IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 7, JULY 2012

Polynomial Eigenvalue Solutions to Minimal Problems in Computer Vision

Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla

Minimal Problems

Minimal problems in computer vision arise when computing geometrical models from image data. They often lead to solving systems of algebraic equations.

P3P problem
5-pt relative pose problem
Hand-eye

•

•

•

Minimal Problems

Since the solutions of a minimal problem are roots of a system of polynomial equations, minimal problems can be solved by the following two frequently used methods:

- 1. Grobner Bases
- 2. Polynomial Eigenvalue Solution

Contents

- Outline of the Polynomial Eigenvalue Solution of a system of polynomial equations
- Polynomial Eigenvalue Problems
- Transformation of Systems of Polynomial Equations to a PEP Macaulay's Resultant-Based Method
 - Resultant-Based Method proposed in this paper

Consider a system of equations

$$f_1(\mathbf{x}) = \dots = f_m(\mathbf{x}) = 0,$$

which is given by a set of m polynomials $F = \{f_1, \ldots, f_m | f_i \in \mathbb{C}[x_1, \ldots, x_n]\}$ in n variables $\mathbf{x} = (x_1, \ldots, x_n)$ over the field of complex numbers.

If the number of independent equations equals the number of unknowns, this system have a finite number of solutions. In this case, this system is called a zero-dimensional polynomial system.

Let

$$f_i(\mathbf{x}) = \mathbf{c}_i(x_1)\mathbf{v}(x_2,\dots,x_n)$$
 Hide x_1

Then, the original polynomial equations can be written as:

$$\begin{cases} f_1(\mathbf{x}) = \mathbf{c}_1(x_1)\mathbf{v}(x_2, \dots, x_n) \\ \vdots \\ f_m(\mathbf{x}) = \mathbf{c}_m(x_1)\mathbf{v}(x_2, \dots, x_n) \end{cases}$$

$$\mathbf{c}(x_1)\mathbf{v} = \left(egin{array}{c} \mathbf{c}_1(x_1) \\ \vdots \\ \mathbf{c}_m(x_1) \end{array}
ight) \mathbf{v} = \mathbf{0}$$

Polynomial eigenvalue solution

$$\det(\mathbf{c}(x_1)) = 0$$

The roots are called eigenvalues.

$$\mathbf{c}(x_1)\mathbf{v} = \left(egin{array}{c} \mathbf{c}_1(x_1) \\ \vdots \\ \mathbf{c}_m(x_1) \end{array}
ight) \mathbf{v} = \mathbf{0}$$

The null vectors are called eigenvectors. From the eigenvectors, solutions of other variables can be found

A simple case

$$\begin{cases} xy - 1 = 0 \\ x + 1 - y = 0 \end{cases}$$

$$\begin{pmatrix} x & 1 \\ 1 & x+1 \end{pmatrix} \begin{pmatrix} y \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\det \left(\begin{array}{cc} x & 1 \\ 1 & x+1 \end{array} \right) = 0$$

$$x(x+1) - 1 = 0$$

Eigenvalues:
$$x_1=rac{-1+\sqrt{5}}{2}$$
 $x_2=rac{-1-\sqrt{5}}{2}$

Hide x
$$\begin{pmatrix} x & 1 \\ 1 & x+1 \end{pmatrix} \begin{pmatrix} y \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 Eigenvectors:
$$\mathbf{v}_1 = \begin{pmatrix} -\frac{1+\sqrt{5}}{2} \\ 1 \end{pmatrix} y_1 = \frac{1+\sqrt{5}}{2}$$

$$\det \begin{pmatrix} x & 1 \\ 1 & x+1 \end{pmatrix} = 0$$

$$\mathbf{v}_2 = \begin{pmatrix} -\frac{1-\sqrt{5}}{2} \\ 1 \end{pmatrix} y_2 = \frac{1-\sqrt{5}}{2}$$

Polynomial eigenvalue problems are problems of the form

$$C(\lambda)\mathbf{v} = 0,\tag{1}$$

where \mathbf{v} is a vector of monomials in all variables except for λ and $C(\lambda)$ is a matrix polynomial in variable λ defined as

$$C(\lambda) \equiv \lambda^{l} C_{l} + \lambda^{l-1} C_{l-1} + \dots + \lambda C_{1} + C_{0}, \qquad (2)$$

with $n \times n$ coefficient matrices C_j [1].

[1] Z. Bai, J. Demmel, J. Dongorra, A. Ruhe, and H. van der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems. SIAM, 2000.

Solution:

From a PEP

$$C(\lambda)\mathbf{v} = 0$$

to a Generalized Eigenvalue Problems(GEP)

$$A \mathbf{y} = \lambda B \mathbf{y}. \tag{3}$$

High order PEPs of degree l,

$$(\lambda^{l}\mathbf{C}_{l} + \lambda^{l-1}\mathbf{C}_{l-1} + \cdots + \lambda\mathbf{C}_{1} + \mathbf{C}_{0})\mathbf{v} = 0,$$

can be transformed to the generalized eigenvalue problem (3). Here,

$$\mathtt{A} = \left(egin{array}{cccccc} \mathtt{I} & \mathtt{0} & \mathtt{1} & \mathtt{0} & \mathtt{...} & \mathtt{0} \ \mathtt{0} & \mathtt{0} & \mathtt{I} & \mathtt{...} & \mathtt{0} \ \mathtt{...} & \mathtt{...} & \mathtt{...} & \mathtt{...} \ -\mathtt{C}_0 & -\mathtt{C}_1 & -\mathtt{C}_2 & \mathtt{...} & -\mathtt{C}_{l-1} \end{array}
ight), \ \mathtt{B} = \left(egin{array}{ccccc} \mathtt{I} & & & & & & & & & & & & & \\ & \mathtt{I} & & & & & & & & & & & & & \\ & & \mathtt{I} & & & & & & & & & & & \\ & & & \mathtt{C}_l \end{array}
ight), \quad \mathbf{y} = \left(egin{array}{c} \mathbf{v} \\ \lambda \mathbf{v} \\ \mathtt{...} \\ \lambda^{l-1} \mathbf{v} \end{array}
ight).$$

$$\begin{pmatrix} 0 & \mathbf{I} & 0 & \dots & 0 \\ 0 & 0 & \mathbf{I} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -\mathbf{C}_0 & -\mathbf{C}_1 & -\mathbf{C}_2 & \dots & -\mathbf{C}_{l-1} \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{I} & & \\ & \ddots & \\ & & \mathbf{I} \\ & & & \mathbf{C}_l \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix}$$
 If \mathbf{C}_l is nonsingular and well conditioned, multiply
$$\begin{pmatrix} \mathbf{I} & & \\ & \ddots & \\ & & \mathbf{I} \\ & & \mathbf{C}_l^{-1} \end{pmatrix}$$
 on both sides.

Often, ${f C}_l$ is singular but ${f C}_0$ is regular and well-conditioned. In this case, let $~eta=1/\lambda$.

$$oldsymbol{A} egin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix} = \lambda egin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix}$$

$$\mathtt{A} = egin{pmatrix} 0 & \mathtt{I} & 0 & \ldots & 0 \ 0 & 0 & \mathtt{I} & \ldots & 0 \ \ldots & \ldots & \ldots & \ldots & \ldots \ -\mathsf{C}_0^{-1}\mathsf{C}_l & -\mathsf{C}_0^{-1}\mathsf{C}_{l-1} & -\mathsf{C}_0^{-1}\mathsf{C}_{l-2} & \ldots & -\mathsf{C}_0^{-1}\mathsf{C}_1 \end{pmatrix}$$

For the roots of the polynomial equations, the above equation holds, but not for all PES's are solutions of the original problem.

Find the solutions either by :

- 1. testing all monomial dependencies in v, or
- 2. by substituting the solutions to the original equations and checking if they are satisfied.

^{*}Screen out the pseudo solutions of this relaxation method, not the pseudo solutions of the original problem.

Consider a system of equations

$$f_1(\mathbf{x}) = \dots = f_m(\mathbf{x}) = 0,$$

In some cases, for some x_j , let say x_1 , the above system can directly be rewritten to a polynomial eigenvalue problem:

$$C(x_1)\mathbf{v}=0,$$

where $C(x_1)$ is a matrix polynomial with square $m \times m$ coefficient matrices and \mathbf{v} is a vector of s monomials in variables x_2, \ldots, x_n , i.e., monomials of the form $\mathbf{x}^{\alpha} = x_2^{\alpha_2} x_3^{\alpha_3} \ldots x_n^{\alpha_n}$. In this case, the number of monomials s is equal to the number of equations m, i.e., s = m.

However, we are not always lucky. The number of monomials may be larger than that of the polynomials. New linearly independent polynomial equations are needed.

Macaulay's Resultant-Based Method

$$f_1(x_1,\ldots,x_n) = \cdots = f_n(x_1,\ldots,x_n) = 0.$$

$$f_1, \ldots, f_n \in (\mathbb{C}[x_1])[x_2, \ldots, x_n].$$

Let the degrees of these equations in variables x_2, \ldots, x_n be d_1, d_2, \ldots, d_n , respectively.

Homogenization:
$$F_i=x_{n+1}^{d_i}\ f_i(rac{x_2}{x_{n+1}},\ldots,rac{x_n}{x_{n+1}})$$
 .

Macaulay's Resultant-Based Method

Let
$$d = \sum_{i=1}^{n} (d_i - 1) + 1 = \sum_{i=1}^{n} d_i - n + 1.$$

take the set of all monomials $~\mathbf{x}^lpha=x_2^{lpha_2}x_3^{lpha_3}\dots x_n^{lpha_n}x_{n+1}^{lpha_{n+1}}$ $\sum_{i=2}^{n+1}lpha_i=d$

$$S_1 = \{\mathbf{x}^{lpha} : |lpha| = d, \ x_2^{d_1} |\mathbf{x}^{lpha}\},$$
 $S_2 = \{\mathbf{x}^{lpha} : |lpha| = d, \ x_2^{d_1} \not\mid \mathbf{x}^{lpha} \ ext{but} \ x_3^{d_2} \mid \mathbf{x}^{lpha}\},$
 \dots

$$S_n = \{ \mathbf{x}^{\alpha} : |\alpha| = d, \ x_2^{d_1}, \dots, x_n^{d_{n-1}} \not\mid ; \mathbf{x}^{\alpha} \text{ but } x_{n+1}^{d_n} \mid \mathbf{x}^{\alpha} \},$$

Macaulay's Resultant-Based Method

Generalize the original system

$$\mathbf{x}^{\alpha}/x_2^{d_1} \ F_1 = 0 \quad \text{for all } \mathbf{x}^{\alpha} \in S_1$$

$$\cdots$$

$$\mathbf{x}^{\alpha}/x_{n+1}^{d_n} \ F_n = 0 \quad \text{for all } \mathbf{x}^{\alpha} \in S_n.$$

Dehomogenization:

$$x_{n+1} = 1$$

Macaulay's Resultant-Based Method

Disadvantage: designed for dense and small problems.

Resultant-Based Method proposed by Kukelova et al

$$S_1 = \{\mathbf{x}^{lpha} : |lpha| = d, \ x_2^{d_1} | \mathbf{x}^{lpha} \},$$
 $S_2 = \{\mathbf{x}^{lpha} : |lpha| = d, \ x_2^{d_1}
mid \mathbf{x}^{lpha} \ ext{ but } \ x_3^{d_2} \mid \mathbf{x}^{lpha} \},$
 \dots
 $S_n = \{\mathbf{x}^{lpha} : |lpha| = d, \ x_2^{d_1}, \dots, x_n^{d_{n-1}}
mid \mathbf{x}^{lpha} \ ext{ but } \ x_{n+1}^{d_n} \mid \mathbf{x}^{lpha} \},$

$$egin{aligned} \overline{S_1} &= \{\mathbf{x}^lpha : |lpha| = d, \ x_2^{d_1} \mid \mathbf{x}^lpha \}, \ \overline{S_2} &= \{\mathbf{x}^lpha : |lpha| = d, \ x_3^{d_2} \mid \mathbf{x}^lpha \}, \ & \cdots \ \overline{S_n} &= \{\mathbf{x}^lpha : |lpha| = d, \ x_{n+1}^{d_n} \mid \mathbf{x}^lpha \}. \end{aligned}$$

Reducing the Size of the Polynomial Eigenvalue Problem

Removing Unnecessary Polynomials

Reducing the Size of the Polynomial Eigenvalue Problem

Removing Zero Eigenvalues

$$\mathbf{A} = \begin{pmatrix} 0 & \mathbf{I} & 0 & \dots & 0 \\ 0 & 0 & \mathbf{I} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -\mathbf{C}_0^{-1}\mathbf{C}_l & -\mathbf{C}_0^{-1}\mathbf{C}_{l-1} & -\mathbf{C}_0^{-1}\mathbf{C}_{l-2} & \dots & -\mathbf{C}_0^{-1}\mathbf{C}_1 \end{pmatrix}$$

$$\mathbf{A} \begin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{v} \\ \lambda \mathbf{v} \\ \dots \\ \lambda^{l-1} \mathbf{v} \end{pmatrix}$$

Time: ~us. Faster than Grobner Bases

The End, Thanks!