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Polynomial Filtering of Discrete-Time Stochastic
Linear Systems with Multiplicative State Noise

Francesco Carravetta, Alfredo Germani, and Massimo Raimondi

Abstract— In this paper, the problem of finding an optimal
polynomial state estimate for the class of stochastic linear mod-
els with a multiplicative state noise term is studied. For such
models, a technique of state augmentation is used, leading to the
definition of a general polynomial filter. The theory is developed
for time-varying systems with nonstationary and non-Gaussian
noises. Moreover, the steady-state polynomial filter for stationary
systems is also studied. Numerical simulations show the high
performances of the proposed method with respect to the classical
linear filtering techniques.

Index Terms— Kalman filter, Kronecker algebra, polynomial
filter, stochastic bilinear systems, stochastic stability.

I. INTRODUCTION

S
YSTEMS with multiplicative state noise, also known in

literature as bilinear stochastic systems (BLSS’s), have

been widely studied since the 1960’s because, from an en-

gineering point of view, they constitute a more adequate

mathematical model for the analysis and control of some im-

portant physical processes. In particular, we stress that bilinear

models are often derived from basic principles in chemistry,

biology, ecology, economics, physics, and engineering [3].

Moreover, the well-known bilinear systems (BLS’s) become

BLSS’s when the input is affected by additive noise.

In control engineering, BLS’s are appealing for their better

controllability with respect to the linear ones [2]. In this

framework, considerable importance is devoted to control and

stabilization problems, as shown in [5]–[11]. The problem of

parameter estimation for BLS’s and BLSS’s was considered

in [12]–[15].

The state estimation problem for BLSS’s constitutes an

important topic in all those cases in which the state itself is not

available directly. In [4], the filtering problem for linear control

systems is considered. In [16], the same problem, for a class of

nonlinear systems including the bilinear ones, is studied, and

a linear filter is obtained by considering the nonlinear term as

an additive noise. BLSS’s can be considered as linear systems

whose dynamic matrices are a random process and vice versa
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[26]–[31]. In [17] and [18], following this interpretation, a

linear filtering technique for the state estimation of BLSS’s is

proposed.

In this paper we consider the following class of BLSS’s:

(1)

(2)

where and are

white sequences (not necessarily Gaussian) in and

, respectively, and are matrices of suitable dimen-

sions, whereas is a bilin-

ear map. Moreover, we will assume the independence of

and .

The problem we would like to face is the filtering of the

state , given the measurement process . It

is well known that when , this problem is solved by

the famous Kalman filter which yields the linear minimum

variance optimal state estimate (actually optimal among all

filters in the Gaussian case) [32]. The general case is, until

now, unsolved. As mentioned above, a suboptimal solution

can be obtained by substituting the stochastic forcing term in

(1), namely

(3)

by a process having the same first- and second-order prop-

erties. Indeed, it is readily proved that is a white

sequence so that the Kalman filter can be implemented in order

to have the optimal linear estimate. Of course, the stochastic

sequence given by (3) is not Gaussian so that the Kalman filter

does not give the optimal estimate. Recently, the problem of

finding nonlinear filters for non-Gaussian linear models has

been considered. In particular, a quadratic filter is proposed in

[19], and its extension to a more general polynomial case is

considered in [20].

In this paper, we are able to define a filter for a BLSS

such as (1) and (2), which is optimal in a class of polynomial

transformations. We also stress that a Gaussian-noise setting

is meaningful in the present case. The theory developed here

includes, as a particular case, the one described in [20],

which can be simply obtained by setting to zero the bilinear

form in (1). It should also be noted that a converse point

of view could be adopted in that a way of constructing

a polynomial filter for BLSS’s could be to compute all

moments of the stochastic forcing term (3) and then using
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the polynomial filter for linear non-Gaussian systems defined

in [20]. However, this way is not convenient at all. Indeed, the

computation of the moments of (3) requires the computation of

the state moments. The application of the procedure described

in [20] for state-moments computation leads, in this case,

to a very cumbersome nonlinear equation, giving very hard

implementation problems that are difficult to analyze as far

as its convergence properties are concerned. In the general

polynomial case, it is much more convenient to assume

as a starting point for the development of the theory, the

representation (just used in [17] and [18]) of the BLSS (1),

(2) as a linear system with a stochastic dynamical matrix. In

this framework, in order to obtain a self-contained general

solution of the polynomial filtering problem for the class of

the BLSS, here we will adopt just the basic strategy described

in [20]. The resulting algorithm will be sufficiently general to

include as a very particular case the polynomial filter for the

linear non-Gaussian systems.

Roughly speaking, the method used here consists of defining

a linear system whose state and output processes include

Kronecker powers and products of the original state and

output processes so that it is amenable to be treated with

Kalman filtering theory. For this purpose, the main tool is

the Kronecker algebra. Some important formulas about this

subject are also deduced (e.g., the expression of the Kronecker

power of a vector polynomial).

We stress that, in the present case, the existence of a stable

solution for the polynomial filter is not guaranteed simply by

the stability of the dynamic matrix as in the linear case.

The paper is organized as follows: in Section II, we recall

some notions in estimation theory which are essential to better

understanding the meaning of polynomial estimate. In this

framework, we define the class of polynomial estimators and

recursive algorithms which we will use later. In Section III,

we make precise the problem statement, and Sections IV

and V explain how to build up the augmented system. In

Section VI, the way to implement the filter on the augmented

system is described. In Section VII, we present the stationary

case and the steady-state theory. Section VIII contains some

remarks about the computer implementation of the algorithm.

In Section IX, numerical simulations are presented showing

the high performance of polynomial filtering with respect to

the standard linear methods. Two appendixes are included:

Appendix A, containing the proof of the main theorem of the

paper defining the augmented system, and Appendix B, where

the main definitions and properties about Kronecker algebra

are reported together with some new results.

II. POLYNOMIAL ESTIMATES

Our aim is to improve the performance of standard linear

filtering for the class of the BLSS (1), (2). For this purpose we

will look for the optimal filter among the class of estimators

constituted by all the fixed-degree causal polynomial transfor-

mations of the measurements. We now clarify this point by

giving some definitions which will be useful in the following.

Let be a probability space. For any given sub-

algebra of and integer , let us denote by

the Banach space of the -dimensional -measurable random

variables with finite th moment as

measurable,

where is the euclidean norm in . Moreover, when is

the -algebra generated by a random variable ,

that is , we will use the notation to indicate

. Finally, if is a closed subspace of ,

we will use the symbol to indicate the orthogonal

projection of onto .

As is well known, the optimal minimum variance estimate

of a random variable with respect to a random

variable , that is , is given by the conditional

expectation (C.E.) . If and are jointly Gaussian,

then the C.E. is the following affine transformation of :

(4)

where .

Moreover, defining

(4) also can be interpreted as the projection on the subspace

such that

Unfortunately, in the non-Gaussian case, no simple charac-

terization of the C.E. can be achieved. Consequently, it is

worthwhile to consider suboptimal estimates which have a

simpler mathematical structure that allows the treatment of

real data. The simplest suboptimal estimate is the optimal

affine one, that is , which is still given by

the right-hand side (RHS) of (4). In the following, such an

estimate will be denoted with and shortly called the optimal

linear estimate. Suboptimal estimates comprised between the

optimal linear and the C.E. can be considered by projecting

onto subspaces, greater than , like subspaces of

polynomial transformations of Y. We define the th degree

space of the polynomial transformations of as

the following (closed) subspace of :

where the symbol denotes the Kronecker power (see

Appendix B). By defining the vector

...
(5)

we have that
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We define the th-order polynomial estimate as the random

variable . Since

the polynomial estimate improves (in terms of error variance)

the linear one. Let be the closure in of

=

since, in general, for we cannot assert

that the polynomial estimate “approaches” the optimal one

for increasing polynomial degrees. Nevertheless, the C.E. of

can be decomposed as

where is the orthogonal subspace of . From the pre-

vious relation we infer that the polynomial estimate can be

considered as an approximation of the optimal one only when

is suitably small. However, the polynomial

estimate always yields an improvement with respect to the

performance of a linear estimator. Moreover, we can calcu-

late it by suitably modifying the space of observed random

variables and using (4)

(6)

where

Now, let us consider a sequence of random variables in

and another of observed ones in .

The problem of estimating , given , can

be solved by defining the vector

...

and applying (4) with so that the

optimal linear estimate of is obtained. When the joint

sequence is Gaussian, (4) yields the optimal estimate

. Similarly, if the moments

are finite and known, the th-order

polynomial estimate can be obtained by extending the vector

as in (5). However, such a method is highly inefficient,

because it leads to a fast growth of the dimensions of involved

matrices so that it does not result in being very useful from an

application point of view. A more realistic approach should

consist of searching for a recursive algorithm able to yield

the above estimates. For this purpose, we give the following

definition.

Definition 2.1: We say that the estimate of (not

necessarily optimal) is recursive of order if there exists

a sequence of random variables and transformations

such that the following equations hold:

(7)

(8)

As is well known, in the Gaussian case and when the

sequences are the state and output evolutions of a

linear discrete-time dynamic system, the optimal estimator of

the state satisfies a recursive equation as in (7), (8), with

given by a suitable linear transformation, ( identity

matrix) and (the Kalman filter). The same equations

give, in the non-Gaussian case, the optimal linear estimate.

In the next section, we will prove that when and

are the state and output processes, respectively, for a BLSS as

in (1), (2), it is possible to find a structure (7), (8) where

has the form

with linear and polynomial such that (7) and (8) yield

the sequence of optimal estimates in a certain subclass

of all the polynomial transformations of fixed and finite degree.

In order to define more precisely this subclass of polynomial

estimators, we need to give some preliminary definitions.

Consider the above-defined vector and let be a

fixed integer; we define the subspace

as

where the ’s are suitably dimensioned matrices. Since

the subspace is finite dimensional, and there-

fore closed, we have that for any it is possible to orthopro-

ject there the random variable . Then, we can give the

following definition.

Definition 2.2: The random variable , given by

is said to be the -order polynomial estimate of .

The random variable represents the optimal estimate

of among all the -degree polynomials, including cross

products between observations which lie in a time window of

width . Since
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and

the result is that the estimate quality had to improve for

increasing and/or .

III. THE PROBLEM

The problem we are faced with is the filtering one for the

following class of stochastic discrete-time bilinear systems:

(9)

(10)

where, for any

Moreover, , whereas

is a bilinear form in . The random variable (the initial

condition) and the random sequences

satisfy the following conditions for any .

1) There exists an integer such that

2) The initial state forms, together with the sequences

a family of independent ran-

dom variables.

3) All random sequences are

white.

It should be noted that the vector , in (9),

due to the bilinearity hypothesis, can be written in the form

where is a suitable matrix and denotes

the th entry of the vector . Then, system (9), (10) can

be rewritten as

(11)

(12)

where

(13)

System (11), (12) is a linear system with a stochastic dynamic

matrix. It is equivalent to the original bilinear system because it

generates exactly the same state and output processes. Hence,

in order to obtain a state estimate, we can consider this latter

system in place of (9), (10).

Our goal is the determination of a discrete-time filter, that

is a recursive algorithm in the form (7), (8), which gives at

any time the optimal polynomial state estimate of -

order (see Definition 2.1) for the system (9), (10), given all

the available observations at time .

In the next sections, it will be shown how to obtain such

a polynomial filter. Moreover, in the constant parameter case,

conditions will be defined assuring the existence of a stationary

polynomial filter.

The approach that follows goes along the same line as in

[20], consisting essentially of the transpose of the originary

problem to a linear filtering one, solvable by means of the

Kalman filter. In order to define a polynomial estimator which

also takes into account cross products between observations at

different times, we need to introduce the following so-called

“extended memory system.”

IV. THE EXTENDED MEMORY SYSTEM

Given the system (9), (10), and having chosen an integer

, let us define the following vectors:

...
...

(14)

with and . Taking into account

the equivalent equations (11), (12), we have that

satisfy the following relations:

(15)

(16)

where

. . .
...

...
. . .

. . .
...

(17)

. . .
...

. . .
...

(18)

...

...
...

...
...

We call (15), (16) an extended memory system.

In the next section, which contains the main result of this

paper, we will be able to derive the evolution of the Kronecker

powers of the above-defined extended state and output.
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V. THE AUGMENTED SYSTEM

Let us consider the integer for which Property 1) of

Section III holds. We define the augmented observation as the

vector

...
(19)

Moreover, we define the augmented state as the vector

, where

...
(20)

Now, for a bilinear system such as (9), (10), satisfying the

Properties 1) and 2) of Section III, let us build up the extended

memory system (15), (16), the augmented observations (19),

and the augmented state (20). Let and be the

identity matrix in and in , respectively. Then, the

following theorem holds.

Theorem 5.1: The processes and defined

in (19) and (20) satisfy the following equations:

(21)

(22)

where

...

...

Moreover, are zero mean uncorrelated se-

quences such that

(23)

whose auto- and cross-covariance matrices

have the following block structure:

where, for are

matrices, respectively, given by the

following formulas:

(24)

(25)

(26)
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(27)

(28)

Proof: See Appendix A.

We call system (21), (22) an augmented system. It is

a classical time-varying stochastic linear system. Its state

and observation noises are zero mean uncorrelated sequences

and are also mutually uncorrelated at different times. For

these noises we are able to calculate their auto- and cross

covariances. Hence, for the augmented system the optimal

linear state estimate can be calculated by means of the Kalman

filter equations. In order to proceed along this way, we first

need to determine the quantities and

for which appear in the augmented system

matrices and in (23)–(28).

The matrices can be recursively

calculated from , as stated in the following theorem.

Theorem 5.2: Let, for

and then we have

(29)

where are given by the following

recursive equations:

(30)

(31)

with initial conditions

(32)

(33)

Proof: First of all, note that the matrix , defined in

(17), can be rewritten in the compact form

(34)

where the null blocks are suitably dimensioned, is

defined in (13), and denotes as usual the identity

matrix in (we conventionally assume that it vanishes

for ). From (34), and for , (35) follows,

as shown at the bottom of the page. Moreover, for any pair of

integers using Theorem B.3 and Property (93c), we have

(36)

where

(35)



1112 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 8, AUGUST 1997

Taking into account (34), we have the resulting (37), as shown

at the bottom of the page, where

(38)

Equation (37) substituted in (36) yields, by exploiting (38) and

(35), (30) and (31). From (38) we have

and substituting this in (35), we obtain (29). Finally, note that

from (13) and taking into account (34), the initial condition

(32) follows. Moreover, from (29)–(31) we infer that to

compute it is enough to know the matrices ,

for , which are given by (33), as immediately

follows from (38).

Theorem 5.2 allows us to compute recursively the matrices

for from the initial conditions

(32), (33). Condition (32) is immediately given from the data,

whereas to obtain (33) we use the following result.

Theorem 5.3: The matrices are given by the

following formula:

(39)

Proof: By applying (106) and Corollary B.8, and by

exploiting (13), we have

As far as , the vectors appearing

in the expressions of the augmented noise covariances, are

concerned, the following theorem shows that their calculation

is possible by means of a recursive algorithm.

Theorem 5.4: The vector of the expected values ,

defined as

...

satisfies the following recursive equation:

(40)

where

...

Proof: See Appendix A.

(37)
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VI. POLYNOMIAL FILTERING

Now we are able to apply the Kalman filter to system (21),

(22). It should be highlighted that since the samples of the

augmented state and output noises are in general correlated at

the same time, the system needs to use the Kalman filter in a

version given by [22], which takes into account this nonzero

correlation. The equations to use are the following:

(41)

(42)

(43)

(44)

(45)

(46)

where is the filter gain, are the filtering

and one-step prediction errors covariances, respectively, and

the other symbols are defined as in Theorem 5.1. If the matrix

is singular, it is possible to use

the Moore–Penrose pseudo-inverse.

Equation (41) yields recursively the vector , that is the

optimal linear estimate of with respect to the aggregate

vector of all the augmented observations up to time :

...

(we remind readers that here the unit element allows us to

reduce an affine estimation problem to a strictly linear one).

From Definition (20) of and (14) of , it follows

that the original state, , is the aggregate of the first

entries of the vector . Since the optimal linear estimate

with respect to is the projection of the random vector

on the subspace linearly spanned by , it follows that

we can obtain the optimal linear estimate of with respect

to , i.e., , by extracting in the first entries

(47)

Equation (47) implies that the error covariance of the original

state, namely , is given by

(48)

where is given by (45) and hence is the top

left block of . By remembering the structure of the

extended observation (14) and of the augmented one (19), from

Definition 2.2 we infer that is the -optimal poly-

nomial estimate with respect to the originary measurements

. As in [20], we call a polynomial

filter the whole set of operations constituted by the recursive

equations (41), (42) and by the extraction of the first entries

in , resulting in an algorithm having the form (7), (8).

VII. STATIONARITY AND STEADY-STATE BEHAVIOR

Equations (41), (47) allow us the recursive calculation of the

state polynomial estimate for the time-varying bilinear system

(9), (10). However, in the time-varying case the result will be

in general dependent on the initial conditions, whose statistics

are often unknown. Moreover, the gain equations (43)–(46)

need to be implemented simultaneously to the filter equations

(41), (42).

Due to the high complexity of this filter, it assumes great

importance from a practical point of view, to know when there

exists the steady-state version of (44)–(46). Here we will limit

ourselves to examining some important subclasses of bilinear

systems for which we will be able to give necessary conditions

under which a stationary behavior can be achieved.

First of all, let us consider the case when the system

matrices and the bilinear form of

system (9), (10) are time independent: ,

and . Moreover, let us assume the

noises are weakly stationary sequences (that

is, their moments are time invariant). This case is modeled by

the following stationary bilinear system:

(49)

(50)

which can be rewritten, as in the time-varying case, in the

linear form with stochastic dynamic matrix

(51)

(52)

where

(53)

The corresponding augmented system is

(54)

(55)

As is well known, the Kalman filter implemented on a time-

invariant system such as (54), (55), having second-order

weakly stationary noises, admits a steady-state gain under the

additional hypotheses of stabilizability and detectability [22].

Moreover, from Theorem 5.4, it follows that the extended

state moments, , given by (40),

converge if and only if the matrix is asymptotically

stable. By observing the structure of , we infer that

it is asymptotically stable if and only if the eigenvalues of
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all the matrices , for , belong to

the unit circle of the complex plane. It also follows that

the stability of the matrices , for ,

implies the asymptotic stationarity of the augmented noises.

Such a condition is then sufficient to assure the existence of

a stationary filter. Now, the main problem is to give sufficient

conditions for the stability of .

We will see that for a strictly bilinear system, even time-

invariant and with stationary noises, the possibility to imple-

ment a stationary polynomial filter is not, in general, assured.

Indeed, we are able to find a counterexample in a particular

but important case, that is when the noises are Gaussian, as

shown in the following theorem.

Theorem 7.1: For the matrices

(56)

with given by

. . .
...

...
. . .

. . .
...

(57)

...
. . .

...
(58)

and under the hypotheses that is Gaussian and

for it results that there exists

such that (56) is unstable for all .

Proof: Let us suppose, for sake of simplicity, that the

entries of have unit variance and are mutually independent.

By using Property (93h) and taking into account the structure

of (57) and that of (58), we have

where . Hence

Since are Gaussian and independent, we

have

odd,

otherwise;

and hence

Note that all the terms of the summation in the right side have

the same sign. Finally, we have

where the right side is obtained by calculating the sum for

and taking into account that

Hence, we have , for , faster

than . Since

where are the eigenvalues of , this implies the

existence of at least one eigenvalue greater than one.

The circumstance that the availability of the steady-state

moments of any order is not assured for a bilinear system

represents a limitation in designing stationary polynomial

filters. In order to be more precise about this limitation, let

us introduce the following definition.

Definition 7.2: For a stochastic bilinear system such as

(49), (50), we define the stochastic stability degree as

the maximum order for which the extended state moments

converge to a finite value for

, for any initial condition . We

set when the first moment is not convergent.

For a stochastic time-invariant linear system having finite

noise moments of all orders, can assume only the values

zero or ; that is, if the dynamic matrix is stable (unstable),

. This fact is a trivial reformulation of

the theory developed in [20]. For a bilinear system such as

(49), (50), it is possible to implement a stationary polynomial

filter of order, for any IN and (here

denotes integer part). The determination of the stochastic

stability degree is hence useful for stating in advance the

maximum order for which the state polynomial estimate is

computable by means of a stationary filter. For this purpose,

some results, useful for the determination of the stochastic

stability degree, can be found in [17], [18], [24], and [25].

Here we specialize the above-mentioned results in order to

study the stochastic stability of the Kronecker powers, up to

the th degree of the extended state or the stationarity of the

extended state moments, which is the same.
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Lemma 7.3: The stochastic system

(59)

where is a sequence of independent identically dis-

tributed stochastic matrices, has its th moment asymptotically

stable if

where denotes the maximum eigenvalue of matrix .

Proof: Taking the th Kronecker power in (59) we have

(60)

From the hypotheses it follows that

hence

The thesis follows by applying [18, Lemma 3.2] to (60).

It is now possible to determine a sufficient condition for the

stability of (40). In fact, the following theorem holds.

Theorem 7.4: If

(61)

then is stable.

Proof: Observe that the function is convex on the

set of symmetric nonnegative matrices. This easily follows by

the property [21]:

; hence, using the Holder

and Jensen inequality and (61),

which, using Lemma (7.3), proves the thesis.

Corollary 7.5: A sufficient condition for the stability of

(40) relative to (49), (50) is

Proof: The thesis follows from the inequality:

applying Theorem 7.4 with and taking into

account of the block-triangular structure of .

VIII. IMPLEMENTATION REMARKS

Some numerical simulations have been carried out on a

Digital “alpha” workstation by implementing the polynomial

filter equations in order to produce for any pair of integers

the -order optimal polynomial state

estimate of a BLSS.

For this purpose, we have written a C-language program

whose main part is devoted to the efficient implementation of

the algorithms, described in Sections V and VI and Appendix

B, for the computation of the filter parameters. By observing

the formulas which define the augmented system parameters,

in the statement of Theorem 5.1, it becomes evident that the

computational effort of the whole polynomial filter algorithm

quickly grows for increasing and/or . Nevertheless, we

point out that even low-order polynomial filters (quadratic or

cubic filters) which do not require a particularly sophisticated

implementation show very high performances with respect to

the classical linear filter. Indeed, as shown in some numerical

simulations of the polynomial filter for linear systems [20], the

error variance of a cubic filter may be 80% smaller than the

Kalman filter. As we will see later, these high performances

are confirmed by low-order polynomial filters for a BLSS. In

the case presented here, the second-degree polynomial filter

yields a signal error variance of 54% less than linear filter. In

the same case we have been able to compute the fourth-degree

polynomial filter (indeed, a high-order filter, in that it requires

a state space of dimension 30 for two-state variables of the

system) which yields an improvement of 75% with respect to

the linear filter. As shown in some pictures, the restoration of

the noisy signal is very impressive.

We would like to stress that the high dimensionality of the

filter is not by itself a true limitation for the implementation.

In fact, by using an efficient implementation scheme for those

data structures which appear in the formulas as matrices of pro-

hibitive dimension, it is possible to overcome such difficulties.

It should be noted that the computational effort is mostly due to

the calculation of the augmented system parameters. In many

cases that are relevant from an application point of view, that

is, time-invariance of system parameters, stationarity of noises,

polynomial degree less than the stochastic stability degree (see

Section VII), we can separate the augmented system matrix

computation from the filter equations (41)–(46) that do not

show relevant computational troubles. In all of these cases,

polynomial filtering is amenable to real-time applications. The

numerical simulations presented here concern the filtering

of time-invariant BLSS’s with stationary noises and degree

less than the stochastic stability degree so that the stationary

polynomial filter is implemented using the steady-state gain,

and the augmented matrices are calculated before filtering.

Among all the algorithms which are necessary for the

computation of the augmented system parameters, the most

burdensome are those involved in the computation of the

extended state moments , that

appear in the augmented noise covariance (24)–(28). These are

obtained by running (40) until convergence is achieved. The

dynamical matrix of (40) may be very large and exceed

the available computer memory space. We think that for large
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degrees (i.e., three or more) many tricks can be conceived,

when a larger computer memory is not available, in order to

save memory space (for instance, to save and use only suitably

small blocks of the matrix).

In order to calculate the matrix and the augmented

noises covariances, the computation of the matrix moments

is needed. These are obtained by

means of the algorithm defined by Theorem 5.2, which in turn

requires the matrices given by (39). The matrices

, which appear in (39) (and are defined

in Corollary B.8), are dimensioned; that is, they may

be too large. In our example, for they

have 2 entries! Nevertheless, this very high dimensionality

is only apparent. In fact, by considering (104) we realize that

can be viewed as an operator which simply permutes the

entries of a vector (permutation matrix). A permutation matrix

is a zero–one square matrix with one (and only one) unity on

each row and column so that it can be simply implemented

as a string of 2 integers, each one representing the column

index of the unity in a row. Also note that the commutation

matrices, given by B.6, which appears in many formulas, are

permutation matrices.

Finally, the last kind of matrices widely used in the whole

algorithm, which can easily grow toward huge dimensions,

is the binomial matrix , defined in Theorem B.6, and

the generalization defined in Theorem B.9. These

are integer matrices with many null entries; for this reason

we have implemented them as integer sparse matrices. In

spite of this expediency, we have observed that the matrices

used in (39) can still exceed the computer memory.

Anytime this happens we adopt the method, mentioned above,

consisting of calculating only small blocks of the matrices

and removing them after their utilization. Thus, we can avoid

overcoming space memory availability, in spite of a growth of

the CPU time. This method surely can be adopted for higher-

polynomial degrees and system orders and always assures that

the computation will be made with the same memory usage.

It should be underlined that, in the most important stationary

case, all the above-mentioned expediences are useful, and

sometimes necessary, in order to treat efficiently the major

critical parts of the whole algorithm, even if they can produce

a great growth of the CPU time needed for the filter parameter

computations. However, they do not affect filter measurement

processing.

IX. SIMULATION EXAMPLE

The example of an application we are going to consider

belongs to the class of the so-called switching systems, widely

used in many research areas such as failure detection, speech

recognition, and, more generally, in the modeling of phys-

ical systems affected by abrupt changes in the parameters

[26]–[31]. In particular, we are interested in the class of

systems described by the following partially observed equation

defined on , evolving in :

(62)

where are white sequences and

is a white random matrix sequence taking values in

the finite set with probabilities

. System (62) can be easily represented as

a BLSS in the following way. Let be the

canonical base in , and let us define the white sequence

assuming values in with

. Then

(63)

From the above hypotheses, it follows that

, and using this in (63) results in

(64)

By combining (62) and (64), we obtain the BLSS (11), (13)

with .

Now, in order to test the filter, let us consider the switching

system (62), with

and . Moreover, let the white random

sequences be defined as

where denotes the characteristic function of

and the disjoint events and

have probability

Following the above described procedure, such a switching

system is represented by the following BLSS:

(65)

where and is a white sequence

defined as with .

For this system, we have built the steady-state augmented

system for the polynomial degrees with

and the quadratic and cubic also with .

To each one of these augmented systems we have applied

(43)–(46) in order to obtain the steady-state gains and error
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Fig. 1. True and measured signal.

covariances. Then, for all these cases, we have used the gains

in the filter equations (41), (42), starting from initial condition

. The corresponding estimates for the signal

are readily obtained by using the relation .

Moreover, the signal error variance, namely , is given by

the relation , where is the steady-state value

of the state error covariance given by (48). By denoting

with the a priori state error

covariances given by the 1, 2, 3, 4th-degree polynomial filters,

respectively (all with ), and with the

covariances relative to the quadratic and cubic cases,

respectively, the obtained values are the following:

...
...

. . .

...
...

. . .

...
...

. . .

...
...

. . .

...
...

. . .

where we have the 2 2 matrix blocks on the top left side

because they contain in the main diagonal the steady-state esti-

mate error variance of each component of the state. The corre-

sponding values,

for the signal error variances are

As implied by the overall theory described in Section II,

we can see that both signal-error variances and state-error

variances of each component of the state decrease with the

increasing of polynomial degree. In the case,

the signal-error variance is 75% less than in the linear filtering

case. Also for the error-variance values relative to the quadratic

and cubic cases with , we observe, as expected, an

improvement with respect to the same cases with .

However, in our experience, the contribution of the increasing

is less effective than the increasing of the polynomial

degree.

In Table I, the sampled variances of the state and signal,

obtained with a number iterations, are reported.

As expected, these values are close to the above a priori

variance values. In the same table are also reported the signal

sampled variances for the Monte Carlo run of 60 iterations

relative to Figs. 1–5. Fig. 1 displays the sample paths obtained

for the observed and true signal, whereas Figs. 2–4 display

the same path of the true signal with different polynomial

estimates.

X. CONCLUSIONS

The -optimal polynomial filter for the BLSS (1), (2),

given the -order polynomial estimate (see Definition
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Fig. 2. True and filtered signal with � = 1; � = 0.

TABLE I

2.2) of the state by means of recursive equations in the form

(7), (8), has been defined for any pair of integers

. In particular, the polynomial filter equations are (41), (42),

and (47). These need to use, at each step, only powers of the

last observations so that the computational burden remains

constant over time. The polynomial filter is obtained by means

of the following steps:

1) construction of the extended memory system (15), (16)

(if this step is skipped);

2) construction of the augmented system;

3) application of the Kalman filter equations to the aug-

mented system.

Equations (43) and (46) allow the computation of filter

parameters. These need, in general, to be implemented simul-

taneously to the filter equations (41) and (43). Nevertheless, if

the BLSS is time invariant, the noises are stationary sequences

and the matrix (defined in the statement of Theorem 5.4)

is asymptotically stable, then we can adopt the steady-state

approximation of the Kalman filter, thus obtaining a great

reduction of computational effort.

In Section VII, it is shown that the stability of the ma-

trix , or equivalently the stability of all the matrices

is not implied by the stability

of so that in general the steady-state polynomial

filter can be implemented only up to a certain finite degree.

Corollary 7.6 gives a sufficient condition for the stability of

the matrix .

Even if the computational burden of polynomial filtering

grows when and/or increase, many tricks (e.g., as in

Section VIII) can be conceived in order to considerably reduce

computer memory and CPU time utilization. Numerical simu-

lations presented in Section IX show the high performance of

polynomial filtering with respect to standard linear filtering.

For a second-order BLSS, we have observed for the (4,0)-

order filter, an error-variance reduction of 75%. It should be

stressed that the (2, 0)-order (quadratic) filter also shows a high

performance (54%). In this case, computer time for executing

steps 1), 2), and 3), has been less than 1 s and practically all

devoted to filter parameter computations.

We think that future research work on polynomial filtering

should concern the following points:

1) reducing the computational burden of the algorithm in

order to actually make very high-order filters imple-

mentable;

2) investigation of the possible convergence of polynomial

estimators, with respect to and increasing, toward

C.E. and evaluation of the convergence error;

3) analysis of the influence of values on the polynomial

filter performance. We conjecture that, for a stable

BLSS, this influence tends to vanish when increases

because the observations tend to be uncorrelated when

their mutual distance in time grows;

4) extension of the polynomial filtering to the class of linear

systems with a multiplicative state noise modeled as a

Markov chain or, more in general, as a colored stochastic

sequence.
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Fig. 3. True and filtered signal with � = 2; � = 0.

Fig. 4. True and filtered signal with � = 4; � = 0.

To conclude, we say that this paper represents a first tenta-

tive attack upon nonlinear filtering problems via a polynomial

algorithm. We feel that this could be a way of construct-

ing suboptimal filters for a more general class of nonlinear

systems.

APPENDIX A

AUGMENTED SYSTEM CONSTRUCTION

In this Appendix, the proof of Theorem 5.1, which defines

the structure and the main properties of the augmented system,

is reported. For this purpose we need to state some preliminary

results (Lemma A.1 and Lemma A.2). In particular, Lemma

A.2 will allow us to readily prove Theorem 5.4.

Let denote positive integers, ,

sequences of random matrices in and , respec-

tively, and , sequences of random vectors in

and , respectively. For any , let the following

properties be satisfied.

1)

where denotes the Euclidean norm.
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2) and the set

are mutually independent.

3) and the set are mutually

independent.

In the following the binomial matrices (101), (102) will be

used often, which will be denoted as , highlighting the

dependence from the dimension of the vectors involved in

the Kronecker power; moreover, the symbol will denote

the identity matrix in .

In order to simplify the notations, let us introduce the

following symbols:

(66)

Obviously for we have

(67)

With the above notations, it is now possible to state the

following two lemmas.

Lemma A.1: Let be a sequence of stochastic ma-

trices in and be a deterministic matrix in .

Moreover, let us define, for the following

functions:

(68)

with

(69)

(70)

Then, for any couple of (deterministic) matrices in

and , respectively, we have that

(71)

and furthermore, for we have that

(72)

(73)

(74)

(75)

(76)

where

(77)

(78)

Proof: From 3) it follows that for any , , ,

and are mutually independent; hence taking into ac-

count (66), (67) we have

As far as (72) is concerned, taking , we have

where Condition 2) and (67) have been exploited.
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Similarly, from 2) and (67) again, the result is

In order to prove (73), consider (92); the result is

(79)

where is given by

By applying Properties (93c) and (93e) it follows that

(80)

By applying Corollary B.4 we obtain

(81)

(82)

By substituting (82) and (81) in (80) and then the result in (79),

using Property 3) and taking into account (66), we obtain (73).

Equations (74) and (75) easily follow by applying Property

3):

It remains to prove (76). For this purpose, note that

is shown to be formally equal to

with the substitution of with

and with . As a consequence,

noting that with these substitutions, and taking into account

(66), (78) becomes equal to (77), it follows that (76) holds

true too.

Lemma A.2: Let be the vector

(83)

where is a deterministic matrix and

an integer. Let us consider the augmented vectors

...
...

...
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and the matrix

where

(84)

then there exists the following representation:

(85)

with defined as

...
(86)

where are defined as (68).

Proof: Let us consider the th Kronecker power of both

sides of (83)

Using Theorem B.6 and Property (93c) we have

and by adding and subtracting to

their expected values, we obtain

By adding and subtracting to and

their expected values, in the first two terms

of the right side of the previous expression the result is

which can be rewritten as

(87)

where the are defined by (68)–(70). By aggregating in

a vector the given by (87) and taking

into account (66), we obtain (85).

Proof of Theorem 5.1: Let us apply Lemmas A.1 and

A.2 by setting

and with these choices, from Conditions 1) and 2) of

Section III, it follows that Properties 1)–3) are satisfied;

moreover, we have

, and then (21) holds true, with given by

...
(88)

From (88), (72) it follows that the sequence is

uncorrelated. Moreover, from (88) and (73)–(76) follows (24)

with

from which (25) and (26) follow, taking into account (77),

(78).

Now, let us apply Lemmas A.1 and A.2 by setting

Then, Properties 1)–3) are again verified and we have

, , , . Hence, (21) holds
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with given by

...
(89)

From (89) and (72) the uncorrelation of the sequence

follows. Moreover, since , from (78) we

have that

and then from (88) and (89), (28) follows.

From (51), (52) and applying Lemmas A.1 and A.2 with

(hence , , , ) (23) follows. With

the same assignments, from (31) we have

and then from (73)–(77), (28) follows, giving the cross-

correlation matrix between augmented noises.

Now, we can also prove Theorem 5.4.

Proof of Theorem 5.4: Let us apply Lemma A.2 by set-

ting

These choices yield and , hence (85)

has in this case the following form:

(90)

where

...

...

By applying Lemma A.1, from (71) it follows that

and

then . Hence, taking the expectations on both

sides of (90), (40) follows.

APPENDIX B

KRONECKER ALGEBRA

Throughout this paper, we have widely used Kronecker

algebra [21]. Here, for the sake of completeness, we recall

some definitions and properties and also give some new results

on this subject.

Definition B.1: Let and be matrices of dimension

and , respectively. Then the Kronecker product

is defined as the matrix

where the are the entries of .

Of course, this kind of product is not commutative.

Definition B.2: Let be the matrix

(91)

where denotes the th column of , then the stack of

is the vector

(92)

Observe that a vector such as in (92) can be reduced to a

matrix as in (91) by considering the inverse operation of

the stack denoted by . With reference to the Kronecker

product and the stack operation, the following properties hold

[21]:

(93a)

(93b)

(93c)

(93d)

(93e)

(93f)

(93g)

where are suitably dimensioned matrices, are

vectors, and denotes the trace of a square matrix .

The Kronecker power of the matrix is defined as

As an easy consequence of (93b) and (93g), it follows that

(93h)

It is easy to verify that for , , the th entry

of is given by

(94)

where and denote the integer part and -modulo, re-

spectively. Even if the Kronecker product is not commutative,

the following property holds [20], [23].
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Theorem B.3: For any given pair of matrices ,

, we have

(95)

where the commutation matrix is the

matrix such that its entry is given by

if ;

otherwise.

(96)

Observe that , hence in the vector case when

and , (95) becomes

(97)

Corollary B.4: For any given matrices having

dimensions

respectively, denoted with the identity matrix in we

have

Proof: By applying Properties (93b) and (93c) and The-

orem B.3 we have

Moreover, let us recall the following recursive formula [20].

Lemma B.5: For any and for any

let be the matrix such that

(98)

Then the sequence satisfies the following equations:

(99)

where is the identity matrix in .

In [20] can be found the proof of a binomial formula for

the Kronecker power, which generalizes the classical Newton

one, as is asserted by the following theorem.

Theorem B.6: For any integer the matrix coefficients

of the following binomial power formula:

(100)

constitute a set of matrices such that for

(101)

(102)

where and are as in Lemma B.5.

Lemmas B.7 and B.9 and Corollary B.8 constitute new

results about Kronecker algebra.

Lemma B.7: Given , , there exists a

matrix such that

where

and is the identity in IN.

Proof: Let us express the vector as

(103)

where are the th column of and , respectively.

Using Theorem B.3, (103) can be rewritten as

...

so that the proof is completed.

Corollary B.8: Given a matrix IN there

exists a matrix such that

(104)

where

if ;

if .

(105)
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Proof: Equation (104) is obviously true for . Let

; by supposing (104) true for with as in

(105), we obtain

from which the thesis follows.

We can also generalize formula (100) to the polynomial

case. Obviously, given any polynomial

IN, its th Kronecker power admits a

representation as

(106)

where are suitable matrices. We extend the defini-

tion of symbol , with when at least one of the

’s is negative, such as

(107)

Moreover, we can prove the following statement.

Lemma B.9: The matrices in (106)

satisfy the recursive formula

for (108)

for

(109)

Proof: Equation (108) is obvious. In order to prove

(109), let us consider the polynomial power

Now, let us consider the term

If , it is equal to

If , then

then, taking into account (106) we can write

(110)

Now, by considering the generic term of the summation on

the left-hand side of (110), that is

, we must look at the RHS for those terms which are

characterized by the indexes . They are of the form

with , for

, whenever , and

with , . Then, taking into

account (107), (109) is proved.
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