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Polynomial Extended Kalman Filter

Alfredo Germani, Costanzo Manes, and Pasquale Palumbo

Abstract—This work presents a polynomial version of the well-known
extended Kalman filter (EKF) for the state estimation of nonlinear dis-
crete-time stochastic systems. The proposed filter, denoted polynomial EKF
(PEKF), consists in the application of the optimal polynomial filter of a
chosen degree to the Carleman approximation of a nonlinear system.
When = 1 the PEKF algorithm coincides with the standard EKF. For
the filter implementation the moments of the state and output noises up to
order 2 are required. Numerical simulations compare the performances
of the PEKF with those of some other existing filters, showing significant
improvements.

Index Terms—Extended Kalman filtering, nonlinear stochastic systems,
polynomial filtering.

I. INTRODUCTION

This note investigates the problem of state estimation for nonlinear
discrete-time stochastic systems of the type:

x(k + 1) = f(k; x(k)) + v(k)

y(k) = h(k; x(k)) + w(k); k � 0 x(0) = x0 (1)

where x(k) 2 IRn is the system state, y(k) 2 IRq is the measured
output, f : Z+

� IRn 7! IRn; h : Z+
� IRn 7! IRq are time-

varying smooth nonlinear maps, denoted state-transition map and state-
output map, respectively. The state and output noises v(k) andw(k) are
assumed to be independent white sequences (independent sequences
of zero-mean independent random vectors), not necessarily Gaussian.
The initial state x0 is a random vector independent of both the noise
sequences.

It is well known that the minimum variance state estimate requires
the knowledge of the conditional probability density, whose computa-
tion, in the general case, is a difficult infinite-dimensional problem [3],
[8], [9]. Only in few cases does the optimal filter have a finite dimen-
sion [28]. For this reason, a great deal of work has been made to devise
suboptimal implementable filtering algorithms. A way to approach the
problem is to find finite-dimensional approximations of the conditional
density using, e.g., Gaussian sum approximations as in [1], [16], or dis-
crete distributions as in particle filters [24].

An alternative approach consists in finding an approximation of the
stochastic system for which known filtering procedures are available.
In this framework, the extended Kalman filter (EKF) is the most widely
used algorithm (see, e.g., [2], [5], [6], [13]–[15], [17], [19], [21], and
[23]). Because of its local nature, the EKF performs well if the ini-
tial estimation error and the disturbing noises are small enough (in
[22] conditions are given for the boundedness of the error variance).
Improved versions of the EKF are the iterated EKF and the second
order EKF (see [14], [17]). An effective modification of the EKF is
the unscented Kalman filter (UKF) [18], that uses the so-called un-
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scented transform for the state and output prediction steps in the EKF
equations.
The filter here proposed is a polynomial extension of the EKF (de-

noted PEKF throughout the note) and belongs to the last group of
methods. The PEKF is obtained by the application of the optimal poly-
nomial filter of [10], [11] to the Carleman approximation of a nonlinear
system (see [20], [25]), whereas the standard EKF applies the classical
Kalman filter to the linear approximation of nonlinear systems. The
Carleman approximation of order � of a nonlinear system is achieved
by suitably defining an extended state made of the Kronecker powers
of the original state up to a given order �. The analogous definition of
an extended output is also required for the construction of a polyno-
mial filter. In the stochastic discrete-time framework the Carleman ap-
proximated system consists of a bilinear system (linear drift and multi-
plicative noise) with respect to the extended state. The extended output
turns out to be a linear function of the extended state, corrupted by
multiplicative noise. Once the approximation is obtained, the recursive
equations of the optimal polynomial filter of order � are available and
can be applied with no further approximations (see [10] and [11]). It
is interesting to note that the implementation of the PEKF of a given
degree � does not require the complete knowledge of the noises distri-
butions: Only the moments up to order 2� are needed. When � = 1
the PEKF reduces to the classical EKF. As in the case of the classical
EKF, the polynomial EKF (PEKF) is a time-varying recursive algo-
rithm whose performances depend on the specific application. A better
behavior with respect to the classical EKF is expected for two reasons:
i) a higher degree of approximation of the nonlinear system is adopted;
ii) the optimal polynomial estimate is implemented for the approximate
system, instead of the linear Kalman estimate of the EKF.
It is important to stress that the Carleman approximation of con-

tinuous time nonlinear systems is a bilinear system w.r.t. the input,
whereas discrete-time systems are approximated by means of bilinear
system w.r.t. the input and some of its powers. For the continuous-
time case the tool of Carleman bilinearization has found some appli-
cations in problems of systems approximation [26], [27], [29], since
there are many reasons for finding a bilinear approximation of a non-
linear system (see [7]). In recent times, such method has been success-
fully used in the problem of reduction of large scale systems [4]. On the
other hand, the Carleman approach has never been used for the approx-
imation of discrete-time systems, mainly because of the presence of the
powers of the input in the approximate model, that makes not useful the
approach for control applications. However, in the filtering framework
the presence of the powers of the input noise does not constitute a signi-
ficative limitation: the Carleman approximation for system (1) provides
a stochastic bilinear system with respect to the extended state and an
extended input noise. For this class of systems the optimal polynomial
filter is already available in literature without any further approxima-
tion [10], [11]. Surprisingly, to the authors’ knowledge, this technique
has not been used so far for the construction of suboptimal filters. Pre-
liminary results on this field have been presented by the authors in [12].
The note is organized as follows: the next section presents the Car-

leman approximation of stochastic nonlinear systems of the type (1); in
section three the polynomial minimum variance filter for the Carleman
approximation (PEKF) is derived; Section IV displays some numerical
results where the performances of the PEKF and of other existing algo-
rithms are compared. An Appendix reports some formulas needed for
the implementation of the PEKF.

II. CARLEMAN APPROXIMATION OF STOCHASTIC SYSTEMS

Choose an integer� and consider the sequences x[m](k) and y[m](k)
of the Kronecker powers of the states and outputs of system (1) form =
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1; . . . ; � (here superscripts in square brackets denote the Kronecker
powers of vectors and matrices; for a quick survey on the Kronecker
algebra see [11]). The update equations for these sequences are

x[m](k + 1) = (f(k; x(k)) + v(k))[m]

y[m](k) = (h(k; x(k)) + w(k))[m]: (2)

Under standard analyticity hypotheses the nonlinear functions (f +
v)[m] and (h+w)[m] can be approximated in a suitable neighborhood
of a given point ~x using Taylor polynomials of degree �

(f(k; x(k)) + v(k))[m]

�

�

i=0

Fm;i(k; ~x)(x(k)� ~x)[i]

+

�

i=0

'm;i(k; ~x; v(k))(x(k)� ~x)[i] (3)

(h(k; x(k)) + w(k))[m]

�

�

i=0

Hm;i(k; ~x)(x(k)� ~x)[i]

+

�

i=0

#m;i(k; ~x; w(k))(x(k)� ~x)[i] (4)

where'm;i(k; ~x; v(k)) and#m;i(k; ~x; v(k)) are suitably defined poly-
nomials of v(k) and w(k) (see [12]), and

Fm;i(k; x) =
1

i!
r[i]
x 
 f [m]

Hm;i(k; x) =
1

i!
r[i]
x 
 h[m] (5)

where the operator r[i]
x 
 applied to a function  =  (k; x) : Z+ �

IRn 7! IRp is defined as

r[0]
x 
  =  

r[i+1]
x 
  = rx 
r

[i]
x 
  ; i � 1 (6)

with rx = [@=@x1 � � � @=@xn]. Note that rx 
  is the standard
Jacobian of the vector function  .

The expansion of the powers of the binomials in the summations in
(3) and (4) allow to write these as polynomials of x(k) of degree � (see
[12]). The substitution of the ith power of x(k) in the summations with
a vectorX�

i (k) of the same dimension (recall that x[i](k) 2 IRn ), and
of the mth power of y(k) with a vector Y �

m(k) 2 IRq in the output
equations, yeld the recursive equations of the Carleman approximation
of order � around ~x

X�
m(k + 1) =

�

i=1

A�m;i(k; ~x)X
�
i (k) + u�m(k; ~x) + v�m(k; ~x)

Y �
m(k) =

�

i=1

C�
m;i(k; ~x)X

�
i (k) + �m(k; ~x) + w�m(k; ~x) (7)

with m = 1; . . . ; � and X�
m(0) = x

[m]
0 . The expressions of

the matrices A�m;i(k; ~x); C
�
m;i(k; ~x), of the deterministic se-

quences u�m(k; ~x); �m(k; ~x) and of the stochastic sequences
v�m(k; ~x); w�m(k; ~x) are quite long, and are reported in the Ap-
pendix for the reader’s convenience. The 2 � (7) of the Carleman

approximation of system (1) can be put in the following compact
form:

X�(k+ 1) = A�(k; ~x)X�(k) + U�(k; ~x) + V �(k; ~x)

Y �(k) = C�(k; ~x)X�(k) + ��(k; ~x) +W�(k; ~x) (8)

where

X�(k) =

X�
1 (k)
...

X�
� (k)

2 IRn

Y �(k) =

Y �
1 (k)
...

Y �
� (k)

2 IRq (9)

with n� = n+ n2 + � � � + n� and q� = q + q2 + � � �+ q�, and

A� =

A�1;1 � � � A�1;�
...

. . .
...

A��;1 � � � A��;�

U� =

u�1
...
u��

V � =

v�1
...
v��

(10)

C� =

C�
1;1 � � � C�

1;�

...
. . .

...
C�
�;1 � � � C�

�;�

�� =

�1
...
��

W� =

w�1
...
w��

:

(11)

From (35), in Appendix, it is clear that the terms V �(k; ~x) and
W�(k; ~x) are bilinear functions of the extended state X�(k) and
of zero-mean random vectors uncorrelated with X�(k) of the type
(v[h](k) � Efv[h](k)g) and (w[h](k) � Efw[h](k)g) (note that
these are white sequences). This fact allows to state that the Carleman
approximation (8) has a bilinear structure with respect to an extended
white noise sequence. Moreover, exploiting the same arguments used
in [10], [11], it is not difficult, though tedious, to prove that V �(k; ~x)
andW�(k; ~x) are uncorrelated sequences of zero mean uncorrelated
random vectors, and that the extended state X�(k) is uncorrelated
withW�(j; ~x) 8 j and with V �(j; ~x) for k � j (this result is a direct
consequence of the fact that the noises v(k) and w(k) in the original
system (1) are independent and white, and that the original state x(k)
is independent of w(j) 8j and independent of v(j) for k � j).
In order to ensure that all random vectors in (8)

(X�(k); Y �(k); V �(k; ~x) and W�(k; ~x)) have finite means
and covariances, it is necessary to assume that the noises and the
initial state of the original system have finite moments up to order 2 �

IE x
[i]
0 = �0i <1

IE v[i](k) = �vi (k) <1

IE w[i](k) = �wi (k) <1
(12)

for i = 1; . . . ; 2�. The moments �vi (k); �
w
i (k), and �

0
i are needed

for the recursive computation of the covariances 	V (k; ~x) and
	W (k; ~x) of the extended noises V �(k; ~x) and W�(k; ~x) (see
Appendix). The mean and covariance of the extended state X�(k),
also needed for the computation of	V (k; ~x) and	W (k; ~x), can be
recursively computed using standard formulas for bilinear systems (see
Appendix and also [11]). It is worthwhile to note that, differently from
what may happen in continuous-time, the Carleman Approximation
for discrete-time systems never exhibits finite escape time phenomena.
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III. FILTERING ALGORITHM

The previous section has described the �th-order Carleman approxi-
mation of a stochastic nonlinear system. The result is a bilinear system
driven by white noise, given by (8). For the filter construction it is as-
sumed that the output of the original system (1) is generated in fact
by the approximate model (8), and thus in the filter equations Y �

m(k)
will coincide with y[m](k). For a system of the type (8) the optimal
linear filter (linear w.r.t. the extended measurements) provides the op-
timal �-degree polynomial filter w.r.t. the original measurements, and
can be constructed without any further approximation (see [10] and
[11]). Since the extended noises V �(k; ~x) andW�(k; ~x) in (8) are un-
correlated sequences of uncorrelated zero-mean vectors, as discussed
in the previous section, the optimal linear filter is implemented by the
standard Kalman filter equations. According to the same philosophy of
the standard EKF, the system matrices and the covariances needed in
the Riccati equations are computed using, at each step, the equations
of the Carleman approximation around the current state estimate and
prediction. In particular, the state estimate is used instead of ~x for the
computation of matrices A�;U� and 	V , while the state prediction
is used for the computation of matrices C�;�� and 	W , according
to the formulas reported in the Appendix. Note that the estimate x̂(k)
and prediction x̂(k + 1jk) of the original state are computed by se-
lecting from the estimate and prediction of the extended state, X̂�(k)
and X̂�(k + 1jk), respectively, the first n components

x̂(k) = [In On�(n �n)]X̂
�(k)

x̂(k + 1 j k) = [In On�(n �n)]X̂
�(k + 1jk): (13)

The steps of the PEKF algorithm are summarized here.

I) Computation of the initial conditions of the filter (the a priori
estimate of the initial extended state and its covariance)

X̂
�(0 j � 1) = IEfX�(0)g

PP (0) = Cov(X�(0))

k = �1 inizialization of the counter: (14)

II) Computation of the matrices of the �th degree approxima-
tion of the extended output equation around the point x̂(k+
1 j k) = [In On�(n �n)]X̂

�(k + 1jk)

�C�(k + 1) = C�(k + 1; x̂(k + 1 j k))

���(k + 1) = ��(k + 1; x̂(k + 1 j k))

�	W (k + 1) = 	W (k + 1; x̂(k + 1 j k)): (15)

[the first two equations are obtained from (11) and (31), while
the third is obtained from (39)].

III) Computation of the prediction of the extended output

Ŷ
�(k + 1 j k) = �C�(k + 1)X̂�(k+ 1 j k) + ���(k+ 1): (16)

IV) Computation of the Kalman gain

K(k + 1) = PP (k + 1) �C�(k + 1)T

( �C�(k + 1)PP (k + 1) �C�(k + 1)T + �	W (k + 1))y: (17)

V) Computation of the error covariance matrix:

P (k + 1) = In �K(k + 1) �C�(k + 1) PP (k + 1): (18)

VI) Computation of the extended state estimate X̂�(k + 1) and
of the estimate x̂(k + 1) of the original state:

X̂
�(k+ 1) = X̂

�(k+ 1 j k)

+K(k + 1)(Y �(k + 1)� Ŷ
�(k + 1 j k))

x̂(k + 1) = [In On�(n �n)]X̂
�(k+ 1): (19)

VII) Increment of the counter: k = k + 1.
VIII) Computation of thematrices of the�th degree approximation

of the state-transition around the point x̂(k)

�A�(k) = A�(k; x̂(k)) from eq.'s (10) and (30)
�U�(k) = U�(k; x̂(k)) from eq.'s (10) and (34)

�	V (k) = 	V (k; x̂(k)) from eq. (38): (20)

IX) Computation of the extended state prediction:

X̂
�(k+ 1 j k) = �A�(k)X̂�(k) + �U�(k): (21)

X) Computation of the one-step prediction error covariance ma-
trix:

PP (k + 1) = �A�(k)P (k) �A�(k)T + �	V (k): (22)

XI) GOTO STEP II).
Remark 1: For consistency with all the developments made in

the note, the PEKF algorithm has been here presented in a form
that is not computationally optimized, in that the Kronecker powers
contain redundant components (if x 2 IRn then x[i] 2 IRn , but
only ~ni =

n+i�1
i

monomials are independent). Such redundancies
can be avoided through the definition of reduced Kronecker powers,
containing the independent components of ordinary Kronecker powers
(see [10]). More in detail, denoting with x(i) 2 IRn the reduced ith
Kronecker power of x, it is always possible to define a selection matrix
Ti(n) 2 IR~n �n made of 0’s and 1’s, such that:

x
(i) = Ti(n)x

[i] (23)

(note that the choice of matrix Ti(n) is not univocal). Similarly, the
ordinary Kronecker power x[i] is recovered from the reduced power
x(i) through multiplication with a suitable matrix ~Ti(n) 2 IRn �~n .
Straightforward but tedious substitutions in the previous PEKF algo-
rithm provide a filter with a reduced computational burden, and this
last should be considered for efficient implementations.

IV. SIMULATION RESULTS

The performances of the PEKF with � = 2 and � = 3 (quadratic
and cubic PEKF, respectively) have been compared with those of the
standard EKF, the second-order PEKF [14] and the UKF in the aug-
mented state version [18] through computer simulations. In most cases
the quadratic and cubic PEKF have given better performances, in terms
of error variance. This section reports simulation results obtained in
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TABLE I
STEADY-STATE ERROR VARIANCES

a critical case in which the second-order EKF (EKF2) and the UKF
do not give improved estimates w.r.t. the standard EKF. The nonlinear
system considered is the following:

x1(k + 1) = 0:8x1(k) + x1(k)x2(k) + 0:1 + 0:01v1(k)

x2(k + 1) = 1:5x2(k)� x1(k)x2(k) + 0:1 + 0:01v2(k)

y(k) = x2(k) + 0:04w(k): (24)

The noise sequences v1(k); v2(k); w(k) are zero-mean and indepen-
dent, and obey the following discrete distributions:

Pfv1(k) = �1g = 0:6

Pfv1(k) = 0g = 0:2

Pfv1(k) = 3g = 0:2

Pfv2(k) = �1g = 0:8

Pfv2(k) = 4g = 0:2
Pfw(k) = �7g = 0:3

Pfw(k) = 3g = 0:7:

(25)

The initial state x(0) is also a random variable independent of both the
state and output noises, with independent components, following the
distribution:

Pfx1(0) = 0:4g = 0:2 Pfx2(0) = 0:1g = 0:2

Pfx1(0) = 0:8g = 0:8 Pfx2(0) = 0:4g = 0:8: (26)

Table I reports the sample error variances in a typical simulation over
a 1.000 points horizon.

In this example, the EKF, the EKF2, and the UKF have a very sim-
ilar behavior, while the quadratic and cubic PEKF perform better. In
particular, the quadratic PEKF achieves 15% and 24% reduction of the
error variance of the two state components, respectively, w.r.t. standard
EKF, while the cubic PEKF achieves 50% and 98% variance reduction.
Figs. 1 and 2 report the true and estimated states. For the clarity of the
representation, only a window of 70 time steps is reported and the EKF
and UKF estimates are not reported because they are extremely sim-
ilar to those provided by the second-order EKF. Note that in Fig. 2 the
cubic state estimate and the true state are quite indistinguishable.

The computational times required by the PEKF and by the other al-
gorithms used for comparison have been evaluated in term of CPU time
on a PC with 1.8 GHz clock. All algorithms have been implemented in
MATLAB. The CPU time required by the standard EKF implementa-
tion is TEKF = 0:35 s, the time required by the EKF2 is TEKF2 = 0:62
s, the time of the UKF is TUKF = 0:69 s, the times of the PEKF2 and
PEKF3 are TPEKF = 5:89 s and TPEKF = 23:34 s, respectively.

The performances of the PEKF have been compared also with those
of the particle filter [24], denoted PF in the following. Both the PEKF
and the PF have the same feature of improving the error variance by
increasing the algorithm complexity. Note that the complexity of the
PEKF depends on the chosen polynomial degree, while the complexity
of the PF depends on the number of particles used. A zero-mean
Gaussian noise has been added to the measurement equation of the

Fig. 1. True and estimated states: the first component.

Fig. 2. True and estimated states: the second component.

system (24) in order to apply the PF in a standard form (the output
noise should not obey a discrete distribution). Many simulations have
been performed for different values of the variance of the Gaussian
component of the noise and for different numbers of particles. It
results that for variances ranging from 0.4 to 1 the PF with about
140 particles (PF140) requires a CPU time similar to the one of the
PEKF3. However, the error variance of the PEKF3 is about 20%
lower than the error variance of the PF140. The PF with about 250
particles achieves an error variance similar to the one of the PEKF3.
However, in this case the CPU time required by the PF250 is increased
of about 60%. It should be noted that, due to its stochastic nature, the
repeated application of a PF to the same sequence of measurements
may provide significantly different results, both in term of error
variance and CPU time.

V. CONCLUSION

A polynomial extension of the standard EKF for the state estimation
of nonlinear discrete-time systems has been proposed in this note. The
polynomial algorithm is based on two steps: First the nonlinear system
is approximated by a bilinear system using the Carleman approxima-
tion of a chosen degree �; next, the minimum variance filter for the
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approximating system among all the �th degree polynomial transfor-
mations of the measurements is computed. This step is based on the
theory of suboptimal polynomial estimation for linear and bilinear state
space representations studied in [10], [11]. When � = 1, the proposed
algorithm gives back the standard EKF. The performances of the pro-
posed filter have been compared with those of other existing filters via
computer simulations.

APPENDIX

This Appendix reports the expressions of all the terms needed
for the PEKF implementation. The derivation of these equations
exploits the rules of the Kronecker algebra (see [11] for a quick
survey) and take advantage of a formalism that allows to expand
Kronecker powers of sums of vectors. Consider a multiindex
t = ft0; t1; . . . t�g 2 (Z+)�+1. Its modulus, denoted jtj, is defined
as the sum of its entries, i.e., jtj = t0 + � � � + t� . The ith Kronecker
power of a sum of � + 1 vectors zi 2 IRp; i = 0; 1; . . . ; �, can be
expressed as

(z0+z1+� � �+z�)
[i] =

jtj=i

M
p
t z

[t ]
0 
 z

[t ]
1 
 � � � 
 z

[t ]
� (27)

with a suitable definition of matrices Mp
t 2 IRp �p (see [11]). Note

that for t 2 (Z+)2 it is M1
t ;t = (

t0 + t1

t0
). The Kronecker product

of n matrices Ah; h = 1; . . .n, is denoted as

n



h=1

Ah = A1 
 A2 
 � � � 
 An: (28)

With this definition, (27) can be put in the more compact form

�

h=0

zh

[i]

=
jtj=i

M
p
t

�



h=0

z
[t ]
h : (29)

Let us recall that the stack of a matrixA 2 IRr�c is the vector in IRr�c

that piles up all the columns of matrix A, and is denoted st(A). The
inverse operation is denoted st�1

r;c( � ), and transforms a vector of size
r � c into a r � c matrix.
Lemma 1: The matricesA�

ij(k; ~x) andC
�
m;i(k; ~x) of system (7) are

as follows:

A
�
ij(k; ~x) =

r2R

M
n
r
�Fr(k; ~x)

� M
n
�(r)�j;j 
 �

v
r In 
 (�~x)[�(r)�j] (30)

C
�
ij(k; ~x) =

r2R

M
q
r
�Hr(k; ~x)

� M
n
�(r)�j;j 
 �

w
r In 
 (�~x)[�(r)�j] (31)

with r = fr0; . . . ; r�+1g a multi-index in (Z+)�+2 and

�(r) =

�

s=1

s rs

R�
ij = fr 2 (Z+)�+2: jrj = i; j � �(r) � �g (32)

the matrices �Fr; �Hr in (30), (31) are defined as

�Fr(k; ~x) =

�



s=0

F
[r ]
1;s (k; ~x) 
 In

�Hr(k; ~x) =

�



s=0

H
[r ]
1;s (k; ~x) 
 Iq : (33)

Moreover, the deterministic drifts u�i ; 
�
i are computed as

u
�
i (k; ~x) =

r2R

M
n
r
�Fr(k; ~x) ~x[�(r)] 
 �

v
r (k)


�
i (k; ~x) =

r2R

M
q
r
�Hr(k; ~x) ~x[�(r)] 
 �

w
r (k) (34)

and the random sequences fv�i g; fw
�
i g are given by

v
�
i (k; ~x) =

r2R

�(r)

s=0

�r
i;s(k; ~x)

� X
�
s (k)
 v

[r ](k)� �
v
r (k)

w
�
i (k; ~x) =

r2R

�(r)

s=0

�r
i;s(k; ~x)

� X
�
s (k)
 w

[r ](k)� �
w
r (k) (35)

with

�r
i;s(k; ~x) =M

n
r
�Fr(k; ~x)

� M
n
�(r)�s;s In 
 (�~x)[�(r)�s] 
 In

�r
i;s(k; ~x) =M

q
r
�Hr(k; ~x)

� M
n
�(r)�s;s In 
 (�~x)[�(r)�s] 
 Iq :

(36)

Lemma 2: Consider	V and	W , the covariances of the random
vectors V � andW� defined in (10) and (11) whose entries, by defini-
tion, are

	V
ij (k; ~x) = IE v

�
i (k)v

�
j (k)

T

	W
ij (k; ~x) = IE w

�
i (k)w

�
j (k)

T
: (37)

These can be computed as follows:

	V
ij (k; ~x) =

r2R t2R

�(r)

s=0

�(t)

l=0

�r
i;s(k; ~x)

� 	X
s;l (k)
 �vi;j;t;r(k) �t

j;l(k; ~x)
T (38)

	W
ij (k; ~x) =

r2R t2R

�(r)

s=0

�(t)

l=0

�r
i;s(k; ~x)

� 	X
s;l (k)
 �wi;j;t;r(k) �t

j;l(k; ~x)
T (39)
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where

�vi;j;t;r(k) = st�1
n ;n

�
v
t +r (k)� �

v
t (k)
 �

v
r (k)

(40)

�wi;j;t;r(k) = st�1
q ;q

�
w
t +r (k)� �

w
t (k)
 �

w
r (k)

(41)

and 	X
ij (k; ~x) = IEfX�

i (k)X
�
j (k)

T g are the blocks of the ma-
trix of second-order moments of the extended state, 	X (k; ~x) =
IEfX�(k)X�(k)Tg. This can be computed by the recursive equation

	X (k + 1; ~x) = A�(k; ~x)	X (k; ~x)A�(k; ~x)T

+A�(k; ~x)Z�(k)U�(k; ~x)T

+ U�(k; ~x)Z�(k)TA�(k; ~x)T

+ U�(k; ~x)U�(k; ~x)T +	V (k; ~x) (42)

where Z�(k) = IEfX�(k)g is the mean value of the extended state,
computed as

Z
�(k + 1) = A�(k; ~x)Z�(k) + U�(k; ~x): (43)

The initialization of (42) and (43) are as follows:

Z
�
i (0) = �

0
i

	X
ij (0; ~x) = E x

[i]
0 x

[j]
0

T

= st�1
n ;n

�
0
i+j : (44)

The proofs of Lemmas 1 and 2, long but not difficult, are straight-
forward applications of the rules of the Kronecker algebra.
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