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Minimal Problems

Minimal problems in computer vision arise when computing geometrical models
from image data. They often lead to solving systems of algebraic equations.

P3P problem
5-pt relative pose problem
Hand-eye

22 minimal problems are listed on the website http://cmp.felk.cvut.cz/minimal/



Minimal Problems

Since the solutions of a minimal problem are roots of a system of
polynomial equations, minimal problems can be solved by the
following two frequently used methods:

1. Grobner Bases
2. Polynomial Eigenvalue Solution
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Polynomial Eigenvalue Solution

Consider a system of equations

fix) =+ = f(x) =0,
which is given by a set of m polynomialsF = { fi,..., fn| fi €
Clzy,...,z,]} inn variables x = (z1,...,x,) over the field of

complex numbers.

If the number of independent equations equals the number of
unknowns, this system have a finite number of solutions. In this
case, this system 1s called a zero-dimensional polynomial system.



Polynomial Eigenvalue Solution

Let
fi(X) — Ci(ﬂfl)V(xm ‘e 737?1) Hide 21

Then, the original polynomial equations can be written as:

{ fi(x) = ci(z)v(xg,. .., Ty)
fm(X) — cm(xl)v(xg, 7337?)
[ ci(ar) )
c(zy)v = ; v=0
\Cm(xl) )




Polynomial Eigenvalue Solution

Polynomial eigenvalue solution

det(c(z1)) =0
The roots are called eigenvalues.

[ ci(a) \

c(zy)v = : v=0

\ en(@1) )

The null vectors are called eigenvectors. From the eigenvectors,
solutions of other variables can be found




Polynomial Eigenvalue Solution

A simple case

{ zy —1=0 Eigenvalues: x1 = ! —|2— V5
r+1—y=0 1-5
X9 — 9
L 1 Y 0 Eigenvectors:
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Polynomial Eigenvalue Problems

Polynomial eigenvalue problems are problems of the form
C(A)v =0, (1)

where v is a vector of monomials in all variables except for
A and C()) is a matrix polynomial in variable A defined as

CA) = N+ X710 + - + X6 + Co, (2)

with n x n coefficient matrices C; [1].

[1] Z. Bai, J. Demmel, ]J. Dongorra, A. Ruhe, and H. van der Vorst,
Templates for the Solution of Algebraic Eigenvalue Problems. SIAM,
2000.



Polynomial Eigenvalue Problems

Solution:

From a PEP
CA)v=0

to a Generalized Eigenvalue Problems(GEP)

Ay =ABYy. (3)



Polynomial Eigenvalue Problems

High order PEPs of degree [ ,
(NC; 4+ X710 + -+ X6 4+ Cy)v =0,

can be transformed to the generalized eigenvalue problem (3). Here,
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Polynomial Eigenvalue Problems

(0 0 1 oo [

0

\—Co —C; —Cy ... —Cz—1) \/\HV)

If C; is nonsingular and well conditioned, multiply

/I

\

C;! )

()

Cl/

i)

on both sides.

Often, C; is singular but CO is regular and well-conditioned. In this case, let ﬁ = 1//\ :



Polynomial Eigenvalue Problems
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Polynomial Eigenvalue Solution

For the roots of the polynomial equations, the above equation holds, but not
for all PES’s are solutions of the original problem.

Find the solutions either by :

1. testing all monomial dependenciesin v,

or
2. by substituting the solutions to the original equations and

checking if they are satisfied.

*Screen out the pseudo solutions of this relaxation
method, not the pseudo solutions of the original problem.



Transformation of a System of
Polynomial Equations to a PEP

Consider a system of equations
filx) == fu(x) =0,

In some cases, for some I, let say 1, the above system can directly
be rewritten to a polynomial eigenvalue problem:

C(CCl)V — 07

where C(z;) is a matrix polynomial with square m x m
coefficient matrices and v is a vector of s monomials in
variables z,,...,xz,, i.e., monomials of the form x“ =
To?zq® ... z%. In this case, the number of monomials s is

equal to the number of equations m, i.e., s = m.



Transformation of a System of
Polynomial Equations to a PEP

However, we are not always lucky. The number of monomials
may be larger than that of the polynomials. New linearly
independent polynomial equations are needed.



Transformation of a System of
Polynomial Equations to a PEP

Macaulay's Resultant-Based Method

filzr,...,xn) == fulx1,...,24) = 0.

fiyeoos fn € (Clz1]) |22, ..., z,].

Let the degrees of these equations in variables L2, ..., Tp

be di,ds,...,d,, respectively.

- d; X9 X
Homogenization: E — Cljnz_|_1 f@ (m, .« ,xnil).



Transformation of a System of
Polynomial Equations to a PEP

Macaulay's Resultant-Based Method

L et dzzn:(dz—l)+1:zn:dz—n+1
1=1

1=1

take the set of all monomials X% — xgzﬁljg?’ .. xg"xz’j:f 2?;21 oy = d

S1 = {x%:|a] =4, :c‘2h|xa},

Sy = {x*: |a] =, 3 fx* but P | x*},

S, = {XO‘ || =d, 3331,---,33%”_1 f;x% but xgzrl | Xa}’



Transformation of a System of
Polynomial Equations to a PEP

Macaulay's Resultant-Based Method

Generalize the original system

Xa/xgl Fi =0 forall x* €S

xa/xz’;l F,=0 forall x*eS§,.

Dehomogenization:

Ln+l1 — 1



Transformation of Systems of
Polynomial Equations to a PEP

Macaulay's Resultant-Based Method

Disadvantage: designed for dense and small problems.



Transformation of Systems of
Polynomial Equations to a PEP

Resultant-Based Method proposed by Kukelova et al

S1 = {x":|a| =4, x21|x0‘}
Sy = {x*: |a| =d, ' fx® but 2@ | x*},

Sn:{xai|04|:da :Bgl,..., x," /{’x but :I:n+1|xa},



Transformation of Systems of
Polynomial Equations to a PEP

Reducing the Size of the Polynomial Eigenvalue Problem

Removing Unnecessary Polynomials

Qriginal polnomials

Generated polynomials X

c(x1) \%



Transformation of Systems of
Polynomial Equations to a PEP

Reducing the Size of the Polynomial Eigenvalue Problem

Removing Zero Eigenvalues

[ 0 I 0 0
. 0 0 I .0
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Transformation of Systems of
Polynomial Equations to a PEP
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Time: ~us. Faster than Grobner Bases



The End, Thanks!



