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Abstract—In the past few years, the problem of distributed con-

sensus has received a lot of attention, particularly in the framework

of ad hoc sensor networks. Most methods proposed in the literature

address the consensus averaging problem by distributed linear it-

erative algorithms, with asymptotic convergence of the consensus

solution. The convergence rate of such distributed algorithms typi-

cally depends on the network topology and the weights given to the

edges between neighboring sensors, as described by the network

matrix. In this paper, we propose to accelerate the convergence rate

for given network matrices by the use of polynomial filtering algo-

rithms. The main idea of the proposed methodology is to apply a

polynomial filter on the network matrix that will shape its spec-

trum in order to increase the convergence rate. Such an algorithm

is equivalent to periodic updates in each of the sensors by aggre-

gating a few of its previous estimates. We formulate the computa-

tion of the coefficients of the optimal polynomial as a semidefinite

program that can be efficiently and globally solved for both static

and dynamic network topologies. We finally provide simulation re-

sults that demonstrate the effectiveness of the proposed solutions

in accelerating the convergence of distributed consensus averaging

problems.

Index Terms—Distributed averaging, distributed consensus,
polynomial filtering, sensor networks.

I. INTRODUCTION

W
E consider the problem of distributed consensus [1] that

has become recently very interesting especially in the

context of ad hoc sensor networks. In particular, the problem of

distributed average consensus has attracted a lot of research ef-

fort due to its numerous applications in diverse areas. A few ex-

amples include distributed estimation [2], distributed compres-

sion [3], coordination of networks of autonomous agents [4],

and computation of averages and least squares in a distributed

fashion (see, e.g., [5]–[8] and references therein).

In general the main goal of distributed consensus is to

reach a global solution using only local computation and

communication while staying robust to changes in the network

topology. Given the initial values at the sensors, the problem

of distributed averaging is to compute their average at each
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sensor using distributed linear iterations. Each distributed

iteration involves local communication among the sensors. In

particular, each sensor updates its own local estimate of the

average by a weighted linear combination of the corresponding

estimates of its neighbors. The weights that are represented in

a network weight matrix typically drive the importance of

the measurements of the different neighbors.

One of the important characteristics of the distributed con-

sensus algorithms is the rate of convergence to the asymptotic

solution. In many cases, the average consensus solution can be

reached by successive multiplications of with the vector of

initial sensor values. Furthermore, it has been shown in [5] that

in the case of fixed network topology, the convergence rate de-

pends on the second largest (in magnitude) eigenvalue of ,

. In particular, the convergence is faster when the value

of is small. Similar convergence results have been pro-

posed recently in the case of dynamic random network topology

[9], [10], where the convergence rate is governed by the ex-

pected value of .

The main research direction so far focuses on the computation

of the optimal weights that yield the fastest convergence rate

to the consensus solution [5]–[7]. In this paper, we diverge from

methods that are based on successive multiplications of , and

we rather allow the sensors to use their previous estimates, in

order to accelerate the convergence rate. This is similar in spirit

to the works proposed [15] and [16] that reach the consensus

solution in a finite number of steps. They use, respectively, ex-

trapolation methods and linear dynamical system formulation

for fixed network topologies. In order to address more generic

network topologies, we propose here to use a matrix polynomial

applied on the weight matrix in order to shape its spectrum.

Given the fact that the convergence rate is driven by , it

is therefore possible to impact on the convergence rate by careful

design of the polynomial . In the implementation viewpoint,

working with is equivalent to each sensor aggregating its

value periodically using its own previous estimates. We further

formulate the problem of the computation of the polynomial co-

efficients for both static and dynamic network topologies. We

propose a methodology for the computation of the coefficients

based on semidefinite programming (SDP), which results into

an optimal solution in the case of static network topologies. In

the case of dynamic topologies, we provide an effective subop-

timal solution where the filter coefficients are computed based

on the average weight matrix.

The rest of this paper is organized as follows. In Section II,

we review the main convergence results of average consensus

in both fixed and dynamic random network topologies. Next, in
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Fig. 1. Static network topology. The parameter � ��� �� �� � describes the
weight of the edge that permits the sensor � to communicate with its neighbor
sensor � .

Section III, we introduce the polynomial filtering methodology

and discuss its implementation for distributed consensus prob-

lems. We discuss the computation of the polynomial filter coeffi-

cients in Section IV for both static and dynamic network topolo-

gies. In Section V, we provide simulation results that verify the

validity and the effectiveness of our method. Related work is fi-

nally presented in Section VI.

II. CONVERGENCE IN DISTRIBUTED CONSENSUS AVERAGING

Let us first define formally the problem of distributed

consensus averaging. Assume that initially each sensor

reports a scalar value . We denote by

the vector of initial values on the

network. Denote by

(1)

the average of the initial values of the sensors. However, one

rarely has a complete view of the network. The problem of dis-

tributed averaging therefore becomes typically to compute at

each sensor by distributed linear iterations. In what follows, we

review the main convergence results for distributed consensus

algorithms on both fixed and dynamic network topologies.

A. Static Network Topology

We model the static network topology as an undirected graph

with nodes corresponding to sen-

sors. An edge is drawn if and only if sensor can

communicate with sensor , as illustrated in Fig. 1. We denote

the set of neighbors for node as . Unless

otherwise stated, we assume that each graph is simple, i.e., no

loops or multiple edges are allowed.

In this paper, we consider distributed linear iterations of the

following form:

(2)

for , where represents the value computed by

sensor at iteration . Since the sensors communicate in each

iteration , we assume that they are synchronized. The param-

eters denote the edge weights of . Since each sensor

communicates only with its direct neighbors, when

. The above iteration can be compactly written in the

following form:

(3)

or, more generally

(4)

We call the matrix that gathers the edge weights as

the weight matrix. Note that is a sparse matrix whose sparsity

pattern is driven by the network topology. We assume that

is symmetric, and we denote its eigenvalue decomposition as

. We also denote by the second largest (in

magnitude) eigenvalue of .

The distributed linear iteration given in (3) converges to the

average for every if and only if

(5)

where is the vector of ones [5]. Indeed, notice that in this case

It has been shown that for fixed network topology, the conver-

gence rate of (3) depends on the magnitude of the second largest

eigenvalue [5]. The asymptotic convergence factor is

defined as

(6)

and the per-step convergence factor is written as

(7)

Furthermore, it has been shown that the convergence rate

relates to the spectrum of , as given by the following the-

orem [5].

Theorem 1: The condition in (5) holds if and only if

(8)

(9)

(10)

where denotes the spectral radius of a matrix. Furthermore

(11)

(12)

According to the above theorem, is a left and right

eigenvector of associated with the eigenvalue one, and the

magnitude of all other eigenvalues is strictly less than one. Note

finally that since is symmetric, the asymptotic convergence
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Fig. 2. Dynamic network topology. Each link is active with a probability � .
When a link is active, the parameter � ��� �� describes the weight of the edge
that permits the sensors � and � to communicate.

factor coincides with the per-step convergence factor, which im-

plies that (11) and (12) are equivalent.

We give now an alternate proof of the above theorem that

illustrates the importance of the second largest eigenvalue in

the convergence rate. We expand the initial state vector to

the orthogonal eigenbasis of ; that is

where and . We further as-

sume that . Then, (4) implies that

Observe now that if , then in the limit, the

second term in the above equation decays and

We see that the smaller the value of , the faster the

convergence rate. Analogous convergence results hold in the

case of dynamic network topologies discussed next.

B. Dynamic Network Topology

Let us consider now networks with random link failures,

where the state of a link changes over the iterations (see Fig. 2).

In particular, we use the random network model proposed in [9]

and [10]. We assume that the network at any arbitrary iteration

is , where denotes the edge set at iteration or,

equivalently, at time instant . Since the network is dynamic,

the edge set changes over the iterations, as links fail at random.

We assume that , where is the set of

realizable edges when there is no link failure.

We also assume that each link fails with a probability

, independently of the other links. Two random edge

sets and at different iterations and are indepen-

dent. The probability of forming a particular is thus given by

. We define the matrix as

if and ,

otherwise.
(13)

The matrix is symmetric and its diagonal elements are zero,

since it corresponds to a simple graph. It represents the proba-

bilities of edge formation in the network, and the edge set is

therefore a random subset of driven by the matrix. Finally,

the weight matrix becomes dependent on the edge set since

only the weights of existing edges can take nonzero values. Note

finally that one may further introduce a probability of network

topology change in each iteration. In this case, allows for con-

trolling the dynamicity of the network. The network then fol-

lows the above random network model only when a change is

triggered.

In the dynamic case, the distributed linear iteration of (2) be-

comes

(14)

or, in compact form

(15)

where denotes the weight matrix corresponding to the graph

realization of iteration and is its corresponding

weight of entry . The iterative relation given by (15) can

be written as

Clearly, now represents a stochastic process since the edges

are drawn randomly. In what follows, when it is clear from the

context that we refer to the random matrix , we drop the sub-

script for notational ease. The convergence rate to the con-

sensus solution therefore depends on the behavior of the product

. We say that the algorithm converges if

(16)

We review now some convergence results from [10], which

first shows the following.

Lemma 1: For any

It leads to the following convergence theorem [10] for dynamic

networks.

Theorem 2: If , the vector sequence

converges in the sense of (16).

We define the convergence factor in dynamic network topolo-

gies as
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This factor depends in general on the spectral properties of the

induced network matrix and drives the convergence rate of (15).

More generally, the authors in [17] show that

is also a necessary and sufficient condition for asymptotic (al-

most sure) convergence of the consensus algorithm in the case of

random networks, where both network topology and weights are

random (in particular independent identically distributed over

time).

Finally, it is interesting to note that the consensus problem

in a random network relates to gossip algorithms. Distributed

averaging under the synchronous gossip constraint implies that

multiple node pairs may communicate simultaneously only if

these node pairs are disjoint. In other words, the set of links

implied by the active node pairs forms a matching of the graph.

Therefore, the distributed averaging problem described above is

closely related to the distributed synchronous algorithm under

the gossip constraint that has been proposed in [18, Sec. 3.3.2].

It has been shown in this case that the averaging time (or conver-

gence rate) of a gossip algorithm depends on the second largest

eigenvalue of a doubly stochastic network matrix.

III. ACCELERATED CONSENSUS WITH POLYNOMIAL FILTERING

A. Exploiting Memory

As we have seen above, the convergence rate of the distributed

consensus algorithms depends in general on the spectral proper-

ties of an induced network matrix. This is the case for both fixed

and dynamic network topologies. Most of the research work has

been devoted to finding weight matrix for accelerating the

convergence to the consensus solution when sensors only use

their current estimates. We choose a different approach where

we exploit the memory of sensors, or the values of previous es-

timates in order to augment to convergence rate, since memory

and computation use is cheaper than communication costs.

Therefore, we have proposed in our previous work [15] the

scalar epsilon algorithm (SEA) for accelerating the convergence

rate to the consensus solution. SEA belongs to the family of ex-

trapolation methods for accelerating vector sequences, such as

(3). These methods exploit the fact that the fixed point of the se-

quence belongs to the subspace spanned by any 1 consecutive

terms of it, where is the degree of the minimal polynomial of

the sequence generator matrix (for more details, see [15] and

references therein). SEA is a low-complexity algorithm, which

is ideal for sensor networks and is known to reach the consensus

solution in 2 steps. However, is unknown in practice, so one

may use all the available terms of the vector sequence. Hence,

the memory requirements of SEA are , where is the

number of terms. Moreover, SEA assumes that the sequence

generator matrix [e.g., in the case of (3)] is fixed, so that

it does not adapt easily to dynamic network topologies.

In this paper, we propose a more flexible algorithm based on

the polynomial filtering technique. Polynomial filtering permits

to “shape” the spectrum of a certain symmetric weight matrix

in order to accelerate the convergence to the consensus solution.

Similarly to SEA, it allows the sensors to use the value of their

previous estimates. However, the polynomial filtering method-

ology introduced below presents three main advantages.

i) It is robust to dynamic topologies.

ii) It has explicit control on the convergence rate.

iii) Its memory requirements can be adjusted to the memory

constraints imposed by the sensor.

B. Polynomial Filtering

Starting from a given (possibly optimal) weight matrix , we

propose the application of a polynomial filter on the spectrum

of in order to impact the magnitude of that mainly

drives the convergence rate. Denote by the polynomial

filter of degree that is applied on the spectrum of

(17)

Accordingly, the matrix polynomial is given as

(18)

Observe now that

(19)

which implies that the eigenvalues of are simply the

polynomial filtered eigenvalues of , i.e., ,

.

In the implementation level, working on implies a pe-

riodic update of the current sensor’s value with a linear combi-

nation of its previous values. To see why this is true, we observe

that

(20)

(21)

A careful design of may impact the convergence rate

dramatically. Then, each sensor typically applies polynomial

filtering for distributed consensus by following the main steps

tabulated in Algorithm 1. In what follows, we propose different

approaches for computing the coefficients of the filter .

C. Newton’s Interpolating Polynomial

One simple and rather intuitive approach for the design of the

polynomial is to use Hermite interpolation [33]. Recall

that the objective is to dampen the smallest eigenvalues of

while keeping the eigenvalue one intact. Therefore, we assume

(initially) that the spectrum of lies in an interval [ 1], and

we impose smoothness constraints of at the left endpoint .

In particular, the polynomial that we seek

will be determined by the following constraints:

(22)

(23)

(24)
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Fig. 3. Newton’s polynomial of various degrees �. (a) � � � and (b) � � ���.

Algorithm 1 Polynomial Filtered Distributed Consensus

1: Input: polynomial coefficients , tolerance

.

2: Output: average estimate .

3: Initialization:

4: .

5: Set the iteration index .

6: repeat

7: if then

8:

{polynomial filter update}.

9: .

10: else

11: .

12: end if

13: Increase the iteration index .

14: .

15: until

where denotes the th derivative of evaluated at

. Intuitively, we seek a polynomial that will be zero at

[(22)], will be one at [(23)], and will be very

small in the region close to the left endpoint . The latter is

imposed by the smoothness constraints (24). The dampening is

achieved by imposing smoothness constraints of the polynomial

on the left endpoint of the interval. The computed polynomial

will have a degree equal to . Finally, the coefficients of

that satisfy the above constraints can be computed by Newton’s

divided differences [33].

Fig. 3(a) shows an example of the shape of for

and different values of the degree . As increases, more

smoothness constraints are imposed on , and the dampening

of the small eigenvalues becomes more effective. Interestingly,

notice that since the smoothness constraints hold for free on the

left of the interval [ 1] as well, the filtering will work even in

the case where lies within the spectrum of , provided that

the magnitude of the filtered eigenvalues is strictly smaller than

one (i.e., , ). Therefore, we may drop the

assumption that encloses the spectrum of . For instance, if

the spectrum of lies in [0,1], then one may choose .

Fig. 3(b) shows the obtained polynomial filter in this case.

Furthermore, it is worth mentioning that the design of

Newton’s polynomial does not depend on the network topology

or the network size. What is only needed is a left endpoint ,

which roughly corresponds to the left extreme of the spectrum

of , as well as the desired degree , which moreover may

be imposed by memory constraints. This feature of Newton’s

polynomial is very interesting and is particularly appealing

in the case of dynamic network topologies. Note, however,

that the above polynomial design is mostly driven by intuitive

arguments, which tend to obtain small eigenvalues for faster

convergence. In the following section, we provide an alternative

technique for computing the polynomial filter that optimizes

the convergence rate.

IV. POLYNOMIAL FILTER DESIGN WITH

SEMIDEFINITE PROGRAMMING

A. Polynomial Filtering for Static Network Topologies

Given weight matrix and a certain degree , we are now

interested in finding the polynomial that leads to the fastest con-

vergence of (20), which we reproduce for convenience here

Recall that . Applying Theorem 1 to the

above linear iteration, the optimal polynomial is the one that

minimizes the spectral radius . Therefore,

we need to solve an optimization problem where the optimiza-

tion variables are the 1 polynomial coefficients
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and the objective function is the spectral radius of

Optimization problem

Interestingly, the optimization problem OPT1 is convex.

First, its objective function is convex, as stated in Lemma 2.

Lemma 2: For a given symmetric weight matrix and de-

gree , is a convex function of the

polynomial coefficients s.

Proof: Let and . Since is

symmetric, is also symmetric. Hence, the spectral

radius is equal to the matrix 2-norm. Thus, we have

which proves the lemma.

In addition, the constraint of OPT1 is linear, which implies

that the set of feasible s is convex. As OPT1 minimizes a

convex function over a convex set, the optimization problem is

indeed convex.

In order to solve OPT1, we use an auxiliary variable to

bound the objective function, and then we express the spectral

radius constraint as a linear matrix inequality (LMI). Thus, we

need to solve the following optimization problem:

Optimization problem

subject to

Recall that since is symmetric, will

be symmetric as well. Hence, the constraint is suf-

ficient to ensure that will be also a left eigenvector of .

The spectral radius constraint

ensures that all the eigenvalues of , other than the first

one, are less than or equal to . Due to the LMI, the above opti-

mization problem becomes equivalent to an SDP [19]. SDPs are

convex problems and can be globally and efficiently solved. The

solution to OPT2 is therefore computed efficiently in practice,

where the SDP only has a moderate number of 2 unknowns

(including ).

B. Polynomial Filtering for Dynamic Network Topologies

We extend now the idea of polynomial filtering to dynamic

network topologies. Theorem 2 suggests that the conver-

gence rate in the random network topology case is governed

by . Since depends on a dynamic

edge set, now becomes stochastic. Following the

same intuition as above, we could form an optimization

problem, similar to OPT1, whose objective function would

be . Although this objective

function can be shown to be convex, its evaluation is hard and

typically requires several Monte Carlo simulations steps.

Recall that the convergence rate of [see (15)] is

related to the second largest (in magnitude) eigenvalue of ,

which is much easier to evaluate. Let denote the average

weight matrix . We then observe that

(25)

which is due to Lemma 2 and Jensen’s inequality. The

above inequality implies that in order to have a small

, it is required that be

small. Additionally, the authors provide experimental evidence

in [10], which indicates that seems to be

closely related to the convergence rate of the linear iteration

.

Based on the above approximation, we propose an algorithm

for polynomial filtering applied to dynamic network topologies.

In particular, we propose to build our polynomial filter based on

. Hence, we formulate the following optimization problem

for computing the polynomial coefficients s in the dynamic

network topology case

Optimization problem

OPT3 could be viewed as the analog of OPT2 for the case of

dynamic network topology. The main difference is that we work

on , whose eigenvalues can be easily obtained. Once has
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Fig. 4. Effect of polynomial filtering on the spectrum of the maximum-degree matrix of (26). (a) SDP polynomial filter � ���, � � � � �. (b) Effect on the
spectrum ��� �.

been computed, this optimization problem is solved efficiently

by an SDP, similarly to the case of static networks.

Finally, one would expect that the bound (25) will be tighter

when the successive matrices are not very different. Indeed,

in this case, one may argue that for infinitesimal changes of ,

the function is locally linear and therefore

the bound in (25) is tight. Note also that these network changing

conditions correspond to most common scenarios. Furthermore,

since is symmetric, its eigenvalues are well behaved under

small perturbations (due to the Bauer–Fike theorem [13]). Thus,

one would additionally expect that minor changes in will lead

to small changes to the optimal polynomial coefficients.

V. SIMULATION RESULTS

A. Setup

In this section, we provide simulation results that show the

effectiveness of the polynomial filtering methodology. First we

introduce a few weight matrices that have been extensively used

in the distributed averaging literature. Suppose that denotes

the degree of the th sensor. It has been shown in [5] and [6] that

iterating (3) with the following matrices leads to convergence to

.

• Maximum-degree weights: The maximum-degree weight

matrix is

if

otherwise.

(26)

• Metropolis weights: The metropolis weight matrix is

if

otherwise.

(27)

• Laplacian weights: Suppose that is the adjacency matrix

of and is a diagonal matrix that holds the vertex de-

grees. The Laplacian matrix is defined as and

the Laplacian weight matrix is defined as

(28)

where the scalar must satisfy [5].

• Optimal weights, introduced in [5]: The optimal weight

matrix is determined by solving an SDP corresponding

to the minimization of under the con-

straint that is graph conformant (see [5] for more de-

tails). It should be noted that the number of unknowns

in the case of optimal weights is equal to the number of

nonzero entries of (i.e., number of links in the network,

which is on the order of ). This represents a limita-

tion on the use of optimal weights for large or dynamic net-

work topologies. On the contrary, the number of unknowns

in our method is small, namely, 2.

The sensor networks are built using the random geographic

graph model [23]. In particular, we place nodes uniformly dis-

tributed on the two-dimensional unit area. Two nodes are adja-

cent if their Euclidean distance is smaller than in

order to guarantee connectedness of the graph with high proba-

bility [23].

Note that in our SDP polynomial filtering method, for both

fixed and dynamic network topology cases, the s are com-

puted offline assuming that and, respectively, are

known a priori. Finally, the SDP programs for optimizing the

polynomial filters are solved in Matlab using the SeDuMi [21]

solver1 and the YALMIP toolbox [22].

B. Static Network Topologies

First, we illustrate graphically the effect of polynomial fil-

tering on the spectrum of . We build a network of

sensors and apply polynomial filtering on the maximum-degree

weight matrix , given in (26). We use and solve the op-

timization problem OPT2 using the maximum-degree matrix

as input. Fig. 4(a) shows the obtained polynomial filter ,

when , where denotes the smallest

(algebraically) eigenvalue of . Next, we apply the polynomial

on . Fig. 4(b) shows the spectrum of before (star-solid

line) and after (circle-solid line) polynomial filtering versus the

vector index. Observe that polynomial filtering dramatically in-

creases the spectral gap 1 , which further leads to ac-

celerating the distributed consensus, as we show in the simula-

tions that follow. This example illustrates the effect of a polyno-

mial filter on the spectrum of a matrix. The detailed comparison

1Publically available at: http://www.sedumi.mcmaster.ca/.
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Fig. 5. Behavior of polynomial filtering for variable degree � on fixed topology using the Laplacian weight matrix. (a) SDP polynomial filtering and (b) Newton
polynomial filtering.

Fig. 6. Comparison between Newton’s polynomial and SDP polynomial �� � �� on fixed topology. (a) Maximum-degree weight matrix and (b) metropolis
weight matrix.

between the convergence rates implied by the two matrices is

further provided below.

We compare the performance of the different distributed con-

sensus algorithms, with all the aforementioned weight matrices;

that is, maximum-degree, metropolis, Laplacian, and optimal

weight matrices for distributed averaging. We compare both

Newton’s polynomial and the SDP polynomial (obtained from

the solution of OPT2) with the standard iterative method, which

is based on successive iterations of (3). For the sake of complete-

ness, we also provide the results of the scalar epsilon algorithm

(SEA) that uses all previous estimates [15].

First, we explore the behavior of polynomial filtering

methods under variable degree from 2 to 6 with step 2.

We use the Laplacian weight matrix for this experiment and

. Fig. 5(a) and (b) illustrate the evolution of the av-

erage absolute error versus the iteration index ,

for polynomial filtering with SDP and Newton’s polynomials

respectively. The curves that are shown, are averages over 500

random realizations of the sensor network and random (uni-

formly distributed) initial measurements. We also provide the

curve of the standard iterative method as a baseline. Observe

first that both polynomial filtering methods outperform the

standard method by exhibiting faster convergence rates, across

all values of . Notice also that in the SDP method, the degree

clearly governs the convergence rate, since larger implies

more effective filtering and therefore faster convergence (i.e.,

the slope is steeper for larger ). Finally, the stagnation of the

convergence process of the SDP polynomial filtering and large

values of is due to the limited accuracy of the SDP solver.

Next, we show the results obtained with the other two weight

matrices. Fig. 6(a) and (b) shows the average convergence be-

havior of all methods for the maximum-degree and metropolis

matrices, respectively, over 500 random experiments (sensor

network and initial measurements). In both polynomial filtering

methods, we use a representative value of , namely, four. In

the case of Newton’s polynomial filtering, we use for

both weight matrices. Notice again that polynomial filtering ac-

celerates the convergence of the standard iterative method (solid

line). As expected, the optimal polynomial computed with SDP

outperforms Newton’s polynomial, which is based on intuitive

arguments only.

Furthermore, we can see from Figs. 5 and 6 that in some cases

the convergence rate is comparable for SEA and SDP polyno-

mial filtering. Note, however, that the former uses all previous

iterates, in contrast to the latter, which uses only the 1 most

recent ones. Hence, the memory requirements are smaller for
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Fig. 7. Convergence time versus � with the Laplacian weight matrix.

Fig. 8. Convergence time versus � with the metropolis weight matrix.

polynomial filtering, since they are directly driven by . This

moreover permits a more direct control on the convergence rate,

as we have seen in Fig. 5. Interestingly, we see that the conver-

gence process is smoother with polynomial filtering, which fur-

ther permits easy extension to dynamic network topologies.

Next, we provide simulation results for different network

sizes , where varies from 50 to 300 with step 50. In partic-

ular, we fix the tolerance of the absolute error

to and measure the average number of iterations needed

by each method to reach the desired level of absolute error

across different network sizes. This provides an estimate on

the average convergence time achieved by each method over

100 random experiments. The degree is set to four for both

polynomial filtering methods. Figs. 7–9 show the obtained

results for the Laplacian, metropolis, and maximum-degree

weight matrices. Notice that the improvement of polynomial

filtering methods on the convergence rate over the standard

iterative method is pronounced in larger networks as well.

Finally, for the sake of completeness, we provide simula-

tion results with the optimal weight matrix (see Section V-A).

We apply our SDP polynomial filtering method on the optimal

weight matrix and we report the results in Fig . 10(a) and (b).

Fig. 10(a) shows the average convergence behavior over 100

random experiments for different values of . It can be noted that

the SDP polynomial filtering is able to accelerate the linear iter-

ation, even when the optimal weights are used. Also, increasing

results in improvement on the convergence rate, but this seems

Fig. 9. Convergence time versus � with the maximum-degree weight matrix.

to saturate for large values of . Additionally, Fig. 10(b) shows

the average number of iterations needed to obtain absolute error

of when the network size varies from ten to 50

with step ten. In this experiment, was set to four, and the re-

sults are averages over 100 random experiments. We observe

that the improvement offered by polynomial filtering stays con-

sistent for different network sizes. Note that in this case we per-

form simulations for relatively small network sizes, since the

solution of the optimization problem for the optimal weights is

computationally intensive (recall that the number of unknowns

is ). On the contrary, the number of unknowns in our SDP

polynomial filtering method is only 2 and does not depend

on the network size.

C. Dynamic Network Topologies

We study now the performance of polynomial filtering for

dynamic networks topologies. We build a sequence of random

networks of sensors. We assume that in each iteration,

the network topology changes with probability (independently

from the previous iterations) and with probability , it re-

mains the same as in the previous iteration. We compare all

methods for different values of the probability . We use the

Laplacian weight matrix (28) and in Newton’s polyno-

mial filtering. In the SDP polynomial filtering method, we solve

the SDP program OPT3 (see Section IV-B). Fig. 11 shows the

average performance of polynomial filtering for some represen-

tative values of the probability and degree . The average per-

formance is computed using the median over 100 experiments.

We have not reported the performance of the SEA algorithm

since it is not robust to changes of the network topology.

Notice that when (i.e., each sensor uses only its cur-

rent value and the right previous one), polynomial filtering ac-

celerates the convergence over the standard method for both

small and large values of . At the same time, it stays robust

to network topology changes. Also, observe that in this case,

the SDP polynomial outperforms Newton’s polynomial. How-

ever, when , the roles between the two polynomial fil-

tering methods change as the probability increases. For in-

stance, when , the SDP method even diverges. Thus,

it appears that Newton’s polynomial filtering is more robust to

network changes than the SDP method. This is expected if we

think that the coefficients of Newton’s polynomial are computed
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Fig. 10. Combination of SDP polynomial filtering with the optimal weight matrix. (a) SDP polynomial filtering applied to the optimal weight matrix and (b) av-
erage convergence time using the optimal weight matrix.

Fig. 11. Random network topology simulations with small �. � denotes the probability that the network changes at each iteration. (a) � � �, � � ���; (b) � � �,
� � �; (c) � � �, � � ���; and (d) � � �, � � ���.

using Hermite interpolation in a given interval and they do not

depend on the specific realization of the underlying weight ma-

trix. Thus, they are more generic than those of the SDP poly-

nomial that takes into account, and therefore they are less

sensitive to the actual topology realization. Algorithms based

on optimized polynomial filtering become inefficient in a highly

dynamic network, whose topology changes very frequently.

We perform further simulations that correspond to larger

values of in order to investigate the behavior of Newton’s

polynomial filtering. Fig. 12 shows the obtained results when

and . The experimental results suggest that poly-

nomial filtering with Hermite interpolation stays robust to

network changes when and . This is even the

case for and small . Therefore, we can conclude that
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Fig. 12. Random network topology simulations with larger �. � denotes the probability that the network changes at each iteration. (a) � � �, � � �; (b) � � �,
� � �; (c) � � �, � � ���; and (d) � � �, � � ���.

Newton’s polynomial filtering is robust to network changes for

moderate values of .

VI. RELATED WORK

Several works have studied the convergence rate of dis-

tributed consensus algorithms. In particular, the authors in [5]

and [9], [10] have shown that the convergence rate depends

on the second largest eigenvalue of the network weight matrix

for fixed and random networks, respectively. They both use

semidefinite programs to compute the optimal weight matrix,

and the optimal topology. We have illustrated in the simulation

section that our polynomial filtering methodology can be com-

bined with optimal weight matrices and result in even faster

convergence rates.

Recently, a few papers have appeared that focus into accel-

erating the convergence rate to the consensus solution via lifted

Markov chains. The main idea of lifting is to distinguish the

graph nodes from the states of the Markov chain and to “split”

the states into virtual states that are connected in such a way that

permits faster mixing. The lifted graph is then “projected” back

to the original graph, where the dynamics of the lifted Markov

chain are simulated subject to the original graph topology. We

mention the work in [26], which proposes a fast distributed aver-

aging algorithm for geographic random graphs. In particular, the

location information of the sensors is assumed to be known and

is used in order to construct a nonreversible lifted Markov chain

that mixes faster than corresponding reversible chains. How-

ever, since the Markov chain is nonreversible, the stationary dis-

tribution is not uniform anymore. The authors introduce weights

in order to overcome this problem, which in turn increases the

communication cost. Moreover, the extension of the proposed

methodology to dynamic network topologies is not straightfor-

ward. Along the same lines of lifting, Jung et al. [28] used non-

reversible lifted Markov chains for fast gossip. The authors use

the lifting scheme of [29] and propose a deterministic gossip al-

gorithm based on a set of disjoint maximal matchings in order

to simulate the dynamics of the lifted Markov chain.

In [27], the authors propose a cluster-based distributed av-

eraging algorithm, applicable to both fixed linear iteration and

random gossiping. By clustering the nodes, one may construct

an overlay graph that is better connected, relative to the orig-

inal graph; hence, the random walk on the overlay graph mixes

faster than the corresponding walk on the original graph. The

improvement in mixing time comes nevertheless at the cost of

performing the clustering and forming the overlay graph. The

extension of this methodology to dynamic network topologies is

also not easy. On the contrary, our polynomial filtering method-

ology is flexible, and as we have seen in the simulations section,

it can be applied successfully in both fixed and dynamic network

topologies.

Recent works have also proposed to use the sensors’ memory,

such as [11] and [12]. The main idea in [11] is to update the value
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of each sensor by a convex combination of the value obtained

by linear prediction on its own previous values and the stan-

dard consensus operation (i.e., aggregating neighbors’ values).

Although the authors derive the optimal convex combination

parameter, the linear prediction coefficients are not optimized.

This is to be contrasted to our SDP polynomial filtering method-

ology, where we establish the optimality of the polynomial co-

efficients. In a different context, the effect of quantization has

been studied in [12] for average consensus problems. The au-

thors propose scalar quantizers based on predictive coding. The

predictive coding scheme relies upon linear prediction using the

past values of the sensors.

For the sake of completeness, we further mention in the

sequel a few representative papers that address the general

problem of consensus in sensor networks. The approaches

based on agreement algorithms or gossiping are quite different

from the work proposed in this paper. Olshevsky and Tsitsiklis

in [8] propose two consensus algorithms for fixed network

topologies, which build on the “agreement algorithm.” The

proposed algorithms make use of spanning trees and the au-

thors bound their worst case convergence rate. For dynamic

network topologies, they propose an algorithm that builds on

a previously known distributed load balancing algorithm. In

this case, the authors show that the algorithm has a polynomial

bound on the convergence time ( -convergence).

The authors in [30] study the convergence properties of

agreement over random networks following the Erdős and

Rényi random graph model. According to this model, each

edge of the graph exists with probability , independently of

other edges and the value of is the same for all edges. By

agreement, we typically consider the case where all nodes of the

graph agree on a particular value. The authors employ results

from stochastic stability in order to establish convergence of

agreement over random networks. Also, it is shown that the rate

of convergence is governed by the expectation of an exponential

factor, which involves the second smallest eigenvalue of the

Laplacian of the graph.

Gossip algorithms have also been applied successfully to

solving distributed averaging problems. In [18], the authors

provide convergence results on randomized gossip algorithm

in both synchronous and asynchronous settings. Based on the

obtained results, they optimize the network topology (edge for-

mation probabilities) in order to maximize the convergence rate

of randomized gossip. This optimization problem is formulated

as a semidefinite program. In a recent study, the authors in [24]

and [25] have been able to improve the message complexity

of the standard gossip protocols in cases where the sensors

know their geometric positions. The main idea is to exploit

geographic routing in order to aggregate values among random

nodes that are far away in the network.

Finally, even if we have mostly considered synchronous al-

gorithms in this paper, it is worth mentioning that the authors in

[31] propose two asynchronous algorithms for distributed aver-

aging. The first algorithm is based on blocking (that is, when

two nodes update their values they block until the update has

been completed) and the other algorithm drops the blocking as-

sumption. The authors show the convergence of both algorithms

under very general asynchronous timing assumptions. Along

the lines of asynchronous algorithms, we mention also the con-

sensus propagation framework proposed in [32], which is an

asynchronous distributed protocol that is a special case of be-

lief propagation. In the case of singly connected graphs (i.e.,

connected with no loops), synchronous consensus propagation

converges in a number of iterations that is equal to the diameter

of the graph. The authors provide convergence analysis for reg-

ular graphs.

VII. CONCLUSION

In this paper, we proposed a polynomial filtering method-

ology in order to accelerate distributed average consensus in

both fixed and dynamic network topologies. The main idea of

polynomial filtering is to shape the spectrum of the polynomial

weight matrix in order to minimize its second largest eigenvalue

and subsequently increase the convergence rate. We have con-

structed semidefinite programs to optimize the polynomial coef-

ficients in both static and dynamic networks. Simulation results

with several common weight matrices have shown that the con-

vergence rate is much higher than for state-of-the-art algorithms

in most scenarios, except in the specific case of highly dynamic

networks and small memory sensors.
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