a certain hitting time, r a rate function and f any positive measurable function.
Knowledge of the modulated moments permits to interpolate between the maximal rate of
convergence (taking f ≡ 1) and the maximal shape of functions f that can be taken in the
ergodic theorem (taking r ≡ 1). In the present paper we are interested in the maximal rate of
convergence and hence we shall always take f ≡ 1.

For the function Φ of (2.4) put

HΦ(u) =
∫ u

1

ds

Φ(s)
, u ≥ 1, rΦ(s) = r(s) = Φ ◦H−1

Φ (s). (2.6)

We are interested in choices of the function Φ that yield a polynomial rate function r. This is
achieved by the choice Φ(v) = cvα for 0 ≤ α < 1 giving rise to polynomial rate functions

r(s) ∼ Cs
α

1−α .

We suppose from now on that Assumption 2.2 is satisfied with such a kind of function Φ(v) =
cvα for 0 ≤ α < 1. The most important technical feature about the rate function that will be
useful in the sequel is then the following sub-additivity property

r(t+ s) ≤ c(r(t) + r(s)), (2.7)

for t, s ≥ 0 and c a positive constant. We shall also use that

r(t+ s) ≤ r(t)r(s),

for all t, s ≥ 0.

We are interested in regeneration time moments. We will see in Section 3 below that regenera-
tion times are almost hitting times. Concerning hitting times, the following result is known in
the literature. Fix δ > 0 and define for any closed set A ∈ E the delayed hitting time

τA(δ) := inf{t ≥ δ : Xt ∈ A}.

Then Theorem 4.1 and Proposition 4.5, (ii) of Douc et al. (2009) imply the following two
statements. Firstly, for the rate function r of (2.6) and for the petite set B of Assumption 2.2,

Ex

∫ τB(δ)

0
r(s)ds ≤ V (x)− 1 +

b

Φ(1)

∫ δ

0
r(s)ds. (2.8)

Second, for the rate function r of (2.6) and for any closed set A with µ(A) > 0, for any δ′ > 0,

Ex

∫ τA(δ′)

0
r(s)ds ≤ c(A, δ′)

[
V (x)− 1 +

b

Φ(1)

∫ δ

0
r(s)ds

]
. (2.9)
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Remark 2.4 In the one-dimensional case E = IR, fix a recurrent point a ∈ IR. Then we can
choose A = {a} in (2.9) above. In this case, the successive visits

R1 := τ{a}(δ), Rn+1 := inf{t ≥ Rn + δ : Xt = a}

of the point a are regeneration times of the process. Hence, (2.9) gives a control of regeneration
time moments in the one-dimensional case.

In the general multidimensional case, the times τA(δ) do not define regeneration times any more.
In this case, at least in general, regeneration times can only be introduced in an artificial manner,
using the technique of Nummelin splitting in continuous time, as developed in Löcherbach and
Loukianova (2008). However, the estimates (2.8) and (2.9) can be translated into bounds on
moments of these new extended regeneration times of the process. This is the main issue of
this paper and will be treated in section 4 below.

In the next section we recall the technique of Nummelin splitting and then give the bounds
on moments of the regeneration times. But before doing this we first recall some known facts
about modulated moments of the resolvent chain from Douc et al. (2004).

2.1 Modulated moments for the resolvent chain

Observing the continuous time process after independent exponential times gives rise to the
resolvent chain and allows to use known results in discrete time instead of working with the
continuous time process. This trick is quite often used in the theory of processes in continuous
time.

Write U1(x, dy) :=
∫∞
0 e−tPt(x, dy)dt for the resolvent kernel associated to the process. Intro-

duce a sequence (σn)n≥1 of i.i.d. exp(1)-waiting times, independent of the process X itself. Let
T0 = 0, Tn = σ1 + . . .+ σn and X̄n = XTn . Then the chain X̄ = (X̄n)n is recurrent in the sense
of Harris, having the same invariant measure µ as the continuous time process, and its one-step
transition kernel is given by U1(x, dy).

Since X is Harris, it can be shown (Revuz (1984), see also Proposition 6.7 of Höpfner and
Löcherbach (2003)), that the resolvent satisfies

U1(x, dy) ≥ α1C(x)ν(dy), (2.10)

where 0 < α < 1, µ(C) > 0 and ν a probability measure equivalent to µ(· ∩ C). The set C is
in general not the petite set of Assumption 2.2. It can be chosen to be compact. In particular,
(2.10) implies that the resolvent chain is aperiodic.

It is interesting to note that the drift condition (2.4) on the process in continuous time implies a
similar drift condition on the resolvent chain. More precisely, Theorem 4.9 of Douc et al. (2009),
item (ii), implies that under Assumption 2.2 the resolvent chain satisfies a drift condition as
well, with a different petite set and different functions Φ̄ and V̄ , but giving rise to the same
rate function r since Φ̄(t(1 + Φ′(1))) ∼ Φ(t) for t→∞. Moreover,

‖V̄ − V (1 + Φ′(1))‖∞ <∞.
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Now for any measurable set A with µ(A) > 0, write τ̄A := inf{n ≥ 1 : X̄n ∈ A}. Then, by Douc
et al. (2004), proof of Theorem 2.8, second formula,

Ex

[
τ̄A−1∑
k=0

r(k)

]
≤ c1(A)V̄ (x) + c2(A) ≤ c1V (x) + c2, (2.11)

since V̄ (x) ≤ c1V (x) + c2.

After these preliminaries on resolvent chains we now turn to the description of the regeneration
method in the case of a general state space.

3 Nummelin splitting and regeneration times

Regeneration times can be introduced for any Harris recurrent strong Markov process under
the Assumption 2.1 – without any further assumption. We make once more use of the resolvent
chain. Recall the definition of the resolvent kernel U1 and the lower bound (2.10) which holds
under the only assumption of Harris recurrence:

U1(x, dy) ≥ α1C(x)ν(dy),

where C is a fixed compact petite set with µ(C) > 0. Note that since µ(C) > 0, (2.9) and
(2.11) hold for the hitting time of this set C.

Remark 3.1 Fort and Roberts (2005) and Douc et al. (2009) impose quite systematically the
condition of irreducibility of some skeleton chain, see e.g. Theorem 3.2 and Theorem 3.3 of
Douc et al. (2009). This implies the existence of some m such that Pm satisfies

Pm(x, dy) ≥ α1C(x)ν(dy).

This condition is obviously stronger than (2.10) and implies that the process is not only positive
Harris recurrent but also ergodic, i.e. for all x ∈ E,

||Pt(x, .)− µ||TV → 0.

We do not impose this additional condition.

We now show how to construct regeneration times in continuous time by using the technique of
Nummelin splitting which has been introduced for Harris recurrent Markov chains (and hence
in discrete time) by Nummelin (1978) and Athreya and Ney (1978). The idea is to define on
an extension of the original space (Ω,A, (Px)) a Markov process Z = (Zt)t≥0 = (Z1

t , Z
2
t , Z

3
t )t≥0,

taking values in E × [0, 1]× E such that the times Tn are jump times of the process and such
that ((Z1

t )t, (Tn)n) has the same distribution as ((Xt)t, (Tn)n). We recall the details of this
construction from Löcherbach and Loukianova (2008).

First of all, define the split kernel Q((x, u), dy). This is a transition kernel Q((x, u), dy) from
E × [0, 1] to E defined by

Q((x, u), dy) =


ν(dy) if (x, u) ∈ C × [0, α]

1
1−α

(U1(x, dy)− αν(dy)) if (x, u) ∈ C×]α, 1]

U1(x, dy) if x /∈ C.
(3.12)
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Remark 3.2 This kernel is called split kernel since
∫ 1
0 duQ((x, u), dy) = U1(x, dy). Thus Q is

a splitting of the resolvent kernel by means of the additional “colour” u.

Write u1(x, x′) :=
∫∞
0 e−tpt(x, x

′)dt. We now show how to construct the process Z recursively
over time intervals [Tn, Tn+1[, n ≥ 0. We start with some initial condition Z1

0 = X0 = x,
Z2

0 = u ∈ [0, 1], Z3
0 = x′ ∈ E. Then inductively in n ≥ 0, on ZTn = (x, u, x′) :

1. Choose a new jump time σn+1 according to

e−t pt(x, x
′)

u1(x, x′)
dt on IR+,

where we define 0/0 := a/∞ := 1, for any a ≥ 0, and put Tn+1 := Tn + σn+1.

2. On {σn+1 = t}, put Z2
Tn+s := u, Z3

Tn+s := x′ for all 0 ≤ s < t.

3. For every s < t, choose

Z1
Tn+s ∼

ps(x, y)pt−s(y, x
′)

pt(x, x′)
Λ(dy).

Choose Z1
Tn+s := x0 for some fixed point x0 ∈ E on {pt(x, x

′) = 0}. Moreover, given
Z1

Tn+s = y, on s+ u < t, choose

Z1
Tn+s+u ∼

pu(y, y
′)pt−s−u(y

′, x′)

pt−s(y, x′)
Λ(dy′).

Again, on {pt−s(y, x
′) = 0}, choose Z1

Tn+s+u = x0.

4. At the jump time Tn+1, choose Z1
Tn+1

:= Z3
Tn

= x′. Choose Z2
Tn+1

independently of
Zs, s < Tn+1, according to the uniform law U. Finally, on {Z2

Tn+1
= u′}, choose

Z3
Tn+1

∼ Q((x′, u′), dx′′).

Note that by construction, given the initial value of Z at time Tn, the evolution of the process
Z1 during [Tn, Tn+1[ does not depend on the chosen value of Z2

Tn
.

We will write Pπ for the measure related to X, under which X starts from the initial measure
π(dx), and IPπ for the measure related to Z, under which Z starts from the initial measure
π(dx) ⊗ U(du) ⊗ Q((x, u), dy). Hence, IPx0 denotes the measure related to Z under which Z
starts from the initial measure δx0(dx)⊗U(du)⊗Q((x, u), dy). In the same spirit we denote Eπ

the expectation with respect to Pπ and IEπ the expectation with respect to IPπ. Moreover, we
shall write IF for the filtration generated by Z, CG for the filtration generated by the first two
co-ordinates Z1 and Z2 of the process, and IFX for the sub-filtration generated by X interpreted
as first co-ordinate of Z.

The new process Z is a Markov process with respect to its filtration IF. For a proof of this
result, the interested reader is referred to Theorem 2.7 of Löcherbach and Loukianova (2008).
In general, Z will no longer be strong Markov. But for any n ≥ 0, by construction, the strong
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Markov property holds with respect to Tn. Thus for any f, g : E × [0, 1]× E → IR measurable
and bounded, for any s > 0 fixed, for any initial measure π on (E, E),

IEπ(g(ZTn)f(ZTn+s)) = IEπ(g(ZTn)IEZTn
(f(Zs))).

Finally, an important point is that by construction,

L((Z1
t )t|IPx) = L((Xt)t|Px)

for any x ∈ E, thus the first co-ordinate of the process Z is indeed a copy of the original Markov
process X, when disregarding the additional colours (Z2, Z3).

However, adding the colours (Z2, Z3) allows to introduce regeneration times for the process Z
(not for X itself). More precisely, write

A := C × [0, α]× E

and put

S0 := 0, R0 := 0, Sn+1 := inf{Tm > Rn : ZTm ∈ A}, Rn+1 := inf{Tm : Tm > Sn+1}. (3.13)

The sequence of IF−stopping times Rn generalises the notion of life-cycle decomposition in the
following sense.

Proposition 3.3 [Proposition 2.6 and 2.13 of Löcherbach and Loukianova (2008)]
a) Under IPx, the sequence of jump times (Tn)n is independent of the first co-ordinate process
(Z1

t )t and (Tn − Tn−1)n are i.i.d. exp(1)−variables.
b) At regeneration times, we start from a fixed initial distribution which does not depend on the
past: ZRn ∼ ν(dx)U(du)Q((x, u), dx′) for all n ≥ 1.
c) At regeneration times, we start afresh and have independence after a waiting time: ZRn+· is
independent of FSn− for all n ≥ 1.
d) The sequence of (ZRn)n≥1 is i.i.d.

Since the original process X – under Assumption 2.2 – is Harris with invariant measure µ, the
new process Z will be Harris, too. We shall write Π for its invariant probability measure. Π can
be written in terms of an occupation time formula which is a consequence of Chacon-Ornstein’s
ratio limit theorem. In order to state this theorem, let us recall that an additive functional of
the process Z is a ĪR+−valued, IF−adapted process A = (At)t≥0 such that

1. Almost surely, the process is non-decreasing, right-continuous, having A0 = 0.

2. For any s, t ≥ 0, As+t = At + As ◦ θt almost surely. Here, θ denotes the shift operator.

The additive functional is called integrable if IEΠ(A1) < +∞. Examples for integrable additive
functionals are At =

∫ t
0 f(Zs)ds, where f is a positive measurable function, integrable with

respect to the invariant measure Π.
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Proposition 3.4 (Chacon-Ornstein’s ratio limit theorem) Let At, Bt be any positive ad-
ditive functionals of Z such that IEΠ(B1) > 0. Then

At

Bt

→ IEΠ(A1)

IEΠ(B1)
IPx − almost surely, as t→∞,

for any x ∈ E. Moreover, Z is recurrent in the sense of Harris and its unique invariant
probability measure Π is given by

Π(f) = ` IEπ

∫ R2

R1

f(Zs)ds, (3.14)

where ` = IE(R2 −R1)
−1 > 0.

Proof The proof follows easily from the regeneration property with respect to the regeneration
times Rn. •

The invariant measure µ of the original process X is the projection onto the first co-ordinate
of Π. From this we deduce that the invariant probability measure µ of the original process X
must be given by

µ(f) = ` IEπ

∫ R2

R1

f(Xs)ds, (3.15)

where we recall that ` = IE(R2 − R1)
−1 > 0. In the above formula we interpret X as first co-

ordinate of Z, under IPπ
1. R2−R1 is the length of one regeneration period. Under assumption

(2.2), the process is positive recurrent and hence the expected length ` of one regeneration
period is finite.

We now turn to the main issue of this article which is the control of the speed of convergence
in the ergodic theorem. As a consequence of the above considerations, we can write

Px

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ > δ
)

= IPx

(∣∣∣∣∣1t
∫ t

0
f(Z1

s )ds− ` IEπ

∫ R2

R1

f(Z1
s )ds

∣∣∣∣∣ > δ

)
, (3.16)

where we recall that IPx denotes the measure related to Z under which Z0 ∼ δx ⊗ U(du) ⊗
Q((x, u), dy). The more moments of the regeneration period R2−R1 exist, the more the process
is recurrent and the more the convergence in (3.16) is fast.

We first give estimates on the polynomial moments

IEx

∫ R1

0
r(s)ds,

depending on the starting point x. Integrating this against ν(dx) gives then a control on the
corresponding moment of the regeneration period. This integration does not pose any problems
because the support of the measure ν is the compact set C. Since our regeneration times are
built based on the resolvent chain, the main technical ingredient that allows such a control will
be the estimate (2.11) rather than (2.9).

1Actually, we should write IEπ

∫ R2

R1
f(Z1

s )ds – but if not otherwise indicated, this identification will always
be implicitly assumed.
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4 Polynomial moments of regeneration times

The aim of this section is to show that the results of Douc et al. (2009) can be translated im-
mediately into a control of moments of regeneration times. This yields somehow a link between
the two different approaches “Drift conditions” versus “Nummelin”. Recall the definition of
r(s) = rΦ(s) in (2.6).

Theorem 4.1 Grant assumptions 2.1 and 2.2 with a function Φ(v) = cvα, where 0 ≤ α < 1.
Then there exist constants c1 and c2, such that

IEx

∫ R1

0
r(s)ds ≤ c1V (x) + c2.

Remark 4.2 For Φ(v) = cvα, it can be easily shown that there exists a constant c such that
r(s) = rΦ(s) ≥ c s

α
1−α . Hence the above theorem implies the control of polynomial moments of

the regeneration time, i.e.

IExR
1

1−α

1 ≤ c̃1V (x) + c̃2. (4.17)

Proof Recall the definition of the regeneration times in (3.13). Let

S̃1 := inf{Tn : Z1
Tn
∈ C}, S̃n+1 := inf{Tk > S̃n : Z1

Tk
∈ C}.

Obviously, R1 ≥ S̃1.

1. In the following, c will denote a constant that might change from line to line. We first show
how to control

IEx

∫ S̃1

0
r(s)ds.

In a first step we show that

IEx

∫ S̃1

0
r(s)ds = IEx

∫ ∞

0
e−
∫ t

0
1C(Z1

s )dsr(t)dt = Ex

∫ ∞

0
e−
∫ t

0
1C(Xs)dsr(t)dt. (4.18)

This can be seen as follows. First, in order to obtain the law of S̃1, we evaluate for any a > 0,

IPx(S̃1 > a) =
∑
n≥1

IPx(S̃1 = Tn, Tn > a)

=
∑
n≥1

IPx(Z
1
T1
∈ Cc, . . . , Z1

Tn−1
∈ Cc, Z1

Tn
∈ C, Tn > a)

=
∑
n≥1

Px(XT1 ∈ Cc, . . . , XTn−1 ∈ Cc, XTn ∈ C, Tn > a)

= Ex

∑
n≥1

(1− 1C(XT1)) · · · (1− 1C(XTn−1))f(XTn , Tn)

 ,
where f(t, x) = 1t>a1C(x).
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Now, we make use of the following very useful formula which is taken from Höpfner and
Löcherbach (2003), (5.29), page 59.

Ex

∑
n≥1

(1− 1C(XT1)) · · · (1− 1C(XTn−1))f(XTn , Tn)

 = Ex

(∫ ∞

0
f(t,Xt)e

−
∫ t

0
1C(Xs)dsdt

)

= Ex

(∫ ∞

a
1C(Xt)e

−
∫ t

0
1C(Xs)dsdt

)
.

Hence we obtain

IPx(S̃1 > a) = Ex

(∫ ∞

a
1C(Xt)e

−
∫ t

0
1C(Xs)dsdt

)
= Ex

(
e−
∫ a

0
1C(Xs)ds

)
.

Writing finally that

IEx

∫ S̃1

0
r(s)ds = IEx

∫ ∞

0
1s<S̃1

r(s)ds =
∫ ∞

0
r(s)IPx(S̃1 > s)ds,

we get (4.18). No we apply once more formula (5.29) of Höpfner and Löcherbach (2003) and
obtain

Ex

∫ ∞

0
e−
∫ t

0
1C(Xs)dsr(t)dt = Ex

( ∞∑
n=1

(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))r(Tn)

)
, (4.19)

where we recall that X̄n = XTn is the process observed at the n−th jump time of an independent
rate one Poisson process. The expression at the right hand side of (4.19) is almost a modulated
moment for the resolvent chain, except that we have to replace r(Tn) by r(n). This is not
difficult since for n large we can use the law of large numbers. Since r is increasing we can
write

Ex

(
(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))r(Tn)

)
≤ Ex

(
(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))r(2n)

)
+Ex

(
(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))1Tn>2nr(Tn)

)
. (4.20)

Let us start with the control of the first term in this decomposition. Recall that τ̄C = inf{n ≥
1 : X̄n ∈ C}. Now, using that r(2n) ≤ cr(n), which follows from r(t + s) ≤ c(r(t) + r(s)) by
(2.7),

IEx

( ∞∑
n=1

(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))r(2n)

)
= IEx

(
τ̄C∑

n=1

r(2n)

)

≤ cIEx

(
τ̄C∑

n=1

r(n)

)
≤ cIEx

(
τ̄C−1∑
n=1

r(n)

)
+ cIExr(τ̄C). (4.21)

Let R(k) =
∑k−1

j=0 r(j). Since r is polynomial, limk→∞ r(k)/R(k) = 0. Hence there exists a
constant c such that for all k ≥ 1, r(k) ≤ R(k) + c. As a consequence,

IExr(τ̄C) ≤ c+ IEx

(
τ̄C−1∑
n=0

r(n)

)
.

Using (2.11), we can thus conclude that

IEx

( ∞∑
n=1

(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))r(2n)

)
≤ c1V (x) + c2.
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Now we turn to the second expression in (4.20) above: For any 1 ≤ p, q such that 1
p

+ 1
q

= 1,

IEx

(
(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))1Tn>2nr(Tn)

)
≤ [IExr

p(Tn)]1/p · [IPx(Tn > 2n)]1/q

≤ [IExr
p(Tn)]1/p · e−Cn (4.22)

for some suitable constant C. But rp(·) is polynomial and Tn the sum of n independent exp(1)
variables, hence supx IExr

p(Tn) ≤ P (n), where P (.) is a polynomial in n. As a consequence,∑
n≥1

sup
x
IEx

(
(1− 1C(X̄1)) · · · (1− 1C(X̄n−1))1Tn>2nr(Tn)

)
= C2 <∞.

Putting together (4.18), (4.19)–(4.22), we thus get that

IEx

∫ S̃1

0
r(s)ds ≤ c1V (x) + c2. (4.23)

This will be the main contribution to the control of IEx

∫ R1
0 r(s)ds. In the sequel, we shall also

use that (4.23) implies in particular

sup
x∈C

IEx

∫ S̃1

0
r(s)ds < +∞, (4.24)

since C is compact.
2. Recall the definition of S1 in (3.13). We now show how to use the control of S̃1 in order to
obtain a control of S1. We have, since r(t+ s) ≤ r(s)r(t),

IEx

∫ S1

0
r(s)ds = IEx

∫ S̃1

0
r(s)ds+

∑
n≥1

IEx

(∫ S̃n+1

S̃n

r(s)ds1S̃n<S1

)

= IEx

∫ S̃1

0
r(s)ds+

∑
n≥1

IEx

(∫ S̃n+1−S̃n

0
r(S̃n + s)ds1S̃n<S1

)

≤ IEx

∫ S̃1

0
r(s)ds+

∑
n≥1

IEx

([∫ S̃n+1−S̃n

0
r(s)ds

]
r(S̃n)1S̃n<S1

)
. (4.25)

The first term in this expression can be controlled using (4.23). We study the second term in
the above expression

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0
r(s)ds

)
.

We know that IPx(S̃n < S1) = (1 − α)n (see for example the proof of Proposition 2.16 in
Löcherbach and Loukianova (2008)). A first idea would be to use Markov’s property with
respect to S̃n :

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0
r(s)ds

)
= IEx

(
r(S̃n)1S̃n<S1

IEZS̃n

∫ S̃1

0
r(s)ds

)
.

But unfortunately it is not true that

IEZS̃n

∫ S̃1

0
r(s)ds ≤ sup

x∈C
IEx

∫ S̃1

0
r(s)ds,
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we only have that on {S̃n < S1},

IEZS̃n

∫ S̃1

0
r(s)ds ≤ sup

x∈C,u>α,z∈E
IE(x,u,z)

∫ S̃1

0
r(s)ds,

and this can not be directly controlled using (4.23).

Hence, we must be more careful. We use that r(S̃n)1{S̃n<S1} is measurable with respect to GS̃n

where we recall that (Gt)t is the filtration generated by the first two co-ordinates Z1 and Z2 of
Z. Hence we will condition on GS̃n

. Note that by construction of Z, this means that we condition
on the whole history of the whole process, i.e. the three co-ordinates, up to the last jump time
sup{Tk : Tk < S̃n} strictly before S̃n, and on the history of Z1 and Z2 up to time S̃n. In other
words, conditioning on GS̃n

, we know Z1
S̃n

and Z2
S̃n
, but Z3

S̃n
has still to be chosen. Moreover,

on {S̃n < S1}, Z2
S̃n
> α, and hence the second line in the definition of the kernel Q((x, u), dx′)

of (3.12) has to be applied.

Write ν(x) for the density of ν(dx) with respect to the dominating measure Λ(dx) of assumption
2.1. Then,

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0
r(s)ds

)

= IEx

(
r(S̃n)1S̃n<S1

∫
E

1

1− α

[
u1(Z1

S̃n
, x′)− αν(x′)

]
Λ(dx′)

IE(Z1
S̃n

,Z2
S̃n

,x′)

∫ S̃1

0
r(s)ds

)

≤ 1

1− α
IEx

(
r(S̃n)1S̃n<S1

∫
E
u1(Z1

S̃n
, x′)Λ(dx′)

IE(Z1
S̃n

,Z2
S̃n

,x′)

∫ S̃1

0
r(s)ds

)
. (4.26)

But for any x, u,∫
E
u1(x, x′)Λ(dx′)IE(x,u,x′)

∫ S̃1

0
r(s)ds =

∫ 1

0
du
∫

E
Q((x, u), dx′)IE(x,u,x′)

∫ S̃1

0
r(s)ds, (4.27)

since IE(x,u,x′)

∫ S̃1
0 r(s)ds does not depend on u. Moreover,∫ 1

0
du
∫

E
Q((x, u), dx′)IE(x,u,x′)

∫ S̃1

0
r(s)ds = IEx

∫ S̃1

0
r(s)ds.

Hence, since Z1
S̃n
∈ C,

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0
r(s)ds

)
≤ 1

1− α
IEx

(
r(S̃n)1S̃n<S1

(
sup
x∈C

IEx

∫ S̃1

0
r(s)ds

))

≤ c

1− α
IEx

(
r(S̃n)1S̃n<S1

)
. (4.28)

Hence we must control IEx(1S̃n<S1
r(S̃n)). We write S̃n = S̃1 + (S̃n − S̃1) and use once more the

sub-multiplicativity of r. We obtain

IEx

(
r(S̃n)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

r(S̃n − S̃1)1S̃n<S1

)
. (4.29)
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Here, we have cut S̃n = S̃1 + (S̃n − S̃1) into two pieces in order to get a last term which does
not depend on the starting point. The same arguments as above in (4.26) and (4.27) yield,
when conditioning on GS̃1

, the following.

IEx

(
r(S̃n)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

r(S̃n − S̃1)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

1

1− α

∫
E
u1(Z1

S̃1
, x′)Λ(dx′)IE(Z1

S̃1
,Z2

S̃1
,x′)[r(S̃n−1)1S̃n−1<S1

]
)

≤ 1

1− α
IEx

(
r(S̃1)1S̃1<S1

IEZ1
S̃1

[r(S̃n−1)1S̃n−1<S1
]
)

≤ 1

1− α
sup
y∈C

IEy

(
r(S̃n−1)1S̃n−1<S1

)
IEx

(
r(S̃1)1S̃1<S1

)
. (4.30)

Concerning the last term in the above expression, we use that r(t) ≤
∫ t
0 r(s)ds + c for some

constant c and obtain

IEx

(
r(S̃1)1S̃1<S1

)
≤ c+ IEx

(∫ S̃1

0
r(s)ds

)
≤ c+ c1V (x) + c2 = c1V (x) + c̃2, (4.31)

using (4.23).

Concerning the first term in (4.30), for p, q ≥ 1 such that 1
p

+ 1
q

= 1, we obtain

sup
y∈C

IEy

(
r(S̃n−1)1S̃n−1<S1

)
≤ sup

y∈C

(
IEyr

p(S̃n−1)
)1/p

IPy(S̃n−1 < S1)
1/q

≤ (1− α)(n−1)/q

(
sup
y∈C

IEyr
p(S̃n−1))

)1/p

. (4.32)

We have to control this last expression. We claim the following: There exists a κ > 0 and a
constant c such that for p > 1 sufficiently small,(

sup
y∈C

IEyr
p(S̃n−1))

)1/p

≤ cnκ. (4.33)

Once (4.33) is proven, we obtain, using (4.25), (4.28), (4.30), (4.31), (4.32) and (4.33) the
following:

IEx

∫ S1

0
r(s)ds ≤ (c1V (x) + c2) +

c

(1− α)2
(c1V (x) + c̃2)

∑
n≥1

(1− α)(n−1)/qnκ

= c̄1V (x) + c̄2. (4.34)

It remains to show (4.33): By our assumptions, r is polynomial and r(x) ∼ Cx
α

1−α as x→∞,
hence rp(x) ≤ cxκp, where κ = α/(1−α). We now fix the choice of p and q in (4.32). We choose

p ∈ ]
1

κ
, 1 +

1

κ
[ = ]

1− α

α
,
1

α
[.

Then κp ≥ 1, and we use Jensen’s inequality to obtain

rp(S̃n−1) ≤ cS̃κp
n−1 ≤ (n− 1)pκ−1

(
S̃κp

1 + . . .+ (S̃n−1 − S̃n−2)
κp
)
. (4.35)
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Now since p < 1 + 1
κ

= 1
α
, we have tκp ≤ c

∫ t
0 r(s)ds for some constant c. Then for any of the

above terms (k ≥ 2), by (4.24),

sup
y∈C

IEy(S̃k − S̃k−1)
κp ≤ c sup

y∈C
IEy

∫ S̃1

0
r(s)ds <∞.

As a consequence, coming back to (4.35),

sup
y∈C

IEyr
p(S̃n−1) ≤ c(n− 1)pκ sup

y∈C
IEx

∫ S̃1

0
r(s)ds = c̃(n− 1)pκ,

and this yields (4.33).

3. Finally we proceed to the control of R1. Clearly,

IEx

∫ R1

0
r(s)ds ≤ IEx

∫ S1

0
r(s)ds+ IEx

[
r(S1)

∫ R1−S1

0
r(s)ds

]
.

We have to control the last term above. We condition on GS1 , we notice that Z2
S1
≤ α and we

use step 1. of the construction of Z, hence

IEx

[
r(S1)

∫ R1−S1

0
r(s)ds

]
= IEx

[
r(S1)

(∫
E
ν(x′)Λ(dx′)

∫ ∞

0
e−t pt(Z

1
S1
, x′)

u1(Z1
S1
, x′)

dt
∫ t

0
r(s)ds

)]
.

But by (2.10), ν(x′) ≤ 1
α
u1(Z1

S1
, x′), since Z1

Sn
∈ C, thus

IEx

[
r(S1)

∫ R1−S1

0
r(s)ds

]
≤ 1

α
IEx

[
r(S1)

(∫
E

Λ(dx′)
∫ ∞

0
e−tpt(Z

1
S1
, x′)dt

∫ t

0
r(s)ds

)]
=

1

α
IEx

[
r(S1)

∫ ∞

0
e−tdt

(∫
E
pt(Z

1
S1
, x′)Λ(dx′)

)
[
∫ t

0
r(s)ds]

]
=

1

α
IEx

[
r(S1)

∫ ∞

0
e−tdt

∫ t

0
r(s)ds

]
=

c

α
IEx(r(S1)),

since
∫∞
0 e−t

∫ t
0 r(s)dsdt <∞. Finally, r(t) ≤

∫ t
0 r(s)ds+ c gives

IEx(r(S1)) ≤ IEx

∫ S1

0
r(s)ds+ c,

which is controlled due to (4.34). This concludes the proof. •

Remark 4.3 The fact that the rate function is polynomial was crucial at two points in the
above proof: in equations (4.22) and (4.33). The general sub-geometrical case could probably
be handled by paying in particular attention to the constants that arrive in expressions like
IExr

p(Tn) ≤ [IExr
p(T1)]

n.
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5 Polynomial deviation inequality

We impose Assumption 2.2 with a function Φ(v) = cvα, where 0 ≤ α < 1. As a consequence, we
obtain a control for polynomial moments IExR

p
1 of the regeneration time for all p ≤ 1/(1− α),

due to (4.17). Since V is continuous and since the measure ν of (2.10) which is used in
order to construct the regeneration periods is of compact support, also IEνR

p
1 is finite for all

p ≤ 1/(1− α).

In order to derive the deviation inequality we first derive a deviation inequality for the counting
process associated to the life cycle decomposition

Nt = sup{n : Rn ≤ t} =
∞∑

n=1

1{Rn≤t}, N0 = 0.

We have almost surely, as t→∞, Nt/t→ IEΠN1 = `, where we recall that

` = (IEνR1)
−1 = (IE(R2 −R1))

−1,

see Proposition 3.4 and equation (3.14).

The deviation inequality for the counting process associated to the life cycle decomposition is
the following.

Theorem 5.1 Grant Assumptions 2.1 and 2.2 with Φ(v) = cvα, 0 ≤ α < 1. Let x ∈ E be any
starting point and 0 < ε < 1. Then for any 1 < p ≤ 1/(1 − α) there exists a positive constant
C(l, p, ν) such that the following inequality holds:

If p ≥ 2, then

IPx

(
|Nt

t
− l| > lε

)
≤ C(l, p, ν)

1

εp

1

tp/2
. (5.36)

If 1 < p < 2 and t ≥ 1,

IPx

(
|Nt

t
− l| > lε

)
≤ C(l, p, ν)

1

εp

1

tp−1
. (5.37)

Here C(l, p, ν) is given by

C(l, p, ν) =

{
2p/2IEx|R1 − 1/l|p/2 + 2(5p+2)/2Cp

pIEν |R1 − 1
l
|p l p

2 if p ≥ 2
2p/2IEx|R1 − 1/l|p/2 + 22p+2Cp

pIEν |R1 − 1
l
|p l if p ∈]1, 2[

}
,

where Cp is the constant of the Burkholder-Davis-Gundy inequality.

Proof The proof is basically the same as in Löcherbach, Loukianova and Loukianov (2010),
proof of Theorem 3.1. In the following we only sketch the main differences. We decompose:

IPx (|Nt/t− l| > lε) ≤ IPx (Nt/t > l(1 + ε)) + IPx (Nt/t < l(1− ε)) . (5.38)

Put for k ≥ 1, η̄k = −1(Rk+1 −Rk − 1/l). For the first term of (5.38), we have

IPx (Nt/t > l(1 + ε)) ≤ IPx (R1 − 1/l ≤ −tε/2) + IPx

[tl(1+ε)]∑
k=1

η̄k ≥ tε/2

 . (5.39)
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In an analogous way,

IPx (Nt/t < l(1− ε)) ≤ IPx

(
R1 −

1

l
≥ tε/2

)
+ IPx

[tl(1−ε)]−1∑
k=1

η̄k ≤ −tε/2

 . (5.40)

The only difference to the proof in Löcherbach, Loukianova and Loukianov (2010) is now that
the η̄k are no longer independent but only 2−independent. Indeed, η̄k is not independent of
FRk

, but only independent of FRk−1
. This is due to step 1 of the construction of Z, where the

waiting time for the new jump is chosen depending on the actual value of Z at time Rk. So we
define

η
(1)
k =

{
η̄k if k odd
0 elseif

}
, η

(2)
k =

{
η̄k if k even
0 elseif

}
. (5.41)

Now let M1
0 = 0 and M1

n =
∑n

k=1 η
(1)
k . In the same way, M2

0 = 0 and M2
n =

∑n
k=1 η

(2)
k .

We also introduce the following two sub-filtrations, associated to the sum of odd and the sum
of even terms. Let

A(1)
n := σ{η(1)

k : k ≤ n, k odd } = σ{M (1)
k , k ≤ n},

and
A(2)

n := σ{η(2)
k : k ≤ n, k even } = σ{M (2)

k , k ≤ n}.
Then (M1

n)n and (M2
n)n are discrete A(1)

n −martingales (A(2)
n −martingales, respectively). More-

over, for each k ≥ 1, η̄k is a centred random variable such that IEx|η̄k|p < ∞. Thus,

both martingales are Lp martingales such that [M (i)]n =
∑n

k=1(η
(i)
k )2, for i = 1, 2. Denote

(M (i))∗n = supk≤n |M
(i)
k |, i = 1, 2. As a consequence of (5.39) and (5.40) we can write

IPx (|Nt/t− l| > lε) ≤ IPx (|R1 − 1/l| ≥ tε/2)

+ IPx

(
(M (1))∗[tl(1+ε)] ≥ tε/4

)
+ IPx

(
(M (2))∗[tl(1+ε)] ≥ tε/4

)
. (5.42)

We use the Burkholder-Davis-Gundy inequality to bound the last term in (5.42): For all p > 1
there exists a constant Cp depending only p such that ‖(M (i))∗n‖p ≤ Cp‖[M (i)]1/2

n ‖p, hence

IEx((M
(i))∗n)p ≤ Cp

pIEx

(∑n
k=1(η

(i)
k )2

)p/2
.

Notice that by definition, the term
∑n

k=1(η
(1)
k )2 contains [n+1

2
] terms whereas

∑n
k=1(η

(2)
k )2 con-

tains [n/2] terms. Hence, in case p ≥ 2, using Hölder’s inequality,(
n∑

k=1

(η
(1)
k )2

)p/2

≤ [
n+ 1

2
]

p
2
−1

n∑
k=1

|η(1)
k |p,

which implies in turn that

IEx((M
(1))∗n)p ≤ Cp

p [
n+ 1

2
]p/2IE|η̄1|p ≤ Cp

pn
p/2IE|η̄1|p. (5.43)

In the same way it can be shown that

IEx((M
(2))∗n)p ≤ Cp

p [
n

2
]p/2IE|η̄1|p ≤ Cp

pn
p/2IE|η̄1|p. (5.44)
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If 1 < p < 2, then the sub-additivity of the function x 7→ xp/2 implies(
n∑

k=1

(η
(1)
k )2

)p/2

≤
n∑

k=1

|η̄(1)
k |p, hence IEx((M

(1))∗n)p ≤ Cp
pnIE|η̄1|p. (5.45)

The same kind of bound holds also for the even terms.

Now we can conclude similarly to Löcherbach, Loukianova and Loukianov (2010): If p ≥ 2,

IPx (|Nt/t− l| > lε) ≤ 2p/2IEx|R1 − 1/l|p/2

(tε)p/2
+ 2 4pCp

pIEx|η̄1|p [tl(1 + ε)]p/2 1

(εt)p

≤
(
2p/2IEx|R1 − 1/l|p/2 + 25p/2+1Cp

pIEx|η̄1|p l
p
2

) 1

εp

1

t
p
2

,

and if 1 < p < 2, for t ≥ 1,

IPx (|Nt/t− l| > lε) ≤ 2p/2IEx|R1 − 1/l|p/2

(tε)p/2
+ 2 4pCp

pIEx|η̄1|p [tl(1 + ε)]
1

(tε)p

≤
(
2p/2IEx|R1 − 1/l|p/2 + 22p+2Cp

pIEx|η̄1|p l
) 1

εp

1

tp−1
.

•

Once the deviation inequality for the counting process (Nt)t is proven, we obtain exactly as in
Löcherbach, Loukianova and Loukianov (2010), Theorem 3.2, the following general deviation
inequality for additive functionals of the original Markov process X, built of bounded functions.

Theorem 5.2 Grant Assumptions 2.1 and 2.2 with Φ(v) = cvα, 0 ≤ α < 1. Put p = 1/(1−α).
Let f ∈ L1(µ). Suppose that ‖f‖∞ < ∞. Let x be any initial point and 0 < ε < ‖f‖∞. Then
for all t ≥ 1 the following inequality holds:

Px

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ > ε
)
≤
{
K(l, p, ν,X) 1

εp‖f‖p
∞ t−p/2 if p ≥ 2

K(l, p, ν,X) 1
εp‖f‖p

∞ t−(p−1) if 1 < p < 2

}
. (5.46)

Here K(l, p, ν,X) is a positive constant, different in the two cases, which depends on l, p, ν and
on the process X through the life cycle decomposition, but which does not depend on f , t, ε.

Proof First of all, since the law of X starting from a fixed point x is the same as the law of
Z1 starting from the initial measure IPx, we certainly have that

Px

(∣∣∣∣1t
∫ t

0
f(Xs)ds− µ(f)

∣∣∣∣ > ε
)

= IPx

(∣∣∣∣1t
∫ t

0
f(Z1

s )ds− µ(f)
∣∣∣∣ > ε

)
.

Now the rest of the proof is exactly the same as the proof of Theorem 3.2 in Löcherbach,
Loukianova and Loukianov (2010). The only difference compared to there is that the variables

ξn =
∫ Rn+1

Rn
f(Z1

s )ds are no longer independent but only 2-independent. Hence, the same trick
as in the proof of Theorem 5.1 applies: one has to separate even and odd terms. But this does
only change the constants in the upper bound. •
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6 Examples

We close our paper with two examples where the above deviation inequalities can be applied.

6.1 Multi-dimensional diffusions

Consider the solution of the following stochastic differential equation in IRd

dXt = b(Xt)dt+ σ(Xt)dWt,

where Wt is an n−dimensional Brownian motion, n ≥ d, such that b is a locally bounded Borel
measurable function IRd → IRd and σ is a bounded continuous function IRd → IRd×n which is
uniformly elliptic: Writing a := σσ∗, we suppose that there exists ε > 0 such that

< a(x)ξ, ξ > ≥ ε‖ξ‖2

for all x ∈ IRd. Classical results on lower bounds for transition densities of diffusions (see for
instance Kusuoka and Stroock (1987)) imply that in this case any compact set of IRd is petite.
We cite the following recurrence conditions from Fort and Roberts (2005). Suppose there exist
M,β, γ > 0 and l < 2 such that

sup
x:‖x‖>M

‖x‖−(2+l) < x, a(x)x >= β, sup
x:‖x‖>M

‖x‖−ltr(a(x)) = γ,

sup
x:‖x‖>M

‖x‖−l < b(x), x >= −r, for some r > (γ − βl)/2.

We choose

κ ∈ ]0, l +
2r − γ

β
[

and put m = 2 − l + κ, thus 2 −m = l − κ. Let V (x) = ‖x‖m outside a compact set. Then
supx:‖x‖>M AV (x) <∞ and standard calculus shows that for all ‖x‖ > M,

AV (x) ≤ m
(
−r +

1

2
[γ + (m− 2)β]

)
V (x)

‖x‖2−l
.

Then by our choice of κ, r̃ := r − 1
2
[γ + (m− 2)β] > 0. Hence for ‖x‖ > M,

AV (x) ≤ −Φ ◦ V (x),

where

Φ(x) = mr̃ x1−α, with α =
2− l

m
< 1.

Hence we get polynomial moments of regeneration times up to the orderm/(2−l) = 1+κ/(2−l).
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6.2 Solutions to SDE’s driven by a jump noise

This chapter is inspired by a recent work of Kulik (2009) on exponential ergodicity for solutions
to SDE’s driven by a jump noise. More precisely, consider the solution of the following stochastic
differential equation on IRd driven by a jump noise

dXt = b(Xt)dt+
∫
‖u‖≤1

c(Xs−, u)µ̃(dt, du) +
∫
‖u‖>1

c(Xs−, u)µ(dt, du). (6.47)

Here µ is a Poisson random measure (PRM) on IR+ × IRq, having compensator µ̂(dt, du) =
dtν(du), and µ̃(dt, du) = µ(dt, du)− dtν(du) denotes the compensated PRM. We follow Kulik
(2009) and impose the following conditions on the coefficients b and c. The drift function b
belongs to C1(IRd, IRd) and satisfies a linear growth condition. The jump rate c(x, u) is one
times continuously differentiable with respect to x. Moreover,

‖c(x, u)− c(y, u)‖ ≤ K(1 + ‖u‖)‖x− y‖, ‖c(x, u)‖ ≤ ψ(x)‖u‖, x, y ∈ IRd, u ∈ IRq,

where K is some constant and where ψ : IRd → IR+ satisfies a linear growth condition. Finally
we impose a moment condition on the Lévy measure ν. For all R > 0,∫

sup
x:‖x‖≤R

(‖c(x, u)‖+ ‖∇xc(x, u)‖) ν(du) < +∞.

Then for any fixed x ∈ IRd, there exists a unique strong solution Xt to (6.47), which is a strong
Markov process, having càdlàg trajectories.

We quote sufficient conditions implying that compact sets are petite from Kulik (2009). For
this sake, we have to introduce some notation. Let Sq = {v ∈ IRq : ‖v‖ = 1} be the unit sphere
in IRq. For any w ∈ Sq and for any % ∈]0, 1[, let V+(w, %) = {y ∈ IRq : < y,w > ≥ %‖y‖}, and
V (w, %) = {y ∈ IRq : | < y,w > | ≥ %‖y‖}. Then Kulik (2009) obtains the following result.

Proposition 6.1 (Kulik 2009) Suppose that the following assumptions hold.

1. Cone condition: For every w ∈ Sq, there exists % ∈]0, 1[, such that for every δ > 0,

ν (V (w, %) ∩ {u : ‖u‖ ≤ δ}) > 0.

2. Non-degeneracy condition: There exists a point x∗ ∈ IRd and a neighbourhood O∗ of x∗
such that c(x, u) = χ(x)u+ δ(x, u), for all x ∈ O∗, and

‖δ(x∗, u)‖+ ‖∇xδ(x∗, u)‖ = o(‖u‖),

as ‖u‖ → 0. Moreover, the functions b̃(.) = b(.)−
∫
‖u‖≤1 c(., u)ν(du) and χ are one times

continuously differentiable and satisfy the joint non-degeneracy condition

rank
(
∇b̃(x∗)χ(x∗)−∇χ(x∗)b̃(x∗)

)
= d.

3. Support condition: For any R > 0 there exists t such that for all x with ‖x‖ ≤ R,

x∗ ∈ suppPt(x, ·).
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If the above conditions hold, then any compact set is petite.

Remark 6.2 1. In the one-dimensional case d = q = 1, the above conditions can be stated
in a simpler way. For example, condition 1. can then be written as follows: For all δ > 0,
ν(u : 0 < ‖u‖ ≤ δ) > 0.
2. Simon (2000), Theorem I, gives a sufficient condition for condition 3. above to hold, see
also Proposition 4.7 in Kulik (2009).

Proof Theorem 1.3, Proposition 4.3 and Proposition 4.4 of Kulik (2009) show that under
the above conditions, the following Dobrushin condition holds: For all R > 0, there exists
t∗ = t∗(R) such that

inf
x,y:‖x‖,‖y‖≤R

∫
[Pt∗(x, ·) ∧ Pt∗(y, ·)] (dz) > 0, (6.48)

where for any two probability measures P and Q,

[P ∧Q](dz) :=

(
dP

d(P +Q)
(z) ∧ dQ

d(P +Q)
(z)

)
(P +Q)(dz).

From this the claim follows since (6.48) implies that any compact set is a “petite” set. •

It remains to give conditions that are sufficient for the recurrence condition (2.4), (2.5) respec-
tively. There is a wide range of possible conditions and in what follows we restrict attention to a
particular sufficient condition which is stated in the same spirit as the conditions of Proposition
4.1 of Kulik (2009).

Proposition 6.3 Suppose that the conditions of Proposition 6.1 hold. Suppose moreover that
there exist M,γ > 0 and 0 < l < 1 such that

1. Moment-condition: There exists m ≥ 1 such that
∫
‖u‖≥1 ‖u‖mν(du) <∞.

2. Moderate jumps: The function c can be decomposed into c = c1 + c2 such that

(a) ‖c1(x, u)‖ ≤ γ‖x‖l‖u‖, u ∈ IRq, ‖x‖ > M.

(b) ‖x+ c2(x, u)‖ ≤ ‖x‖, ‖u‖ > 1, ‖x‖ > M, and c2(·, u) = 0, if ‖u‖ ≤ 1.

3. Drift-condition: supx:‖x‖>M ‖x‖−(1+l) < b(x), x >= −r, for some constant r satisfying
r > 2γ

∫
‖u‖>1 ‖u‖mν(du).

Then there exists M0 ≥ M such that (2.5) holds with B = {x : ‖x‖ ≤ M0}, B petite, V (x) =
‖x‖m and Φ(x) = cx1−α, where α = 1−l

m
< 1.

Proof We use the drift condition for the generator defined for all functions F in the extended
domain of the generator

AF (x) =< b(x),∇F (x) > +
∫

IRq

(
F (x+ c(x, u))− F (x)− 1{‖u‖≤1} < ∇F (x), c(x, u) >

)
ν(du).
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Applying this to V (x) = ‖x‖m yields for all ‖x‖ > M,

AV (x) = m < b(x), x > ‖x‖m−2 +
∫
‖u‖>1

(‖x+ c(x, u)‖m − ‖x‖m) ν(du)

+
∫
‖u‖≤1

(
‖x+ c(x, u)‖m − ‖x‖m −m < x, c(x, u) > ‖x‖m−2

)
ν(du)

≤ −m · r‖x‖m−1+l +
∫
‖u‖>1

(‖x+ c(x, u)‖m − ‖x‖m) ν(du)

+
∫
‖u‖≤1

(
‖x+ c(x, u)‖m − ‖x‖m −m < x, c(x, u) > ‖x‖m−2

)
ν(du). (6.49)

We start with the term in the last line. By Taylor’s formula, writing h = c(x, u) = c1(x, u),
since ‖u‖ ≤ 1, we certainly have that∣∣∣ ‖x+ c(x, u)‖m − ‖x‖m −m < x, c(x, u) > ‖x‖m−2

∣∣∣
≤ 1

2
sup

y∈]x,x+h[

| < h,∇2V (y)h > |

≤ 1

2
m [1 + |m− 2|] ‖h‖2 sup

y∈]x,x+h[
‖y‖m−2.

Here, ]x, x+ h[ denotes the d−dimensional interval ]x1, x1 + h1[× . . .×]xd, xd + hd[.

Applying condition 2. (a) to h = c1(x, u), where ‖u‖ ≤ 1, yields

‖h‖2 ≤ γ2‖x‖2l‖u‖2.

If m− 2 > 0, we choose M0 ≥ M such that (1 + γM l−1
0 )m−1 ≤ 2 (recall that l < 1). Then we

obtain

sup
y∈]x,x+h[

‖y‖m−2 = ‖x+ h‖m−2 ≤ ‖x‖m−2
[
1 + γ‖x‖l−1

]m−2

≤ ‖x‖m−2
[
1 + γM l−1

0

]m−2

≤ 2‖x‖m−2.

If m < 2, we can proceed similarly,

sup
y∈]x,x+h[

‖y‖m−2 ≤ ‖x‖m−2
[
1− γ‖x‖l−1

]m−2

≤ ‖x‖m−2
[
1− γM l−1

0

]m−2

≤ 2‖x‖m−2,

where we choose M0 such that (1− γM l−1
0 )m−2 ≤ 2.

As a consequence, for any ‖x‖ ≥M0, the last line of (6.49) is bounded from above by

m

(
[1 + |m− 2|]γ2

∫
‖u‖≤1

‖u‖2ν(du)

)
‖x‖m−2+2l ≤ C M l−1

0 ‖x‖m−1+l, (6.50)

since ‖x‖l−1 ≤ M l−1
0 . Here, M l−1

0 → 0 as M0 → ∞, and C is some constant. Hence the last
term of (6.49) will be neglectable for our purposes.
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Concerning the first jump term in (6.49) we proceed as Kulik (2009), proof of Proposition 4.1:
For ‖u‖ > 1, using condition 2. (b), we have

‖x+ c(x, u)‖m − ‖x‖m ≤ ‖x+ c(x, u)‖m − ‖x+ c2(x, u)‖m = ‖x(u) + c1(x, u)‖m − ‖x(u)‖m,

where x(u) = x+ c2(x, u), and then, applying Taylor’s formula,

‖x(u) + c1(x, u)‖m − ‖x(u)‖m ≤ m‖c1(x, u)‖ sup
y∈]x(u),x(u)+c1(x,u)[

‖y‖m−1.

Now, since m ≥ 1, we proceed as before and obtain, using successively condition 2. (a) and 2.
(b) and ‖u‖ > 1,

m‖c1(x, u)‖ sup
y∈]x(u),x(u)+c1(x,u)[

‖y‖m−1 ≤ mγ‖x‖l‖u‖
(
‖x(u)‖+ γ‖x‖l‖u‖

)m−1

≤ mγ‖x‖l‖u‖
(
‖x‖+ γ‖x‖l‖u‖

)m−1

≤ mγ‖x‖m−1+l‖u‖m
(
1 + γM l−1

0

)m−1

≤ 2mγ‖x‖m−1+l‖u‖m,

by the choice of M0. As a consequence, the first jump term in (6.49) can be upper bounded as
follows: ∫

‖u‖>1
(‖x+ c(x, u)‖m − ‖x‖m) ν(du) ≤ m‖x‖m−1+l

[
2γ
∫
‖u‖>1

‖u‖mν(du)

]
.

Collecting all the above results, we finally obtain that for all ‖x‖ ≥M0,

AV (x) ≤ m

(
−r + 2γ

∫
‖u‖>1

‖u‖mν(du) + CM l−1
0

)
V (x)

‖x‖1−l
.

By condition 3., for M0 sufficiently large, −r + 2γ
∫
‖u‖>1 ‖u‖mν(du) + CM l−1

0 < 0 eventually,
and this implies the assertion. •
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