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Abstract
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ABSTRACT

We show that a particular pivoting algorithm, which we call the
lexicographic Lemke algorithm, takes an expected number of steps that is
bounded by a quadratic in n, when applied to a random linear comple-
mentarity problem of dimension n. We present two probabilistic models,
both requiring some nondegeneracy and sign-invariance properties. The
second distribution is concerned with linear complementarity problems that
arise from linear programming. In this case we give bounds that are
quadratic in the smaller of the two dimensions of the linear programming
problem, and independent of the larger. Similar results have been

obtained by Adler and Megiddo.



1. Introduction

This paper presents an analysis of the expected behavior of a

particular algorithm (closely related to those of Lemke [9] and Van der

nxn

Heyden [21]) for the linear complementarity problem: given M ¢ R and
qe R", find w and z with
w=Mz + g (1)
Ww>0,2z>0, wz=0. (2)

We show that the expected number of steps taken is polynomial in n, under
two probabilistic models. First, we make fairly strong nondegeneracy
assumptions, together with a sign-invariance property on the distribution
generating (q,M), and prove that the expected number of steps is at most
n(n+1)/4. Unfortunately, the nondegeneracy assumptions rule out several
of the most important applications of the linear complementarity problem.
Our second model therefore addresses those problems that arise from

1linear programming.

Consider the linear programming problem

T
max ¢ X
Ax < b (3)

where there are m constraints in p variables, so that A is mxp.
This is related to the linear complementarity problem (1)-(2) with

n = mp and data

g=(_)» M=(; ) (4)

Any solution to (1)-(2) yields an optimal solution to (3); in addition,

the algorithm that we shall analyze either finds such a solution or
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demonstrates that (3) is infeasible or unbounded. Thus we assume that a
problem of the form (3) is generated probabilistically. Again, we require
fairly strong nondegeneracy assumptions for technical reasons, together
with a sign-invariance property. We then show that the expected number of
steps taken by our algorithm on the resulting linear complementarity

problem with data given in (4) is at most min{(m2+5m+11)/2, (2p2

+5p+5)/2} .
Thus the expected number of steps is bounded by a quadratic function of the
minimum of the two dimensions m and p, and this bound is independent of
the other dimension. The different functions of m and p in the bound
arise from the asymmetry of the algorithm, which first determines feasibility
of the problem, and then whether it has an optimal solution or is unbounded.
Most previous work on the expected behavior of pivoting algorithm has

considered (in some guise) Lemke's algorithm, which introduces an

artificial vector d ¢ R" and generates a sequence of basic solutions to

W = dz0 + Mz + g (5)
w>0,2y>0,22>0

with w'z = 0.

Borgwardt [6,7] considers a linear programming problem of the form
ma x ch, Ax < e, where e here and below denotes a vector of ones of
appropriate dimension. He computes a polynomial bound in [7] on the
expected number of steps for a parametric method to obtain an optimal
solution for the objective ch from the optimal solution for EIX. This
algorithm is very closely related to Lemke's algorithm with b > 0, c <0

and dT= (0,("6-c)T

). He also derives a polynomial bound on the expected
number of steps for a complete pivoting method that does not start with a
feasible vertex. Interestingly, his "phase I" procedure is inductive, and

very similar to the algorithm we consider. The only drawback to
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Borgwardt's results is that his model always produces feasible problems
with a known feasible solution; Haimovich [8] discusses this probabilistic
model in comparison with a number of others.

Smale [17,18] addresses the linear programming problem (3) with m
fixed and p approaching infinity. His algorithm is Dantzig's self-dual
parametric method, which is precisely Lemke's algorithm with (q,M) as in

(4) and the artificial vector d = e. Smale shows that the expected

)m2+m

number of steps is bounded by Cm(log p . Unfortunately, the constant

Con is an exponential function of m. See also Megiddo [12], where it is
shown that a bound depending only on m exists, and Blair [5], for a
simplified model and analysis.

Haimovich [8] considers a number of probabilistic models, obtaining
linear bounds on the expected number of steps for a parametric objective
or parametric right hand side algorithm to solve a linear programming
problem. We describe only one of these models, which was also addressed
by Adler [1], who independently obtained similar results. Instead of
assuming each entry of A, b and ¢ in (3) is drawn independently from
the standard normal distribution, equivalent to Smale's model, Haimovich
and Adler assume the distribution is arbitrary except for satisfying
certain nondegeneracy assumptions with probability one and a certain sign-
invariance property; essentially each constraint is equally likely to be
of ">" or of "<" form. This model has also been considered for generating
random polytopes, apparently first by Motzkin [14], and later by Prekopa
[157, Adler and Berenguer [2], and May and Smith [10]. The model that we
consider is also of this form. Both Haimovich and Adler obtain linear
bounds on the expected number of steps of a parametric algorithm,
conditioning on the event that the problem has an optimal solution for some

value of the parameter. Thus their results are potentially relevant to
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the "“phase 2" problem, given an initial feasible vertex. The “nhase 1"
problem of obtaining such a vertex js considered in neither [8] nor [11],
although Haimovich (private communication) has indicated some results with
quadratic bounds on the expected number of steps, using a variable-
dimension approach.

Finally, Megiddo [11] and Saigal [16] have considered the general
linear complementarity problem. Megiddo shows that, under a probabilistic
model similar to that of Smale, the expected number of basic feasible solu-
tions to (5) with sz = 0 grows exponentially with n, when the artificial
vector is d = e. Thus one might expect Lemke's algorithm to take an expo-
nential number of steps. Saigal adopts a probabilistic model with sign-
invariance properties similar to those of Adler and Haimovich. He shows
that the expected number of basic feasible solutions to (5) with sz =
is linear in n when the artificial vector d 1is chosen randomly, with
a sign-invariant distribution. On the other hand, when d = e, the
expected number is shown to be between (n+2)/2 and (n+6)(§)n/6. Thus
there is a striking contrast between results for a particular positive d
and those for a random d; a positive d allows the algorithm to start from
an infeasible basis, and yields possibly exponential growth (Smale [17,18l1,
Megiddo [11,12], Saigal [16]), while a random d requires a "random"
feasible basis to start, and yields polynomial growth (Borgwardt [71,
Haimovich [8], Adler [1] and Saigal [16]). Moreover, Saigal's proof
demonstrates the difficulty of obtaining a polynomial bound with d = e;
this vector without sign-invariance intrudes on the calculations of the
probability that a particular potential basis is feasible. These proba-
bilities can be bounded so that the potential growth of 2" s pulied

down to about 1.5" (Saigal) or 1.15" (Megiddo), but it is still exponential.
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Our method can be viewed as Lemke's algorithm with an artificial

n-1 T

vector d = (6”,6 yeossd) for sufficiently small positive §. Because
d > 0, the method can start from an infeasible basis. But because,
during certain iterations of the algorithm, the first few components of d
can be taken as essentially zero, the vector d does not cause so many
problems with estimating the probability that a given basis is feasible--
loosely speaking, d 1is "more sign-invariant" than e. Thus we are able
to prove a polynomial bound on the expected number of steps.

Section 2 describes in more detail this Texicographic Lemke
algorithm, and states how it can be implemented for linear programming
problems. In section 3 we analyze the expected behavior of the algorithm
on general linear complementarity problems, while section 4 is concerned
with those that arise in linear programming. Section 5 discusses an
extension to oriented matroids.

Similar results have been obtained independently by Megiddo [13] for
the general linear complementarity problem and by Adler and Megiddo [3]
for 1inear programming. Adler and Megiddo have since [4] obtained a qua-

dratic lower bound in the latter case under a strengthened probabilistic

model.

2. The lexicographic Lemke algorithm

In this section we describe the method to solve the linear
complementarity problem that we will analyze in sections 3 and 4. When
the linear system (1) is nondegenerate, i.e., every solution has at least
n nonzeroes, and all principal minors of M are positive, this is the
algorithm introduced by Van der Heyden [21], and corresponds to Lemke's

algorithm with an artificial vector d = (6”,6n_],...,6)T, for all
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sufficiently small positive &. Todd [19] showed this equivalence in
extending the algorithm to the combinatorial setting of oriented matroids,
but Van der Heyden's algorithm can terminate unsuccessfully for some
important problems where M has a nonpositive principal minor.
Unfortunately, unless b > 0, this happens immediately when the linear
complementarity problem arises from a linear program.

We shall therefore employ the variant of Lemke's algorithm with

d=("s"",....80

for any sufficiently small positive &, as described
in [18]. To avoid dealing with a particular &, we shall use equivalent
lexicographic rules, to be described below. This algorithm can process
arbitrary linear or convex quadratic programming problems, as shown in the
context of oriented matroids in [20]. We assume the reader is familiar with
Lemke's algorithm in its usual form.

The following notation is convenient. Let P be a matrix with rows
indexed by (elements of the set) R and columns by C. Then its transpose,
and its inverse if it is square and nonsingular, have rows indexed by C and
columns by R in the natural manner. For any Jc R and Kc C, PJK
denotes the submatrix of P with rows indexed by J and columns by K.
Moreover, we assume these rows and columns retain their original indices in
PJK' We write PgK and P&L (if PJK is square and nonsingular) for
(PJK)T and (PJK)'] respectively; these are not to be confused with
") B

(P JK® It is convenient also to denote by e, any unit vector

Jk or
of appropriate dimension and row indices whose unit entry appears in the row

indexed k. Thus is not a definite vector; its meaning depends on the

&
context. However, if k e K, then Pek is the column of P indexed by k.
Because rows and columns carry their indices with them, we may write

down a matrix in partitioned form in any convenient order. When we use
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lexicographic rules, however, we need a specific order; thus we always list
the order precisely. A nonzero row vector, vT = (Vi’vj"“’vk)’ with its
entries explicitly listed, is called lexicographically positive if its first

nonzero entry is positive. We say an explicitly listed vector uT is

lexicographically smaller than an explicitly listed vector vT if vT-uT

is lexicographically positive. A matrix P = (pi,pj,...,pk), with its
columns explicitly listed, is lexicographically positive if each of its rows,
with the order inherited from this 1ist, is lexicographically positive.

Each iteration of the algorithm we use corresponds to a basic feasible
solution to (5) with sz = 0. If the algorithm has not yet terminated, z,
is positive. Let J index the basic wj's and K the basic zk's with
k > 0. Then J, K and some unique index & partition N = {1,2,...,n}. The
usual basis matrix would be B' = [INJ,—d,—MNK], with B' nonsingular and ¢
a nonnegative combination of its columns. However, since d 1is a vector of
powers of some small positive &, it is simpler to switch the roles of q and
d. Since the combination of the columns of B' yielding q uses a positive
multiple of -d, the matrix B = [INJ,-q,—MNK] is nonsingular and d 1is a
nonnegative combination of its columns.

Let us write F = [q,M], with rows indexed 1 to n and columns 0
to n. Thus q carries the index 0. Let L =Ku {2} =NJ and

H=Ku {0}. Then the matrix B above can be written as

B = s (6)

and we will call such a matrix a basis matrix if it is nonsingular. In order

for this basis matrix to be encountered by the algorithm, d = (5”,6”'],...,6)T
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must be a nonnegative combination of its columns for all sufficiently small

positive 6. Thus B™'d > 0, where

-1
A Lo Foufun
B = (7)
-1 .
0 —FLH
Since B 'd = (B“]en)é + (8—]en_])62 + ... t (B_]e1)6n, this occurs iff

the matrix

“"] .! ‘] )

(B en,B_ CIRTPRRN: IS (8)

is lexicographically positive. In this case we say that B is feasible.
Most of our analysis is concerned with estimating the probability that the
basis corresponding to a given partition N =J v Ku {2} is feasible. If
we do not count as a pivot step obtaining the initial feasible basis, but
count the step in which Zg becomes zero, then the expected number of steps
of the algorithm is bounded by the expected number of feasible bases.

Now we describe how the algorithm starts and proceeds from feasible basis
to feasible basis. If q 1is nonnegative, the algorithm stops immediately
with the solution w =g, z = 0. Thus assume ¢ has a negative component,
and let 2 be the index of the first one. Set J = N\{2} and K = @. Then
it is easy to check that the resulting B is feasible. We say W, has
just left the basis.

At a general step we have a feasible basis corresponding to a partition
N=dJu Ku {2}, andeither w, or z has just left the basis; we choose

L L
its complement (the other in this pair) to enter the basis. The entering
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. . - . ;
1 is entering or a el if wx s

entering the basis. We compute the updated vector y = B—]a. (Note that

column is then a = —Me/Q if z

the components of y, like the columns of B, are indexed by J v H.) If
y < 0 the algorithm terminates, in one of two ways. If Yo = 0, then the
column ~-g 1is not involved in the linear dependence a + B(-y) = 0; the
algorithm stops without having solved the linear complementarity problem,
and this corresponds to termination on a secondary ray in Lemke's
algorithm. On the other hand, if Yo < 0, then dividing the equation
a + B(-y) =0 by Yo > 0 gives a solution to the linear complementarity
problem.

Now suppose y has a positive component. Then we may make a pivot,
introducing the vector a to replace some column of B so that the matrix

-1 -1 -1 )

(B 'e ,B e seeesB € remains lexicographically positive. Thus we
n n-1 1

make a minimum ratio test on B—}en and y, then (if necessary) on

B°]en_] and y, and continue until a unique leaving index &' < J v Ku {0}
is determined. If &' = 0 the algorithm has again failed; this corresponds
to termination on a secondary ray. Otherwise, the vector a replaces the
column indexed 2' in B. If a=-e, weset J'=(Ju {2}\{2'} and

K' = K\{2'}; if a=-Me, weset J'= N{2'} and K' = (Ku {2]\{2'}.

We now move to the next iteration. If 2' ¢ J then w,, has just left

b3

the basis, while if &' ¢ K then z has just left the basis.

ll
Suppose the linear complementarity problem arises from a linear

programming problem (3) as in (4). Then termination on a secondary ray

exhibits primal or dual infeasibility. Moreover, in this application of the

algorithm it is unnecessary to work with the nxn basis matrix B; a smaller
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simplex tableau can be used. Here we describe the resulting pivot rules--for
more detail see [20].
We introduce a variable f to represent the objective function and

slack variables Upsloseeest, so that the initial tableau is

-y
1
¢
>
H
(o]

u + Ax b.

At any iteration, let t(v',v) denote the entry of the current tableau in the

row correspondfng to basic variable v' and the column corresponding to

variable v (or the right hand side if v =b). If v' 1is nonbasic, we let
t(v',v) = -1 if v =v', 0 otherwise. While the lexicographic Lemke
algorithm is applied just once to the linear complementarity problem, the
structure of M makes it convenient to split the process into two phases.

The phase I procedure finds a feasible tableau with
(t(v',b),t(v su ) seeest(vi,u))

]

lexicopositive for all basic v'. At each iteration, we choose first the
H

leaving variable v' from those with t(v',b) <0 to minimize

lexicographically

(t(v',um),...,t(v',u1))/(—t(v',b)).

Having chosen v' to leave, we stop with an indication of infeasibility if

t(v',v) > 0 for all v # b; otherwise we choose the entering variable v
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from those with t(v',v) < 0 to minimize lexicographically

(t(xp,v),...,t(x],v))/t(v‘,v).

Once feasibility is achieved, we proceed to phase II. Here, we

maintain lexico-feasibility, i.e.,
(t(v'b) st (v su) s est(viug))

is lexicopositive for all basic v'. We choose the entering variable also
by a lexicographic rule. Let Xp be the last basic xj (if there are
none, let r = 0). If t(f,v) >0 for v = Upseoeslps XysesesXp ps then
choose the entering variable v to be the first xj with t(f,xj) <0 --
if there are none, of course, we are already optimal. Otherwise, choose v
From UgseeesU 5 XqsosesX so that t(f,v) < 0 and v minimizes

1 m> 71 r-1

lexicographically

(t(xr,V),---,t(x],V))/t(f,V)-

With v chosen, we stop with an indication of unboundedness if t(v',v) <0
for all basic v', and otherwise choose the leaving variable v' to
maintain lexico-feasibility.

It should be apparent that this algorithm can also be implemented in a

revised simplex framework, by generating the required parts of the tableau

as needed.
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-3. The analysis for general linear complementarity problems

We assume here that the distribution on the data (q,M) satisfies the

following two conditions:

(a) (Nondegeneracy) With probability one, statements (i) and (i)

below hold:

(i) Every square submatrix of M whose sets of row indices and column
indices differ in at most one element is nonsingular.

(ii) There is no almost-complementary solution to w = Mz+tq with fewer
than n components of w and z nonzero. (Here almost-
complementary means that W2, is nonzero for at most one
index 1i.)

(b) (Sign-invariance) The distributions of (q,M) and (Sq,SMS) are

jdentical for all sign matrices S, i.e. all diagonal matrices with all

diagonal entries #1.

Theorem 1. When the probability distribution satisfies assumptions (a)
and (b), the expected number of steps of the lexicographic Lemke algorithm

applied to the linear complementarity problem (1)-(2) is at most n(n+1)/4.

We can confine our considerations to problems whose data satisfy the
nondegeneracy properties (i) and (ii). Moreover, by (b), it is sufficient
to calculate an upper bound on the expected number of steps taken for
(Sq,SMS), where (q,M) is fixed with (i), (ii) holding, and all possible
sign matrices S are equally likely. Thus for the rest of this section, we
assume this situation.

Consider the basis matrix
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that might arise during the course of the algorithm applied to (q,M). Here
Ju Ku {2} is a partitionof N, L =Ku {2} and H=Ku {0}. Note
that (i) implies that all such matrices B are nonsingular; the proof
follows that of lemma 1 below.

Let i denote the last index in L.

Lemma 1. A1l components of B—]ei are nonzero.

Proof. Suppose egB e, = 0, i.e., that q is not involved in the

expression of e in terms of the columns of B. Then there is a

dependence among the columns of EIN,Ju{i}’MNK]’ so that ML\{i},K is

singular, contradicting (i). Thus egB_1e1 # 0. Now if egB.]ei =0 for
some j e J, there would be a dependence among the columns of
[IN,Ju{i}\{j}’MNK] and q with a nonzero weight on the column ¢, and this con-

tradicts (ii). A similar contradiction arises if eIB_]ei =0 for any k e K.

Now note that

-1
. Lo FoufLn

B = L (7)
0 -Fr

if (q,M) 1is replaced by [Sq,SMS]1, then FJH is replaced by SJJFJHSHH

and F by S,,F, .S here SJJ and SLL are the appropriate

LH LLTLH HH?
submatrices of the sign matrix S, while

- S 0
HH ~ -
Thus, 8™ s replaced by
I S F L Fls
~o] Jd JJ JH LHLL
B™' = . (9)
0 S FTls

HH LHLL
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We wish to bound the probability that B is feasible, i.e. that

~-1

-1
en,...,B

(B e]) is lexico-positive. To help understand the argument, let
us write this matrix with the columns in the listed order, and the rows in the
natural order (0 first, and then indices in J u K 1in increasing order--there

is no row indexed 2):

n+ 1

Lemma 2. B 1is feasible with probability equal to (1/2)1 if 2=1,

and at most (1/2)71 if 1 <.

Proof. Suppose first % = i. For each Jj e J with j > i, the first

-1

nonzero in row j of (§']en,...,§ e1) is 1, which is always positive.

For each j ¢ J with j < i, the first nonzero entry in row J of

~-1 ~=-1 . Ta-1 . . T -1 _ T -1
(B en,...,B e]) is ejB ess which is 'ejSJJFJH LHSLLei = 'Sjjsii(ejFJH LHE
Here we have used lemma 1 to assure that the term in parentheses is nonzero.

This entry is positive with probability 1/2, switching sign with s... For

JJ
each k ¢ K the first nonzero entry in row k of (§—]en,...,§']e}) is simi-
Te-l . Te -1 . T -1 . . s
larly kB e, = 'ekSHHFLHSLLei = Skksii(ekFLHei)’ which is again positive

with probability 1/2, switching sign with Sk * Finally, the first nonzero

entry in row 0 of (§—1en,.,.,§']e]) is eggg]e. = _egSHHFELSLLei =
T

i
'Sii(eOF[;ei)’ which is positive with probability 1/2, switching sign with

555 Since the sjj Ss Sk S and s;; are independent, the probability that

B is feasible is (1/2)'.

Next suppose & < i. Then by a similar argument, the first nonzero entry

o~

in row j of (B']e

n,.,.,§"]e]), where j e J with j < i, 1is positive with

) -
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probability 1/2, switching sign with s.., while if j > i, it is always

JJ
positive. The first nonzero entry in row k of (§'1e ...,§-]e1), where

ke K, k# i, 1is also positive with probability 1/2, switching sign with

Te ,,..,3'1

Syk Finally, the first nonzero entry in row 0 of (§' n

e]) is

positive with probability 1/2, switching sign with s... (Note that we

ii

can say nothing about the first nonzero entry in row i of (§']en,...,§']e]),
. . T.-1 . . ! '

which is -eiFLHei’ jndependent of S.) Since all Sjj S Spy s, and Sii

are independent, (g—]en,...,g']e]) is lexicographically positive with

probability at most (1/2)7 7.

Proof of Theorem 1. We merely sum all triples J, K, & that may occur

with the probabilities given by lemma 2. The index i can range from 1 to

i-1

n. For a given i, if & =1, then K can be any of the 2 subsets of

{1,...,i-1}. If 2 < i, then there are i-1 choices for 1, and then K
consists of i together with any of the 21-2 subsets of {1,000, 1-TI\{2}.

Thus the expected number of steps is at most

@ Tas)t s -2 22 -
1 i

i/2 = n(n+1)/4.
1

ji o~y
[T ]

.i

To conclude this section, let us consider a slightly more restrictive
model, with assumption (b) strengthened so that (q,M) and (Sq,SMS') have
the same distribution for any sign matrices S and S'. This probabilistic
model has been considered by Saigal [16], and also embraces that of Megiddo
[11]. The analysis above can be repeated with no changes, except that the
probability in lemma 2 becomes (1/2)1 even when & < i. In the proof of this
lemma, we find that the first nonzero entry in row 1 of (§—]en,...,§']e1)

( Te-1

eiFLHei)’ which switches sign with Sijo while the first

nonzero entry in its Oth row switches sign with s;i. The probability

is -S..S..
1711
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therefore becomes (1/2)1 in this case also. The resulting bound on the
number of iterations is n(n+3)/8. This bound can also be obtained by a
consideration of volumes of simplicial cones, as in Megiddo's analysis, if
all entries of M and of q are assumed to have the standard normal
distribution and to be independent.

We remark that, even in this model where lemma 2 gives the exact
probabilities, theorem 1 or its modification only yields an upper bound,
since there may be bases which would be feasible if reached, except that the
algorithm terminates without encountering them.

Finally, we give our reasons for only requiring the weaker assumption
(b). First, it allows us to insist that M have positive diagonal,
or all principal minors positive, or be positive (semi-) definite, with
probability one, without violating sign-invariance. This allows
considerably more freedom in applying our result to particular classes
of problems, while incurring a trivial penalty in the upper bound attained.
Most importantly, it allows us to consider problems arising from linear

programming, which we address in the next section.

4, The analysis for linear programming

Now we consider the problem

T
max ¢ X

where A is mxp, so that there are m general constraints in p

variables. The resulting linear complementarity problem has n = m+p,

with data



M. (1)

In order that our subscripting conventions make sense, we index the rows of
A by N] ={1,...,m} and its columns by N, = {m1,...5n}.
We make the following assumptions on the probability distribution
generating the data (A,b,c) of (10) (and hence the data (q,M) via an).
(¢) (Nondegeneracy) With probability one, statements (i)-(iii) below
hold:
(i) Every square submatrix of A is nonsingular.
(ii) The linear system u + Ax =b 1is nondegenerate, in that every
solution has at least m nonzero variables.
(iii) The linear system ATy - v = ¢ 1is nondegenerate, in that every
solution has at least p nonzero variables.
(d) (Sign-invariance) The distributions of (A,b,c) and
(S]AS

S b,Szc) are identical for all sign matrices S] and 32'

2°71
Note that (d) is equivalent to requiring that the induced distribution

of (q,M) be sign-invariant in the sense of (b) in section 3.

Theorem 2. When the probability distribution on (A,b,c) satisfies
assumptions (c) and (d), the expected number of steps of the lexicographic

Lemke algorithm for problem (10) is at most min{(m2+5m+11)/2, (2p2+5p+5)/2}.

As in section 3, we consider a particular instance (A,b,c) of (10)
which satisfies (i), (ii) and (iii) of (c), and then compute the expected
number of steps when the data are S]ASZ, S]b, and Szc, where all
possible sign matrices S] and S2 are equally likely. For the rest of
this section, we assume this situation.

We consider the basis matrix B as in (6), but now use the special

structure of M.



let J_= Np nd, K =N nK,L =N nlL, p=1,2. Then we have

ﬁxd]dl 0 0y, by
B = ° hy, -Agldz ° ", .2
0 0 Mg b
] 0 0 -AL]LZ 0 L, |

If the partition Ju K u {&} arises in the algorithm, we must have B
nonsingular, and hence the Tower "2 x 3" block in (12) is nonsingular. Thus
AL1K2 has full column rank, so that lL]I Z_|K2|, and [A ., 'bL]] has
full row rank, so lel_g |K2| + 1. Similarly, ‘K]| §_|L2'_§ IK]' + 1.
Hence either 'K]I = |L2| (case 1) or 'L]I = IKZ' (case 2). In either
case we denote by 1] the last index in L1, with 1] =0 if L] = @, and
by i, the last index in L2, with 12 =m if L2 = 0.

We know that the basis inverse has the form

- -

Ly FouFiy
B! =

Lo Py

but we wish to investigate in detail the zero structure of the columns of

B~ indexed by L.
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Lemma 3. If |K,| = |L then B in (12) is nonsingular. Further,
—_— 1 2
each component of B']e. is nonzero, and for each i ¢ K,, eT B"]e. is
i 2 r i

1
nonzero for each r ¢ J2 U K] and zero for each r ¢ J] u K2 v {0}.

(For a pictorial representation of the important structure of B—], see

the first of the two matrices above lemma 5.)

. T
Proof. For the first part we must show that A, ,  and [AL K> -b, 1

172 172 1

are nonsingular. Since 'K]I = |L2 , the first matrix is nonsingular by

c(i). If there were a dependence among the first block of columns in the

second matrix, then A would be singular, a contradiction. Moreover,

Kqlo

if there were a dependence involving the final column -bL , then there
1

would be a solution to u + Ax = b dinvolving only Uy and Xy 3 since
1 2

'J]I + IK2| < lN]\K]’ + |L2‘ = m, this would contradict c(ii). Hence B s
nonsingular.,
Consider the combination of the columns of B yielding e; - If this
1
combination did not involve column O (the column with the b's and c's)

then [A 7 would be singular, so that A would have a singular

2 8.
LiKo? 1y

square submatrix, contradicting c(i). Next, the combination must include
all columns indexed by J] u K2, for otherwise there would be a dependence

among all but one column of

J]J] J]K2

LiKs 1 i

involving column 0, and this contradicts c(ii). Finally, the combination

must include all columns indexed by J2 u K], for otherwise there would be a
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dependence among all but one column of

.
I -A c
Jods Kydy Jy
0 -A c
KK, L,

involving column 0, contradicting c(iii).

Now let 1 ¢ KZ’ and consider B'lei. From (12), this has the form

~ . -
T -T
-A A e,
K]J2 K]L2 i
-T
-A e.
K]L2 i
0
0
. T =T . -
Suppose there were a zero component in —AK J AK L €; or in —AK L &y
172 172 172

Then e, could be expressed as a linear combination of all but one column of

T

I -A

JZJZ K]J2
T

0 -A
K1L2

and this would imply that A had a singular square submatrix, contradicting

our nondegeneracy assumption c(i). This completes the proof of the lemma.
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Similarly we can prove

Lemma 4. If !L]| = IK then B in (12) is nonsingular. Further,

1

each component of B'1ei is nonzero.
2

(For a pictorial representation of the important structure of B'], see

the matrix just above lemma 5.)

Now recall that, if (q,M) 1is replaced by (Sq, SMS), then

Lo FoufLn
g~ -
-1
E Fh
is replaced by
I 5. F.fls
J3J gaFanfLrsLL
51 - ,
21 -1
0 Sy UL

where, as in section 3, Sg = 1. We now calculate the probability that

B is feasible.

Again, to understand the argument below it may be helpful to see the

structure of (§']e ,.,.,§']

0 e]) when its rows are ordered naturally. In

case 1, lemma 3 shows that we have



oo f oo | o] |
| | | | |
| | | | |

T e
11+]—-> ' 0 } 0 } ']l ;
l
(?%, ,?%)= 'H—~~_!~~*i____LJ__~|§Jg' ?
n 1 Xe o oX 1 "
[ xeex | | .
| x| | | |
] |
iyl T oxe.ox | ] | |
- ! | |
n>| 1 ' Xe o oX ’ ‘ l I

. ~-1 . .
with all components of B e;  nonzero and "x's" marking nonzeroes in rows
1
with corresponding unit vectors. Case 2 is simpler: from lemma 4 we have

-1 o _ | -1 [
(B e, . B e]) = l B e12 ’ ?
‘32+]-> : 1] |
T |
n- 1 ’ '
and §"1e1 has all entries nonzero.
2

Lemma 5. The probability that B is feasible is at most
i,+i, -m
(1/2) | 2

in case 1 if 2 = 11 or g = 12;

1]+12—m-1
(1/72) in case 1 if & # 1] and 2 # 12;
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i
(1/2) 2 in case 2 if & = 12; and
-i 2"—‘

(1/2) in case 2 if g # 12.

5-1 1

Proof. We consider each row of (B en,...;ﬁ' el) and determine its

first nonzero entry. For row Jj, where J ¢ Jz with j > 12, this entry
is one and occurs in column j, for all S. For row r, where r ¢ J2 with
r < 12 or re K], this entry lies in column 12 and is positive with

probability 1/2, switching sign with Spr and with Si i * The situation
22

for the other rows depends on the case.
Consider first case 1. Then the first nonzero entry in row Jj, Jj ¢ J],
is one for all S if j > i], and otherwise occurs in column i] and is

positive with probability 1/2, switching sign with Sjj and Si 5 The
11
first nonzero entry in row k, k € KZ’ occurs in column 11 and is positive

with probability 1/2, switching sign with Skk and Si]i]' Finally the
first nonzero entry in row 0 occurs in column i] and is positive with
probability 1/2, switching signs with 31]1]. Suppose & = i] or L = iz.
Then each row r, where r Tlies in J] with r < 1], in J2 with

r < 12, in K], in K2 or in 0, has first nonzero entry positive with

probability 1/2, and all these events are independent. The probability of
i, +i,-m
feasibility is thus (1/2) 12 . The independence follows since the
relevant entry changes sign with s, . (r=0), s, . (r=1,,2 =1 ), and
i, i, 1 2
otherwise Spps and all these s's are independent. Now suppose & # i]

and R # iz. Then the first nonzeros in rows 11 and 12 both change

sign together, with Si i Si .t Hence two of the events above are depen-
11 '2°2
dent. We therefore ignore one of them, and conclude that the probability of

1]+12-m-1
feasibility is at most (1/2) .

Now consider case 2. Then the first nonzero entry in row r,

re J] u K2 u {0}, r # 12, occurs in column 12, and is positive with
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probability 1/2, switching sign with S and S: 4 (r # 0) or with
2'2

1.21.2(r = 0). Suppose 2 = iye Then since all Spp S5 T <y, and 51212,

switch sign independently, the probability that B is feasible is exactly

1
(1/2) 2

S

. However, if 2 # 12, then the first nonzero entry in row 12 occurs
in column 12 and is independent of S. Thus we must ignore the event

that this entry is positive, and we conclude that the probability that B

i -1

is feasible is at most (1/2) 2

This completes the proof of the lemma.
We are now ready for the

Proof of Theorem 2. It is convenient to further subdivide our two

cases, according as 2 ¢ N1 (cases 1a and 2a) or 2 e N2 (cases 1B

and ZB). We compute a bound on the expected number of feasible bases for

each case, denoted Ep(la), etc. Below we use the convention that

all binomial coefficients (;) are zero for r <0 or k<0 or k>r.

Case la. Here 1] runs from 1 to m and 12 from m (meaning
Jy = NZ) to n. If 2= i], K] can be any subset of {1,...,1]—1} and
K, any subset of {m+],...,12} containing i, (if i,> m), with
|K1! = 'KZ" Thus the number of choices for K, K, and 2 =1, fis

-1 i,-m-1 i +i,-m-2
1 2 _ 12
g ( k )( k-1 ) - ( 1]_2 )9

except for the exceptional case with 1] =1 and 12 =m, when the
number is 1. (When i1 > 1 and 12 =m, the right hand side above is
correct, while the left is not.) To see the identity above, for 1] > 1,
12 >m, note that we can make any choice for the i1-2 elements
({],...,1]-1}\K]) u (KZ\{wz}) from the 1]+12-m-2 elements {1,...,1]—],

m+1,...,12—1}. We will be using several similar identities below, without

elaboration. If 2 < i, (sothat i, >2 and i, > m), we can make
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i,-1 choices for &, and then K, can be any subset of {1,.,.,1]}\{1}

containing i] and K, any subset of {m+1,...,12} containing 12,

with 'K1| = |K2|. Thus the number of choices for K,, K, and g is
i=-2 i,-m-1 i+ ,-m-3
. 1 2 . 2
(70 T o ) = (gD ‘1.]_2 ).

Using the probabilities from lemma 5, we find that the expected number of

feasible bases in case 1a is

m n 11+i2—m
(1) <12+ ] 1 (1/2) [,
1]=1 12=m 1

i +i,-m-2 i+ ,-m-3
1°2 . 12
-2 ) + 2(11'])( .i]_z )]9

where the 1/2 comes from the exceptional case 1] =1, 12 =m. The

i
summand for 12 =m is just (1/2) ]. Thus, removing this part of the

sum and writing s for 1]—1 and t for iz—m-], we find

m-1 p-1 _
Bo(1) <32+ ] tzo(wzﬁ"“z[(if’]ﬁ) +2s(Stt )] (13)
S: =

Case 1 _. Here i] runs from 1 to m and 12 from mtl to n.

B
If & =1,, K, canbe any subset of {m1,...,i,-1} and K, any

subset of {1,...,?1} containing 1i,, with 'K]I = |K2'+1. So the number

of choices for K], K2 and 2 = i, s
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If 2« 12’ there are iz-m-1 choices for &£, and then K2 can be

any subset of {m+l,...,i,}\{2} containing i, and K, any subset of

it

{],...,1]} containing i,, with ’K1l |K2|+1. So the number of

choices for K1, K2 and 2 < 12 is

—~
ot
N
]
=
]
e
g
o~
—~
=
R—
—~
o
1
—
S
1
—
——
nN
i
3
]
—t
R
o~
ke
N
i
=
1
—_—
S~
')

Using the probabilities from lemma 7, we obtain

m n 1]+12—m 1]+12-m—2 i +12~m—3
Ep(18) < ; Z] ; =r§]+_! (]/2) [( 12_m_'l ) + 2(12'm_])( .iz__m_'l )]°
1 2
Again writing s for 11-1 and t for iz—m-1 we find
fo(1) < T TT (/2SS v 2e(STET)) (14)
e = SZO t-z—-O t t

Case 2@. Here 1] runs from 1 to m and 12 from m+l to n.

If 2=1 K, can be any subset of {1,...,11—]} and K, any subset

1° 1
of {m+1,...,12} containing i,, with 'K]' = ’Kz’-l. Thus the number

of choices for K] and K2 and L = i] is

i=-1 i,-m-1 i+ ,-m-2
1 2 B 1
E ( k )( k ) - ( i.=1 )s
If 2 < 11, we can make 11—1 choices for 2 and then K] can be

any subset of {1,...,1]}\{2} containing i, and K, any subset of
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{m+1,...,12} containing 1,, with ,K1l = 'KZ’_]' Thus the number of

choices for 4, K] and K2 is

Using the probabilities from lemma 5, we find

o ik io-1 dy+i,-m-2 i +i,-m-3
Ep(2 )_i 2 2 (1/2) 2 [( ]i ?] ) + (11_])( 1 '2“1 )].

a Lobe L i
1]—1 12—m+1 1 1

Thus, again using s for 1]-1 and t for iz-m—1, we get

m-1 p-1
Ep(2) < J 1 (1/2)
s=0 t=0

v s(STh, (15)

m+t[(s:t) -

Case 2. Now 1] runs from 0 to m and 12 from m+l to n. If

B
iy Ky

L= can be any subset of {m+1,...,12—1} and K] any subset of
{1,...,1]} containing 1, (if i > 0), with 'K]' = IKZl. So the

number of choices for K], K2 and 2 = 12 is

i.-1 i,-m-1 i1+12—m—2

17 T2 )
E (k_] )( k ) - ( 12_m_2 )s

except for the case with i] =0 and 12 = m+], when the number is 1.

(When =0 and > m+l, the right hand side above is correct, while

h i
the left is not.) If 2 < 12 (so that 12 > mt2 and i] > 0), we can

make 12—m-1 choices for &, and then K2 can be any subset of



-28-
{m+1,...,12}\{2} containing i, and K, any subset of {1,...,1]}

containing i, with 'K]‘ = ’KZ” So the number of choices of K, K,
and & < 12 is
i, -1 i,-m-2 i +i,-m-3
1 2 s 1 2
(12"m“]) é (k_'l )( k-1 ) (12“m'])( 12_m_2 )9
Using the probabilities from lemma 5, we find that
? g 12 i1+12~m—2 1]+i2-m—3
Eo(2,) < 1/2 + (1/2) L( ) + 2(i,-m=1)( . ) 1.
B $020 i =mt] 12—m-2 2 12—m—2
1 2
1
The summand for 1] =0 is just (1/2) ". Removing this part of the sum
we find
m-1 p-] T s+t-1
Ep(2 ) <1+ 7 7 (1/2) [( ) + 2t( 1 ). (16)
B~ s=0 t=0 t-1 t-

Now let Ep denote the expected total number of feasible bases. From (13)

to (16) we find

m-1 p-1 _
<5z I (/2SS 4 a(s) (515
s=0 t=

s 2™ s 2 Ch s T an)

To complete the proof, we approximate the right hand side of (17) in

two ways. We use the following identities:



(s+0) 75N = s(51H) = e (D5
(s+6) (5T = (e = (5105 and
?5 (k;:)l)(]/z)k _ 2
k=0
Thus
met e s+1,(t+1)+s t+] s+1_,t+s t
Ep <572+ ] ] {(1/2)77( )(1/72)°70 + (1/2)°7 s(77)(1/2)
s=0 t=0 s s

e (2" 720t e (™S 2yt

v (1720 (s1) (E1H*)) (1/2)tTy

-1
mzo (s + (/2™ (/2™ + (172" (s41)}
S:

< 5/2

+

m-1
<s/2+ 7 {1+s+301/2™ +n(1/2)"S
s=0

< 5/2

+

’“(‘;‘”) + 3+ 2m = (ml+Em+11)/2. (18)

In addition,
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p-1 m-1
sz 11 (/22 8 17208 + (72T (ST 2)57

= S:

r 2 e a2 s 2T 15T s 2 e 072)%)
p-1

<B/2+ § {1+ (t+1) + 1 +1/2 + t}
t=0

= 5/2 + p(p+1) + 3p/2 = (2p%+5p+5)/2. (19)

The inequalities (18) and (19) establish the theorem.

We suspect that, under more restrictive assumptions on the
probability model, a quadratic Tower bound on the expected number of steps
could also be proved.1 First, in the linear programming context, the
expected number of steps taken by the algorithm is exactly Ep. Every
feasible basis of the required form is in fact encountered--this follows from
linear complementarity theory. Second, we suspect that the probability bounds
given in lemma 5 are close to being tight, under a suitable strengthening of
the probability model assumptions--the problem being two nonzeroes that switch
sign together, or a nonzero that does not switch signs, with changes in S.
Finally, we have not made any gross overestimates in our calculations of bounds
on the right hand side of (18).

We also suspect that the nondegeneracy assumption (c(i)) can be
somewhat relaxed. It is used in the proof to identify the position of the
first nonzero entry in various rows of (§']en,...,§‘]e]). As long as the

first nonzero entry lies in a column indexed by k ¢ Ku {2} different

from the row index, it will be positive with probability 1/2, switching

1Such a result has recently been established by Adler and Megiddo [4].
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signs with the diagonal entries of S corresponding to the row and the
column index. Thus we have the technical problem of identifying
nondegeneracy assumptions sufficient to ensure that a large enough number
of rows have their first nonzeroes switching signs independently. We have
chosen the simplest but most restrictive solution to this technical
problem.

To conclude this section, let us consider the linear programming

problem in equality form,

~

where A is mxn. Let us assume that the probability distribution for
(R,5,€) is such that, with probability one, all square mxm submatrices of
% are nonsingular, and the linear systems Ax = b and Ky - v =¢ are
nondegenerate, and such that (K,b,c) and (K3,5,3¢) have the same
distribution for any sign matrix S. Then let us partition R into
[ﬁ],ﬂz], T into (€¥,€£), and X' into (?1,?;), where K] is

the first m columns of K. Then with probability one, K] is nonsingu~
lar, and (20) can be rewritten as (10), with A = ﬂ{‘ﬂz, b = ﬁ{15,

c = 22 - ALA 31 and x = ;2. Moreover, the assumptions placed on the
distribution of (K,E,g) imply that (¢) and (d) hold for the induced
distribution of (A,b,c). Thus theorem 2 remains true if we solve (20) by

first reformulating it as above in the form (10), i.e., we start with the

first m variables basic.
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5. Extension to oriented matroids

The analyses in sections 3 and 4 are also valid in the general context
of oriented matroids, where the same algorithm can be applied [19,20].

The following brief description assumes familiarity with these papers.

For the linear complementarity problem, we assume that all oriented
matroids M on the set S u Tu {r}, with S a base and with no almost
complementary circuit of size smaller than n+l, are equally likely.

Here S and T are disjoint subsets of size n corresponding to the
variables w and z, and r ¢ Su T corresponds to the right hand side.
The conclusion is again the same quadratic bound on the expected number of
steps of the lexicographic Lemke algorithm. The proof is completely
analogous; choosing a sign matrix S corresponds to reorienting certain
elements of the matroid, and all such reorientations are equally likely.
Recall that the analysis of section 3 could be applied when the
probability distribution was concentrated on matrices M having positive
diagonal, or positive principal minors, or being symmetric and positive
(semi-) definite. Analogous properties can be defined for oriented
matroids, and we can obtain a quadratic bound on the expected number of
steps, conditioning on the event that one of these properties holds.

For the linear programming problem, we assume that all oriented
matroids My, on Uwu X u {f,g}, with Uwv {f} a base and with no
circuit of size smaller than m+2 or cocircuit of size smaller than p+2,
are equally likely. Here U, X, {f} and {g} are disjoint, ’Ul =m
and ‘X) = ’p’; U corresponds to the slack variables of (3), X to the
original variables, f to the objective function and g to the right
hand side. Again we obtain the quadratic bound on theorem 2 on the
expected number of steps for the lexicographic Lemke algorithm, and again

the proof is completely analogous.



10.

11.

-33-
References

I. Adler, "The expected number of pivots needed to solve parametric
linear programs and the efficiency of the self-dual simplex method,"”
manuscript, Department of Industrial Engineering and Operations

Research, University of California, Berkeley, California (May 1983).

I. Adler and S.E. Berenguer, "Random linear programs," Operations
Research Center Report No. 81-4, University of California, Berkeley,
California (1981).

I. Adler and N. Megiddo, "A simplex-type algorithm solves linear

programs of order mxn in only 0((min(m,n))) steps on the average,"
manuscript, Department of Industrial Engineering and Operations
Research, University of California, Berkeley, and Department of
Computer Science, Stanford University, Stanford, California (November

1983).

I. Adler and N. Megiddo, "A simplex algorithm whose average number of
steps is bounded between two quadratic functions of the smaller
dimension," manuscript, Department of Industrial Engineering and
Operations Research, University of California, Berkeley, and Department
of Computer Science, Stanford University, Stanford, California
(December 1983).

C. Blair, "Random linear programs with many variables and few
constraints," Faculty Working Paper No. 946, College of Commerce and
Business Administration, University of I1linois at Urbana-Champaign,
I11inois (April 1983).

K.H. Borgwardt, "Some distribution-independent results about the
asymptotic order of the average number of steps of the simplex
method," Mathematics of Operations Research 7 (1982) 441-462.

K.H. Borgwardt, "The average number of pivot steps required by the
simplex-method is polynomial," Zeitschrift fur Operations Research 26
(1982) 157-177.

M. Haimovich, "The simplex algorithm is very good!--on the expected
number of pivot steps and related properties of random linear
programs," manuscript, Columbia University, New York, New York (April
1983).

C.E. Lemke, "Bimatrix equilibrium points and mathematical
programming," Management Science 11 (1965) 681-689.

J.H. May and R.L. Smith, "Random polytopes: their definition,
generation, and aggregate properties," Mathematical Programming 24
(1982) 39-54.

N. Megiddo, "The probabilistic analysis of Lemke's algorithm for the
linear complementarity problem," manuscript, Department of Computer
Science, Stanford University, Stanford, California (September 1983).



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

-34-

N. Megiddo, "Improved asymptotic analysis of the average number of
steps performed by the self-dual simplex algorithm," manuscript,
Department of Computer Science, Stanford University, Stanford,
California (September 1983).

N. Megiddo, "On the expected number of linear complementarity cones
intersected by random and semi-random rays," manuscript, Department of
Computer Science, Stanford University, Stanford, California (November
1983).

T.S. Motzkin, "The probability of solvability of linear inequalities,”
in: H.A. Antosiewicz, ed., Proceedings of the second symposium in linear
programming (National Bureau of Standards and Directorate of Management
Analysis, USAF, 1955) pp. 607-611.

A. Prekopa, "On the number of vertices of random convex polyhedra,"”
Periodica Mathematica Hungarica 2 (1972) 259-282.

R. Saigal, "On some average results for linear complementarity
problems," manuscript, Department of Industrial Engineering and
Management Sciences, Northwestern University, Evanston, I11inois
(August 1983).

S. Smale, "On the average number of steps of the simplex method of
linear programming, Mathematical Programming 27 (1983) 241-262.

S. Smale, "The problem of the average speed of the simplex method," in:
A. Bachem, M. Grotschel and B. Korte, eds., Mathematical programming:
the state of the art (Springer-Verlag, Berlin-Heidelberg-New York-
Tokyo, 1983) pp. 530-539.

M.J. Todd, "Complementarity in oriented matroids," to appear in SIAM
Journal on Algebraic and Discrete Methods.

M.J. Todd, "Linear and quadratic programming in oriented matroids,"
Technical Report No. 565, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, New York (March 1983).

L. Van der Heyden, "A variable dimension algorithm for the linear
complementarity problem," Mathematical Programming 19 (1980) 328-346.




