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This is a survey of the main results on multivariate polynomial interpolation

in the last twenty five years, a period of time when the subject experienced its

most rapid development. The problem is considered from two different points of

view: the construction of data points which allow unique interpolation for given

interpolation spaces as well as the converse. In addition, one section is devoted to

error formulas and another one to connections with Computer Algebra. An extensive

list of references is also included.
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differences, Gröbner bases, H–bases

1. Introduction

Interpolation is the problem of constructing a function p belonging to a

(simple) finite dimensional linear space from a given set of data. Usually, the in-

terpolation data are obtained by sampling another (more difficult) function and,

in that case, it is said that p interpolates f , in the sense that both functions

coincide on that data set. The simplest context to study here is interpolation by

univariate polynomials. Therefore it is no surprise that interpolation by univari-

ate polynomials is a very classical topic. However, interpolation by polynomials

of several variables is much more intricate and is a subject which is currently an

active area of research. In this paper we want to describe some recent develop-

ments in polynomial interpolation, especially those which lead to the construction
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of the interpolating polynomial, rather than verification of its mere existence.

Let us denote by x = (ξ1, . . . , ξd) any point of R
d and by Πd the space of

all d–variate polynomials with real coefficients. The subspace of polynomials of

total degree at most n, denoted by Πd
n, is formed by polynomials

p (x) =
∑

α∈N
d,n
0

aαxα, (1.1)

where N
d,n
0 is the set of all (integer lattice) points α = (α1, . . . , αd), αi ≥ 0,

i = 1, . . . , d, with |α| = α1 + · · · + αd ≤ n. In addition, the coefficients aα,

α ∈ N
d,n
0 , are real constants and xα = ξα1

1 · · · ξαd

d . We also use the notation

H
d,n := N

d,n
0 \ N

d,n−1
0 .

This survey will be mainly concerned with the problem of finding a polyno-

mial p ∈ Πd such that the values of p and/or some of its derivatives are prescribed

real numbers at points x1, . . . , xN of R
d. When derivatives are not interpolated,

the problem is referred to as the Lagrange interpolation problem and can be stated

in the following form:

Given a finite number of points x1, . . . , xN , some real constants y1, . . . , yN and

a subspace V of Πd, find a polynomial p ∈ V , such that

p (xj) = yj , j = 1, . . . , N. (1.2)

The interpolation points xi are also called nodes and V is the interpolation space.

1.1. The univariate case

There is a well–developed and extensive classical theory of univariate La-

grange polynomial interpolation. In this context the Hermite interpolation prob-

lem arises as a limiting case when some of the interpolation points coalesce, giving

rise to derivatives of consecutive orders. The Lagrange problem with N different

nodes xi ∈ R or the Hermite problem, with mi derivatives of consecutive orders

0, 1, . . . ,mi − 1 at each node xi and N =
∑

i mi, have always a unique solution

in the space Π1
N−1 of univariate polynomials of degree not greater than N − 1.

If there are some “gaps” in the order of the derivatives at some interpolation

point, the problem is called a Birkhoff interpolation problem. In the univariate

case, this problem has a well developed theory, see [77] for conditions ensuring

its solvability. Multivariate Birkhoff interpolation will enter our discussion only
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in a peripheral manner. The book [78] is the best source of information about

this subject.

Returning to the univariate Lagrange interpolation problem, we recall that

the Lagrange formula

p(x) =
N
∑

i=1

yiℓi(x), (1.3)

where

ℓi(x) =
N
∏

j=1
j 6=i

x − xj

xi − xj
, i = 1, . . . , N, (1.4)

explicitly provides the solution of the problem. Alternatively, a recursive form

is obtained from the Newton formula, which makes use of divided differences.

Specifically, we have that

p(x) =
N
∑

i=1

f [x1, . . . , xi]
i−1
∏

j=1

(x − xj), (1.5)

where the divided difference f [xj , . . . , xk], j ≤ k, is recursively defined by the

equations

f [xj ] = f (xj)

f [xj , . . . , xk] =
f [xj , . . . , xk−1] − f [xj+1, . . . , xk]

xj − xk

.
(1.6)

An important advantage of the Newton formula is that it can be easily extended

to include the Hermite case.

Let us also mention the Neville–Aitken formula

p(x) =
(x − x1)p1(x) − (x − xN )p2(x)

xN − x1
, (1.7)

where p1, p2 solve the interpolation problems at the nodes x2, . . . , xN and

x1, . . . , xN−1, respectively.

These formulas suggest a strategy of constructing the interpolating polyno-

mial at N nodes from the solutions of some interpolation problems depending on

less data. The Lagrange formula uses the solutions of N interpolation problems,
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each of them with only one interpolation point. The Newton formula, written in

the form

p(x) =
N−1
∑

i=1

f [x1, . . . , xi]
i−1
∏

j=1

(x − xj) + f [x1, . . . , xN ]
N−1
∏

j=1

(x − xj), (1.8)

tells us what has to be added to the solution of the problem with the N−1 points

x1, . . . , xN−1 to get the solution of the problem with the N points x1, . . . , xN .

Finally, the Neville–Aitken formula tells us how this solution can be obtained by

combining the solutions of the two problems corresponding to the data points

x2, . . . , xN and x1, . . . , xN−1. A general interpolation formula including all these

cases can be found in [46], where an application to bivariate problems is also

given.

1.2. The multivariate case is a more difficult problem

Definition 1.1. Let V be an N–dimensional linear space of continuous func-

tions. The Lagrange interpolation problem (1.2), for the points x1, . . . , xN ∈ R
d,

is called poised in V if, for any given data y1, . . . , yN ∈ R, there exists a function

f ∈ V such that f (xj) = yj , j = 1, . . . , N . When the Lagrange interpolation

problem for any N distinct points in R
d is poised in V , then V is called a Haar

space of order N .

Haar spaces exist in abundance for d = 1. The situation for d > 1 is

dramatically different. In fact in this case there are no Haar spaces of dimension

greater than one. For refinements of this important result see [41,76,81], and for

useful concepts related to the poisedness of interpolation problems, for example

almost regularity and singularity, see [78].

In particular, whenever P is a finite dimensional space of polynomials in d

variables of dimension N > 1, there always exist nodes x1, . . . , xN and a nontrivial

polynomial p ∈ P such that p (xj) = 0, j = 1, . . . , N . Consequently, deciding if

the interpolation problem (1.2) is poised for P is difficult.

On the other hand, if we allow in the definition of a Haar space of order

N , where N is the number of interpolation points, that V may have dimension

greater than N , then their existence is ensured for any d. For example, in this

sense, the space of polynomials of total degree at most N − 1 on R
d, which we

denote by Πd
N−1, is a Haar space of order N . To see this, let x1, . . . , xN be any

N distinct points in R
d. For each point xi we choose a hyperplane Hi (identified
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with its defining affine function) containing xi, but not xj , j 6= i. Then the

polynomial

p =
N
∑

i=1

yi

N
∏

j=1
j 6=i

Hj

Hj(xi)
(1.9)

belongs to Πd
N−1 and satisfies (1.2). However, for d > 1, the Haar space of order

N of least dimension is yet to be determined and only known for a few special

cases.

So far we have only considered Lagrange interpolation. The meaning of

Hermite interpolation in the multivariate case is richer in variety and depth.

Before addressing this problem, it is convenient to establish some notation for the

differential operators which will appear in the paper. For α = (α1, . . . , αd) ∈ N
d
0

we denote by Dα the differential operator

Dαf(x) =
∂|α|f(x)

∂ξα1

1 · · · ∂ξ
αd

d

, x = (ξ1, . . . , ξd),

and, for a polynomial p given as in (1.1), we write

p (D) =
∑

α∈N
d,N
0

aαDα (1.10)

for the associated differential operator. If v is a point in R
d, we denote by Dv

the directional derivative operator, which corresponds to the linear polynomial

p(x) = v · x, x ∈ R
d, where · denotes the euclidian product in R

d. Likewise,

repeated directional derivative with respect to v, denoted by Dn
v , corresponds to

the polynomial p(x) = (v · x)n, x ∈ R
d.

The idea of Hermite interpolation is clear in the univariate case, namely,

when some of the interpolation points coalesce, the interpolating polynomials

converge to the Hermite interpolation polynomial which interpolates function

values and derivatives. In general this does not hold true in two and more vari-

ables. Specifically, we consider the problem of interpolating f and its gradient

at two distinct points x1, x2 ∈ R
2. This problem is the limit of the Lagrange

interpolation problem at the six points xj , xj + he1, xj + he2, j = 1, 2, which is

poised with respect to Π2
2 for all h 6= 0 and almost all choices of x1, x2. However,

the original Hermite interpolation problem is never poised in Π2
2, for any choice

of x1, x2.
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An interpolation problem is called singular for a given space if the problem

is not poised for any set of nodes (note that Lagrange interpolation problems

are never singular). The Hermite problem above is singular in Π2
2. Many results

related to regularity, almost regularity and singularity of interpolation problems

can be found in [6,78,108] and [73] in this volume.

There is no general agreement in the multivariate case on the definition of

“Hermite interpolation”, see also Theorem 6.1 and the discussion there. However

it is very common to associate this name with problems whose data are function

evaluations and derivatives at the same points, especially those which are of the

type

Dαf (xi) , α ∈ N
d,qi

0 , i = 1, . . . , N. (1.11)

That is, there are
(qi+d

d

)

interpolation data associated to the point xi. When

the number qi is the same for each xi we call this problem a uniform Hermite

interpolation problem.

Very few books on Numerical Analysis include a section on multivariate

interpolation. Curiously, three texts of the 1960s [69,3,64] do treat the subject,

always inspired in the classical book by Steffensen [111], but more recent books

ignore it, with the exception of [67]. See also [35] in the context of the finite

element approach. Multivariate interpolation is only briefly mentioned in classical

texts on Approximation Theory, for example [41] and [76]. However, there are at

least two monographs [78,6] and several surveys, [44,50,72,7,9,110] among others,

devoted totally or partially to the subject.

2. Construction of sets of interpolation points

Since the poisedness of multivariate polynomial interpolation depends on

the geometric structure of the points at which one interpolates, there has been

interest in identifying points and polynomial subspaces, for example Πd
n, for which

interpolation is poised. This problem has important applications in the context

of finite element analysis where the construction of polynomial interpolants with

good approximation order is crucial. We review in this section the best–known

techniques for choosing interpolation points.
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2.1. Interpolation by tensor product

Tensor product interpolation is the oldest method of extending the univari-

ate theory. The interpolation points and space are obtained by tensor product of

the univariate ones. The Lagrange formula and the Newton formula, with divided

differences are easily extended to this problem, as it can be found in [69,3,64].

2.2. Interpolation space Πd
n: from regular grids to natural lattices and pencils of

hyperplanes

In this subsection we focus on various methods to choose points x1, . . . , xN

in R
d such that the interpolation problem with respect to these points is poised

in Πd
n and moreover the Lagrange formula can be easily constructed. Clearly,

this requires that N = dim Πd
n =

(n+d
d

)

.

The first and most natural approach to choose such interpolation nodes is

the triangular grid of the unit simplex formed by the points in 1
n
N

d,n
0 . In the

bivariate case, this configuration has already been discussed in [4], [111] and in

classical textbooks on numerical analysis, for example in [69,64]. These books also

deal with the more general case of arrays formed by points (xi, yj), 0 ≤ i+ j ≤ n,

where {xi}, {yj}, i, j = 0, . . . , n, are two sets of n + 1 distinct points. A Newton

formula with bivariate (tensor product) divided differences is provided for this

case. The bivariate array is triangular when xi and yj are ordered and uniformly

spaced, and in this case a Lagrange formula for the interpolating polynomial is

given in [69]. Note that this situation considers the “lower left” triangle in a

rectangular grid and therefore still allows for the application of tensor product

methods.

The triangular case appeared later in [98], where the notion of principal

lattices, affinely equivalent to the triangular sets was introduced. It was this

paper which apparently motivated the construction in the paper [33], written by

Chung and Yao. Their approach is based on the idea of taking the intersections

of hyperplanes as interpolation nodes, so that products of affine functions can be

used to find the interpolation polynomial explicitly, which guarantees poisedness.

According to [33], a set of N =
(n+d

d

)

points X = {x1, . . . , xN} in R
d satisfies

the GC condition (Geometric Characterization) if for each point xi there exist

hyperplanes Gil, l = 1, 2, . . . , n, such that xi is not on any of these hyperplanes,
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and all points of X lies on at least one of them. Equivalently, we have that

xj ∈
n
⋃

l=1

Gil ⇐⇒ j 6= i , i, j = 1, 2, . . . , N. (2.1)

In this case, the solution of the Lagrange interpolation problem is given explicitly

by

p =
N
∑

i=1

f(xi)
n
∏

j=1

Gij

Gij(xi)
, (2.2)

where Gij(·) = 0 is the defining equation of Gij .

In general, it is difficult to decide if a given set of points satisfies the

GC condition, even for R
2. However, there are several well-known interesting

special cases. For example, let r0, r1, . . . , rn+1 be n + 2 straight lines in R
2

such that any two of them ri, rj intersect at exactly one point xij and these

points have the property that xij 6= xkl ⇐⇒ {i, j} 6= {k, l}. Then the set

X = {xij : 0 ≤ i < j ≤ n + 1} satisfies the GC condition and formula (2.2) reads

as

p =
n
∑

i=0

n+1
∑

j=i+1

f(xij)
n+1
∏

k=0
k 6=i,j

rk

rk(xij)
. (2.3)

The set X is called a natural lattice of order n in [33].

Other examples of sets with the GC condition, are provided in [71]. To this

end, we recall that a pencil of order n in R
d is a family of n+1 hyperplanes which

either all intersect in an affine subspace of codimension 2 or are all parallel. The

intersection (in the projective sense) of the hyperplanes of a pencil is called its

center. We consider d + 1 pencils of order n in R
d with centers C1, . . . , Cd+1

not contained in a hyperplane of the d-dimensional projective space P
d, with the

additional condition that there exist
(n+d

d

)

points, each of them lying precisely on

d+1 hyperplanes, one from each pencil. In [71], the set of these points is called a

(d + 1)–pencils–lattice of order n. Some examples of these lattices and a method

of constructing them can be found in [71] and [96], see also Figure 1.

When d of the d+1 pencils in R
d have pairwise orthogonal hyperplanes and

the remaining one has a finite center, Lee and Phillips [70] called this lattice a

geometric mesh. For x = (ξ1, . . . , ξd) ∈ R
d and q a real number different from 0,

1 and −1, the standard geometric mesh generated by x and q is the set
{

xα : xα ∈ R
d, xα = (qα1ξ1, . . . , q

αdξd)
}

, (2.4)
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Fig.1: a 3–pencils–lattice of order 2 (6 interpolation points •) in R
2 with

3 finite centers C1, C2, C3

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅

❅
❅❅

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆

❆
❆❆

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇

❇
❇❇

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

✁

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱
✱

✱

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧
✧

✧✧

✉

✉

✉

✉

✉

✉

❜C1

❜
C2

❜

C3

3

6

1

4

7

85

2

9

✦✦✦✦✦✦✦✦✦✦✦

❅
❅

❅
❅

❅
❅

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

❆
❆

❆

✘✘✘✘✘✘✘

✱
✱

✱
✱

✱✱

where

α = (α1, . . . , αd) ∈ N
d
0, 0 ≤ α1 ≤ . . . ≤ αd ≤ n. (2.5)

The (d + 1)-pencils-lattices of order n in R
d with d + 1 infinite centers are

called in [70] regular meshes, and are, obviously, the principal lattices of [98].

They appear as the limits of (d + 1)-pencils-lattices when all the centers tend to

infinity in such a way that they determine uniquely the infinite plane in P
d.

As suggested by Figure 1, one can show in general that every (d+1)–pencils–

lattice satisfies the GC condition. Hence the Lagrange interpolation problem

defined by such a lattice is poised in Πd
n and a Lagrange formula is available.
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J. R. Busch [23] considered an extended version of the GC condition to

deal with Hermite interpolation problems in R
d which he refers to as the HGC

condition. Let S = {x1, . . . , xM} be a set of M distinct points of R
d. We associate

to each xi a positive integer mi and assume there exists n satisfying
(

n + d

d

)

=
M
∑

i=1

(

mi − 1 + d

d

)

.

We say that the HGC condition is satisfied if for each i (1 ≤ i ≤ M) there exist

ni = n − mi + 1 hyperplanes Gi1, . . . , Gini
such that:

xi ∈

nj
⋃

k=1

Gjk ⇐⇒ j 6= i , i, j = 1, . . . ,M. (2.6)

The associated Hermite problem has all derivatives of orders up to mi − 1

(that is
(mi−1+d

d

)

derivatives) as interpolation data at xi.

The most interesting example of set satisfying this condition arises from

the extension of the concept of natural lattice of order n in R
d. Specifically,

in the bivariate case, the set consists of the intersection points of n + 2 lines

such that the intersection of any two of them reduces to one point (we do not

assume that different choices give different points). When three or more of the

lines intersect at the same point, the associated interpolation problem becomes

a Hermite problem.

It should be noted here that the explicit expression of the Lagrange formula

for HGC lattices is quite complicated, see [73]. In fact, the examples given by

Busch can be obtained alternatively from the Newton approach which we shall

describe below.

We should also mention that the Lagrange formula of the interpolating poly-

nomial is used in the finite element method. In this context, any interested reader

should be familiar with [34] and [35]. Moreover, the papers [72], [73] contain ad-

ditional important references for this subject.

2.3. Choosing nodes and space

A special case of Bezout’s theorem states that two planar curves of degree

m and n, with no common component, intersect each other at exactly mn real

or complex points, counting multiplicities, [114]. This classical result is the basis

of a decomposition method for the multivariate interpolation problem, which has

been used by many authors, for example Guenter and Roetman in [59](see also
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[73]). The idea is to decompose an interpolation problem in Πd
n into two simpler

problems, one in Πd−1
n and the other one in Πd

n−1. If the two corresponding

smaller problems are poised, then the initial problem is poised. To implement

this procedure requires some conditions on the geometry of the points.

This idea was one of the motivations of Gasca and Maeztu in [47] for the

extension of the univariate Newton interpolation formula to bivariate problems.

One of the original features of that paper was to determine each interpolation

point as the intersection of two straight lines and use the equations of the lines

as factors in a basis of Π2
n, similarly to the univariate basis

1, x − x0, (x − x0)(x − x1), . . . , (x − x0)(x − x1) · · · (x − xn−1). (2.7)

An important property of this univariate basis is that the interpolation conditions

give rise to a triangular system, and this happens also in the bivariate case in

[47]. Another feature of [47] is that Hermite problems are solved as easily as

Lagrange problems, as it happens in the univariate Newton formula. We recall

some of these observations here.

As in [47], [28] or [44], an interpolation system in R
2 is a set

{(ri, rij , xij) : (i, j) ∈ I} , (2.8)

where I is a lexicographically ordered index set

I = {(i, j) : j = 0, . . . ,mi, i = 0, . . . , n} , (2.9)

and ri, rij are straight lines with exactly one intersection point xij . Again, we

use the notation ri, rij to represent either the straight lines or the affine functions

that (up to a constant factor) give rise to the equations of the lines. It should

be noted that repetitions of lines (and also of points) are accepted with the only

condition (mentioned above) that the line ri, for any given i, intersects the lines

rij . The interpolation system (2.8) is associated to an interpolation problem,

whose interpolation data are defined by the linear functionals

Lijf = D
tij
ρi D

sij
ρi f (xij) , (2.10)

where tij (respectively sij) is the number of lines in the list

r0, r1, . . . , ri−1, ri0, ri1, . . . , ri,j−1 (2.11)

which contain xij and coincide (resp. do not coincide) with ri, and where ρi, ρij

are vectors in the directions of the lines ri, rij . The directional derivatives in
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(2.10) are evaluated at the intersection point xij . In the simplest case, tij =

sij = 0 for all (i, j), only evaluations of f appear as data and the problem is

a Lagrange interpolation problem, but in special cases it is an Hermite or even

Hermite-Birkhoff (in the sense of gaps in the order of the derivatives) interpolation

problem.

In this method the interpolation space is spanned by the polynomials

φij = r0r1 · · · ri−1ri0ri1 · · · ri,j−1, (i, j) ∈ I, (2.12)

(as usual, empty products due to negative subindices are taken as 1) and with this

basis, a natural extension of the univariate one in (2.7), the interpolation condi-

tions give rise to a triangular linear system which can be easily and recursively

solved. In fact, as proved in [47], for (k, l), (i, j) ∈ I one has

Lijφkl = 0, (k, l) > (i, j), (2.13)

Lijφij 6= 0, (2.14)

with the lexicographical order.

Therefore, with this method the interpolation space is associated to the

geometric distribution of the interpolation points along straight lines. A simple

argument shows that the interpolation space, spanned by the polynomials (2.12),

is Π2
n if and only if there are n + 1 data on the line r0, n on r1 and so on.

Observe that this distribution is the one suggested above as a consequence of

Bezout theorem and that the Gasca-Maeztu method provides a Newton formula

for it. This configuration of points was called DH-sets by Chui and Lai in [31].

In the same paper DH-sets in R
k were defined similarly using hyperplanes.

Coming back to the GC condition mentioned in the preceding subsection,

one observes that all the known examples of sets satisfying this condition (see

[33]) are DH-sets. In fact it was conjectured in [47] that the GC condition with
(n+2

2

)

points in R
2 implies that n+1 points are collinear. The conjecture has been

proved affirmatively until n = 4 by J. R. Busch in [24] but it remains unproved

(although highly probable) in general. On the contrary, it is very easy to find (see

[47]) DH-sets which do not satisfy the GC condition. In summary, accepting the

conjecture as true, as it is at least for natural lattices, principal lattices, 3-pencils

lattices, etc. in R
2, sets satisfying the GC condition would be a subclass of DH-

sets. This subclass has very simple Lagrange formulas but the solution can also

be easily found with the Newton approach of [47]. For the rest of DH-sets which
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do not satisfy the GC condition the problem is solved by this Newton formula

because they do not have a simple Lagrange formula. We remark in passing that

there is a certain confusion in the literature between the GC condition and the

notion of natural lattices. As we have mentioned, there are sets with the GC

condition which are not natural lattices, but which are DH-sets.

The triangularity of the matrix of the linear system of the interpolation

problem obtained with the Gasca-Maeztu method in [47] was used in [48] to com-

pute bivariate Vandermonde and confluent Vandermonde determinants. These

determinants were also computed in a different form in [31].

Except for DH-sets, for which the interpolation space is Π2
n, the space

spanned by (2.12) does not have an alternate characterization. One of the cases

when that happens is when the lines ri are all parallel to one of the coordinate

axes, the lines rij parallel to the other axis, and the index set (2.9) satisfies

m0 ≥ · · · ≥ mn. (2.15)

In that case the polynomial space is spanned by the monomials

xiyj , j = 0, . . . ,mi, i = 0, . . . , n, (2.16)

whose set of exponents (i, j) forms what is called a lower set. That is, if (i, j)

belongs to the set, then so too does (k, l) with k ≤ i and l ≤ j. H. Werner [115]

worked with these sets and they are frequently used in [78] and [94]. Lower sets

are also important in the problem of minimal degree interpolation, see the next

section and also [104].

An interesting interpolation problem which generalizes the above setup was

given in [80] and has been analyzed in more detail in [53]. In these papers a

reversible system is defined as an interpolation system (2.8), (2.9) which satisfies

(2.15) and the following conditions:

1. For each j, rij does not depend on i, that is rij = r′j for any i.

2. If xlj = xij for (l, j), (i, j) both in I, then the lines rh, ri are coincident.

3. If xik = xil for (i, k), (i, l) both in I, then the lines r′k, r
′
l are coincident.

The name “reversible system” stems from the fact that the interpolation problem

is symmetric in rj and r′j , that is, the interpolation system remains the same if

their roles are interchanged.
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In this case the interpolation data (2.10) associated to the interpolation

system become

Lijf = Dsi

ρ′
j
D

tj
ρif (uij) , (2.17)

and the interpolation space is spanned by the polynomials (see (2.12):

φij =
i−1
∏

l=0

rl

j−1
∏

k=0

r′k, j = 0, . . . ,mi, i = 0, . . . , n, (2.18)

as a generalization of (2.16). In [53] the poisedness of the problem is proved and

moreover the minimality of the total degree of the interpolation space as well as

formulas for the interpolation error (see sections 3 and 4 below) are studied there.

Recall that the idea of the Aitken–Neville scheme is to combine the solutions

of two simpler but similar problems to obtain the solution of the initial problem:

it was developed independently by A. C. Aitken [1] and E. H. Neville [97] to

avoid the explicit use of divided differences for Lagrange interpolation. Here

the emphasis is put on the similarity of the two smaller problems, in contrast

to the preceeding decomposition. An extension of the Aitken–Neville formula to

bivariate interpolation was obtained by Thacher and Milne in [112]. For example,

consider an interpolation problem with ten interpolation points, namely those of

the principal lattice S = N
2,3
0 , and the interpolation space Π2

3. The solution pS

of this problem is obtained in [112] from the solutions pSi
, i = 1, 2, 3, in Π2

2 of 3

interpolation problems on principal lattices Si ⊂ S with 6 points each: S1 = N
2,2
0 ,

S2 = {(i, j) : (i, j) ∈ S, i > 0}, S3 = {(i, j) : (i, j) ∈ S, j > 0}. Therefore, one

has

pS = l1pS1
+ l2pS2

+ l3pS3
, (2.19)

where li, i = 1, 2, 3 are appropriately chosen affine polynomials. In fact in this

case these polynomials are the barycentric coordinates relative to the simplex

(0, 0), (3, 0), (0, 3).

In [45] Gasca and Lebrón gave a general framework for this type of de-

composition that in practice can only be done for sets with special structures,

in particular, principal lattices and rectangular grids, see also [51,60]. For the

application of some of these ideas in building interpolating wavelets see [90].

Let us also mention that computational issues for these interpolation

schemes have been studied in [29,30,74,100].
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3. Construction of interpolation spaces

In this section, we start with interpolation points and identify linear spaces

of polynomials with which we can interpolate at these points. This idea was

pursued by Kronecker [68] as early as 1865. Here we will focus on recent activities

concerning this problem.

3.1. Least Interpolation

Except for the work on Gröbner bases, which will be presented in section 6,

there has been little effort put into the construction of interpolation spaces for

arbitrary interpolation nodes until recently.

In 1990, de Boor and Ron [14], constructed, for a given set of nodes, an

interesting space of polynomials with which one can interpolate. We recall their

construction now. To this end, we let R denote the algebra of formal power

series with real coefficients. We introduce the map λ : R → Πd which associates

to each power series its nonzero homogeneous term of minimal degree. For f =
∑

α∈Nd
0
fαxα, this map is defined by setting

λ(f) = min
n∈N0







pn : pn =
∑

|α|=n

fαxα, pn 6= 0







. (3.1)

Note that for any functional ϑ ∈ Π′ there exists a formal power series fϑ ∈ R

such that, for any p ∈ Π, one has

θ(p) = (p(D)fθ) (0).

For example, for x ∈ R
d, the point evaluation δx is represented by fx(y) = ex·y.

Definition 3.1. Let X = {x1, . . . , xN} ⊂ R
d be a finite set of distinct nodes.

The least interpolation space Pl (X ) is defined as

Pl (X ) =







λ(f) : f =
N
∑

j=1

ajfxj
, aj ∈ R







. (3.2)

The space Pl(X ) has the following properties.

Theorem 3.2 [14,16]. For any finite set of distinct points X = {x1, . . . , xN},

Pl(X ) is an interpolation space which is degree reducing. That is, for any q ∈ Πd

the interpolant p ∈ Pl(X ), defined by p (xj) = q (xj), satisfies deg p ≤ deg q.
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The issue of an algorithmic construction of Pl has been considered in [15,8]

introducing and using the technique of Gauss elimination by segments. We will

compare this technique to work in Computational Algebra in section 6. We also

remark that the least interpolation approach can be extended to “ideal interpo-

lation schemes” [5], which might also be understood as a very reasonable mul-

tivariate notion of Hermite interpolation. These perspectives again are strongly

connected to the algebra of polynomial ideals.

3.2. Minimal degree interpolation

Motivated by the properties of the least interpolant stated in Theorem 3.2,

we consider the following definition.

Definition 3.3. Let X = {x1, . . . , xN} ⊂ R
d be a finite set of distinct nodes.

A linear space P (X ) ⊂ Πd is called a minimal degree interpolation space with

respect to X if it is a degree reducing interpolation space.

The name “minimal degree interpolation space” stems from the fact that,

setting n = min
{

k : k ∈ N0, P ⊂ Πd
k

}

, there exists no subspace of Πd
n−1 which

allows unique interpolation. To see this, choose the Lagrange basis ℓ1, . . . , ℓN for

P, defined by ℓj (xk) = δjk, j, k = 1, . . . , N . Then one of these basis polynomials,

say ℓ1, must be of degree n. However, the assumption that there exists some

subspace of Πd
n−1 which allows unique interpolation implies the existence of a

polynomial q ∈ Πd
n−1 which satisfies q (xj) = δ1j and therefore the interpolant

with respect to q in P is ℓ1. But then deg ℓ1 > deg q which contradicts degree

reduction property of P.

For a given set X of nodes there usually exists a multitude of minimal

degree interpolation spaces with one (important) exception: For a given set X

of nodes the minimal degree interpolation space P(X ) is unique if and only if

P(X ) = Πd
n for some n ∈ N0. We now introduce the notion of a Newton basis for

an interpolation space.

Definition 3.4 [104]. A set of polynomials
{

pα : α ∈ I ⊂ N
d
0

}

is called a Newton

basis with respect to the set X of distinct interpolation nodes if X can be indexed

as X = {xα : α ∈ I} such that
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1. for any α, β ∈ I with |β| ≤ |α|, one has

pα (xβ) = δα,β ; (3.3)

2. for any n ∈ N0 there is a decomposition

Πd
n = span {pα : |α| ≤ n} ⊕

{

q ∈ Πd
n : q (X ) = 0

}

. (3.4)

These graded Newton bases allow for an algorithmic approach to multivari-

ate polynomial interpolation and a recursive construction of the solution of the

problem. Moreover, the concept of a Newton basis is actually equivalent to min-

imal degree interpolation.

Theorem 3.5 [104]. A subspace P ⊂ Πd has a Newton basis with respect to X

if and only if it is a minimal degree interpolation space with respect to X .

This enables us to resolve the question of uniqueness of minimal degree

interpolation spaces: let P ⊂ Πd be a minimal degree interpolation space with

respect to the node set X and let pα, α ∈ I, be a Newton basis for P. Then the

set of polynomials
{

pα + qα : α ∈ I, qα ∈ Πd
|α|, qα (X ) = 0

}

is another Newton basis with respect to X and any Newton basis can be obtained

in this way. Hence, the Newton basis and the minimal degree interpolation space

P are unique if and only if Πd
n ∩{q : q (X ) = 0} = {0}. Observe that the concept

of Newton basis given in this section is different from that of subsection 2.3,

where, instead of (3.3) and (3.4), only (2.13) and (2.14) were assumed.

4. Remainder formulas

Remainder formulas for polynomial interpolation give explicit representa-

tions for the interpolation error. Let Ln denote the interpolation operator

Ln : C(Rd) → Πd
n, (4.1)

defined by

Lnf (xj) = f (xj) , j = 1, . . . ,

(

n + d

d

)

,
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where we assume that the nodes xj ∈ R
d make the interpolation problem poised.

In this section we study multivariate generalizations of the formula

f(x) − Lnf(x) = f [x, x0, . . . , xn]
n
∏

j=0

(x − xj)

=





n
∏

j=0

(x − xj)





∫

R

f (n+1)(t)M (t|x0, . . . , xn) dt, (4.2)

where f ∈ Cn+1 (R) and M (·|x0, . . . , xn) denotes the B–spline with knots

x0, . . . , xn, normalized such that
∫

R

M (t|x0, . . . , xn) dt =
1

(n + 1)!
.

Formula (4.2) also holds for repeated nodes. In particular, in the case that

x0 = · · · = xn, (4.2) yields an error formula for the Taylor polynomial Tnf ,

f(x) − Tnf(x) = (x − x0)
n+1

∫

R

f (n+1)(t)M (t|x0, . . . , x0) dt. (4.3)

For the multivariate case d > 1, we use the simplex spline, introduced by

Micchelli, cf. [85,86,89]. Recall that the simplex spline M (·|x0, . . . , xn) with

knots x0, . . . , xn ∈ R
d is defined as the distribution which satisfies

∫

Rd

f(t)M (t|x0, . . . , xn) dt =

∫

∆n

f (u0x0 + · · · + unxn) du, f ∈ C
(

R
d
)

,

(4.4)

where

∆n =







u : u = (u0, . . . , un) , uj ≥ 0,
n
∑

j=0

uj = 1







is the standard n–simplex. Following the notation introduced in [86], we are

pleased to write
∫

[x0,...,xn]

f :=

∫

Rd
f(t)M (t|x0, . . . , xn) dt. (4.5)

We remark that distributions of the form

[x0, . . . , xn; y1, . . . , yn] f :=

∫

[x0,...,xn]

Dy1
· · ·Dynf, x0, . . . , xn, y1, . . . , yn ∈ R

d,

are called a multivariate divided difference in [10]; see also [85,86] where it has

been pointed out how these distributions provide generalizations of univariate



M. Gasca and T. Sauer / Polynomial interpolation 19

divided differences (see also [58, p. 671] for another possibility based on an ob-

servation by Jacobi going back to 1835).

With this notation at hand and the distributional properties of the simplex

spline, the multivariate remainder formula for the Taylor polynomial becomes

f(x) − Tnf(x) =

∫

[x,x0,...,x0]

Dn+1
x−x0

f, x0, x ∈ R
d. (4.6)

Note that this representation is in essence a univariate formula since it is com-

bined directly from univariate Taylor polynomials along the line segment [x0, x],

cf. [107].

Let us now consider different remainder formulas for Lagrange interpolation.

4.1. Multipoint Taylor expansions and Ciarlet’s formula

We begin with an observation by Ciarlet which has first been stated in [36]

and has later been extended in [34]. This remainder formula is based on using the

error representation (4.6) for the Taylor polynomial Tnf . Indeed, let x1, . . . , xN ∈

R
d, N =

(n+d
d

)

, be nodes which allow unique polynomial interpolation of degree

n. Then, there exist unique Lagrange fundamental polynomials pj , j = 1, . . . , N ,

of degree n, such that pj (xk) = δjk, j, k = 1, . . . , N . Moreover, fix x ∈ R
d and

let Tnf , j = 1, . . . , N , denote the Taylor polynomial of order n at x. Choosing

x = xj in (4.6), we have

f (xj) = Tnf (xj) +

∫

[xj ,x,...,x]

Dn+1
xj−xf

and since Tn and Ln are projections on Πd
n we conclude that

Lnf =
N
∑

j=1

f (xj) pj =
N
∑

j=1

Tnf (xj) pj +
N
∑

j=1

pj

∫

[xj ,x,...,x]

Dn+1
xj−xf

= Tnf +
N
∑

j=1

pj

∫

[xj ,x,...,x]

Dn+1
xj−xf.

Hence, evaluating at x, and noting that Tnf(x) = f(x), we obtain that

f(x) − Lnf(x) =
N
∑

j=1

pj(x)

∫

[xj ,x,...,x]

Dn+1
x−xj

f, (4.7)

which is Ciarlet’s error formula.
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For later comparison, let us make some remarks on this formula. First, the

number of terms in this sum always equals the number of interpolation points,

independently of the number of variables. This shows that Ciarlet’s formula is

not a straightforward generalization of (4.2) since this formula consists of only

one term. Moreover, the splines appearing in Ciarlet’s formula are essentially

univariate B–splines and the integration always is over line segments only. Hence,

the function f under consideration has to be smooth on a domain which is star

shaped with respect to the interpolation points.

4.2. The Newton approach and its remainder formula

More than twenty years after the appearance of Ciarlet’s formula, which

became an essential tool in the analysis of finite elements [35], a different ap-

proach to remainder formulas was developed in [107]. This method is based on a

multivariate Newton approach. Let us describe the setup. Suppose that distinct

points x1, . . . , xN ∈ R
d, N =

(n+d
d

)

, are given which admit unique polynomial

interpolation of total degree at most n. The first step is the construction of the

Newton fundamental polynomials pα, α ∈ N
d,n
0 , (see Definition 3.4),

pα (xβ) = δα,β , |β| ≤ |α|,

where
{

xα : α ∈ N
d,n
0

}

, is a re–ordering of the points x1, . . . , xN . The construc-

tion of these polynomials and the re–ordering of the points can be effectively

done by a Gram–Schmidt procedure, see [103]. The dual functionals with respect

to this basis are the finite difference functionals which we define recursively, for

x ∈ R
d and f ∈ C

(

R
d
)

, as

λ0[x]f = f(x),

λk[x]f = λk−1f [x] −
∑

α∈Hd,k

λk−1 [xα] f pα(x), k ≥ 1.

Theorem 4.1 [107]. For any poised interpolation problem in Πd
n we have that

Lnf =
∑

α∈N
d,n
0

λ|α| [xα] f pα (4.8)

and

f − Lnf = λn+1[·]f. (4.9)
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Because of equation (4.9), a remainder formula is obtained by finding a

representation for the finite difference λn+1[·]f in terms of derivatives of f . This

has been done in [107] and to state the result we introduce a new concept. By a

path µ of length n we mean a vector

µ = (µ0, . . . , µn) , µj ∈ N
d
0, |µj | = j, j = 0, . . . , n,

of integer points (of increasing length). We denote the set of all paths of length

n by Λn. Associated to any such path µ ∈ Λn is a set of interpolation points

Xµ =
{

xµj
∈ R

d : j = 0, . . . , n
}

,

an nth order homogeneous differential operator

Dn
µ = Dxµn−xµn−1

· · ·Dxµ1
−xµ0

and a number

πµ =
n−1
∏

j=0

pµj

(

xµj+1

)

.

With this notation at hand, we can state, for x ∈ R and f ∈ Cn+1
(

R
d
)

, the

following result from [107], see also [11],

f(x) − Lnf(x) =
∑

µ∈Λn

pµn(x)πµ

∫

[Xµ,x]

Dx−xµn
Dn

µf. (4.10)

Let us compare this formula (4.10) with formula (4.7). First, we note that

for d = 1 the above (4.10) becomes (4.2) and is different from (4.7). For d ≥ 2,

however, the situation changes. The number of terms in the sum in (4.10) is

n
∏

j=0

(

d − 1 + j

d

)

which exceeds N , the number of terms in (4.7). On the other hand, (4.10)

contains
(n+d−1

d−1

)

terms which depend on the point x and this number of terms

is certainly less than N . Another difference between these two formulas is that

(4.10) contains integration over “truly” d–dimensional domains provided that the

convex hull of Xµ has nonzero d–dimensional volume for some path µ, a property

satisfied by any generic selection of points.

Therefore, we see that these two remainder formulas are structurally dif-

ferent and provide us with alternate ways to describe the error in polynomial
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interpolation. We remark that formula (4.10) was used in [38] to prove the con-

vergence of trust region algorithms for unconstraint derivative–free optimization.

It is possible to extend these results to minimal degree interpolation, but

the resulting formulas are intricate. We refer the interested reader to [104].

4.3. An error formula for interpolation on natural lattices

So far, we have considered remainder formulas which apply to any distinct

points which admit polynomial interpolation. In this and the next subsection we

present two results which pertain to restricted sets of interpolation points.

The first one is an elegant formula for the error in natural lattices interpo-

lation which has been derived by de Boor [10,12]. The setup here is a set H of

n + d hyperplanes in R
d which are in general position, that is, any d hyperplanes

H1, . . . ,Hd ∈ H intersect in exactly one point and any two different selections of

d hyperplanes intersect in different points.

We define

Hk = {K : K ⊂ H, #K = k} , k = 1, . . . , d. (4.11)

Since the hyperplanes are in general position we conclude that, for every K ∈ Hd

there exists a point xK defined by

xK =
⋂

H∈K

H.

Note that xK 6∈ H \ K, that is

H (xK) 6= 0, H ∈ H \ K.

Here we again identify the hyperplane H with the affine function H ∈ Πd
1 such

that x ∈ H ⇔ H(x) = 0. It has been proved in [33] that the points xK, K ∈

Hd, form a natural lattice and hence allow unique interpolation from Πd
n. The

Lagrange representation of the interpolant takes the simple form

Lnf =
∑

K∈Hd

f (xK)
∏

H∈H\K

H

H (xK)
,

which becomes (2.3) in the bivariate case.

Since the hyperplanes are in general position, for any K ∈ Hd−1 there exists

a line LK defined as

LK =
⋂

H∈K

H.
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Let vK be a vector of euclidian length 1 in the direction of the line LK. Moreover,

note that for any H ∈ H \ K the line LK intersects H in the point xK∪{H}. This

leads us to introduce, for K ∈ Hd−1, the set of n + 1 points

XK := {LK ∩ H : H ∈ H \ K} .

Likewise, we define the polynomial

pK :=
∏

H∈H\K

H

H (vK) − H(0)
, K ∈ Hd−1. (4.12)

Note that this polynomial is independent of how we normalize the affine polyno-

mials H associated with its hyperplane. Moreover, the denominator appearing in

(4.12) is nonzero due to the assumption that the hyperplanes in H are in general

position. We also observe that pK (xJ ) = 0 for all K ∈ Hd−1 and J ∈ Hd.

With this notation at hand, de Boor’s error representation for the Chung–

Yao interpolant takes the form

f − Lnf =
∑

K∈Hd−1

pK

∫

[·,XK]

Dn+1
vK

f. (4.13)

Note that formula (4.13) uses only directional derivatives along the lines LK

formed by the intersection of d− 1 hyperplanes from H. Moreover, if x ∈ LK for

some K ∈ Hd−1 then we obtain the univariate remainder formula. For general

points x ∈ R
d, however, the domains of all the integrals in (4.13) are non–

degenerate triangles. The number of terms in the sum on the right hand side of

(4.13) is now
(n+d
d−1

)

which equals dim Πd−1
n+1, and which is less than in (4.10). We

also remark that the polynomials pK , K ∈ Hd−1, form an H–basis (cf. [93]) for

the ideal
{

p ∈ Πd : p (xK) = 0, K ∈ Hd

}

.

More on these algebraic aspects later. For an application of (4.13) in a special

case see [109].

4.4. The error in reversible systems interpolation

The next error representation formula to be considered is for interpolation by

reversible systems as described in subsection 2.3. To this end, we analyze the un-

derlying geometry in more detail. Let ρi, ρ
′
j and ηi, η

′
j denote vectors of euclidian

norm 1 which are parallel and perpendicular to the lines ri, r
′
j , respectively. We
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define M = max {i + j : (i, j) ∈ I} and, by choosing arbitrary additional lines,

we extend our system of straight lines to r0, . . . , rM+1 and r′0, . . . , r
′
M+1. This

then provides polynomials φij for any 0 ≤ i, j ≤ M + 1. Next, we consider paths

µ = (µ0, . . . , µk+1) such that µ0, . . . , µk ∈ I, µk+1 6∈ I and, for all j, µj+1 = µj+e1

or µj+1 = µj + e2. We denote the totality of all such paths (of length at most

M + 1) by Λ∗ and note that #Λ∗ ≤ 2M+1. To each such path µ ∈ Λ∗ we define

directions

ηj(µ) :=

{

ηl if µj+1 = (l + 1, l′) , µj = (l, l′) ,

η′l′ if µj+1 = (l, l′ + 1) , µj = (l, l′) ,
j = 0, . . . , k,

and

ρj(µ) :=

{

ρl if µj+1 = (l + 1, l′) , µj = (l, l′) ,

ρ′l′ if µj+1 = (l, l′ + 1) , µj = (l, l′) ,
j = 0, . . . , k.

We write θµ for the accumulated angles between these two systems of lines,

θµ =
k
∏

j=0

ηj(µ) · ρj(µ),

and obtain the formula

f − Lf =
∑

µ∈Λ∗

φµk+1

θµ

∫

[Xµ,·]
Dρk(µ) · · ·Dρ0(µ)f. (4.14)

This formula is another instance of a phenomenon known from classical geometry

which states: “there is no distance between lines”. That is, the only geometrical

quantity describing the relation between the lines is their angle of intersection.

Because of this property, (4.14) also holds true for the corresponding Hermite

interpolation problem.

We also remark that the two formulas (4.13) and (4.14) have a rather simple

form and give rise to remainder estimates which strongly mimic the univariate

case. However, one should have in mind that these two situations use the strong

assumption that the Lagrange fundamental polynomials can be factored into a

product of affine polynomials.

5. Kergin Interpolation

The interpolation schemes considered so far have one important property in

common: the dimension of the interpolation spaces coincides with the number

of interpolation conditions. A different approach has been taken by Kergin [66]
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who constructed, for given nodes x0, . . . , xn ∈ R
d, an interpolant of degree n.

This interpolant becomes unique because of additional interpolation constraints.

Precisely, we have the following result.

Theorem 5.1 (Kergin). For any points x0, . . . , xn ∈ R
d there is a unique map-

ping P : Cn
(

R
d
)

→ Πd
n with the property that for any f ∈ Cn

(

R
d
)

, any

constant coefficient homogeneous differential operator q(D), q ∈ Πd
n, and any

subset J ⊆ {0, . . . , n}, #J = deg q + 1, there exists a point x in the convex hull

[xj : j ∈ J ] such that

(q(D)Pf) (x) = (q(D)f) (x). (5.1)

Due to the complexity of this condition it is not surprising that the main

part of [66] consists of showing the existence of the above interpolation operator

which was done in a non–constructive way. This issue was resolved constructively

by Micchelli [86], see also [87]. It turns out that Kergin interpolation can actually

be considered as an extension of the approach (1.9). Indeed, substitution of the

univariate Hermite–Genocchi formula

f [x0, . . . , xn] =

∫

[x0,...,xn]

f (n), f ∈ Cn (R) ,

which expresses the divided difference as a B–Spline integral, into the Newton

formula (1.5) allows us to represent the interpolation polynomial Lnf as

Lnf(x) =
n
∑

j=0

∫

[x0,...,xj ]

f (j)
j−1
∏

k=0

(x − xk) , x ∈ R,

which can be rewritten in a “fancy” way as

Lnf(x) =
n
∑

j=0

∫

[x0,...,xj ]

Dx−x0
· · ·Dx−xj−1

f, x ∈ R. (5.2)

Now, formula (5.2) already gives the Kergin interpolant P with the above prop-

erties by simply replacing the qualifier “x ∈ R” by “x ∈ R
d”.

Theorem 5.2 (Micchelli [86]).The Kergin interpolant P is given as

Pf(x) =
n
∑

j=0

∫

[x0,...,xj ]

Dx−x0
· · ·Dx−xj−1

f, x ∈ R
d, (5.3)
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and the error of interpolation takes the form

(f − Pf) (x) =

∫

[x,x0,...,xn]

Dx−x0
· · ·Dx−xnf, x ∈ R

d. (5.4)

For more information on Kergin interpolation we particularly recommend the

monograph [6] and the references therein.

6. Algebraic aspects

There is a strong connection between polynomial interpolation in several

variables and the theory of polynomial ideals which has actually led to parallelism

in the development of results. In this section we want to describe the main ideas

and relate them.

We first recall some terminology from algebraic geometry. Instead of finite

sets of points we now speak of zero dimensional varieties. To explain this notion,

let K be an infinite field. For any finite set of polynomials, F ⊂ Π, we define an

algebraic variety V (F) by setting

V (F) = {x ∈ K : F(x) = (f(x) : f ∈ F) = 0} .

Conversely, we can associate to any set V ⊂ K
d a set I(V ) of polynomials, defined

by

I(V ) = {p ∈ Π : p(x) = 0, x ∈ V } . (6.1)

Note that I(V ) is an ideal, i.e., it is closed under addition and multiplication by

Π. Moreover, if #V < ∞, then we already know what to do in order to find I(V ):

we find a minimal degree interpolation space with respect to V and, writing pf

for the interpolation polynomial with respect to f ∈ Π, we have that

I (V ) = {f − pf : f ∈ Π} . (6.2)

Clearly, any polynomial on the right hand side of (6.2) vanishes at V and any

polynomial in f ∈ I(V ) can be written that way – then even pf = 0. Note,

however, that it is crucial here that V is a minimal degree interpolation space.

But we can also use this procedure to construct a basis for the ideal. For this
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purpose we recall that a finite set F ⊂ Π of polynomials is called a basis for an

ideal I ⊂ Π if

I = 〈F〉 = 〈f : f ∈ F〉 =







∑

f∈F

φff : φf ∈ Π, f ∈ F







. (6.3)

Recall that finiteness does not imply any restriction here since Hilbert’s Basissatz

tells us that any polynomial ideal has a finite basis. Now, the construction for

an ideal basis by interpolation works as follows: we start with any basis of Π,

i.e., a countable set {fj : j ∈ N0} of polynomials and an initial basis F−1 = ∅ for

the ideal. For any j ∈ N0, we check if qj := fj − pfj
= 0 or if qj ∈ 〈Fj−1〉. If

the answer is “no” in both cases, we set Fj = Fj−1 ∪{qj}, otherwise we continue

with Fj = Fj−1. Since the sequence 〈Fj〉, j ∈ N0, is an increasing sequence of

ideals and since polynomial rings are Noetherian, this process has to terminate

after a finite number of steps yielding even a minimal basis for the ideal I(V ).

This simple construction immediately shows that there must be an intimate

relation between polynomial interpolation and the construction of ideal bases.

Indeed, there has been a parallel development of ideas in Computer Algebra on

the one hand and in Numerical Analysis (in particular, the theory of multivariate

polynomial interpolation) where both sides have been unaware of each other.

In the remainder of this section we want to show and connect some of these

approaches. For a more detailed exposition see also [93].

6.1. The setup – ideal interpolation schemes

A general interpolation scheme is given by a finite set Θ ⊂ Π′ of continu-

ous linear functionals, defined on the algebra of polynomials. To exclude trivial

degenerate cases, we demand Θ to be linearly independent, i.e.,

∑

ϑ∈Θ

cϑϑ(p) = 0 ∀p ∈ Π ⇔ cϑ = 0, ϑ ∈ Θ.

Following Birkhoff [5], we call Θ an ideal interpolation scheme if the set of all

homogeneous solutions of the interpolation problem,

ker Θ = {f ∈ Π : Θ(f) = (ϑ(f) : ϑ ∈ Θ) = 0} ⊂ Π

is an ideal in Π. These interpolation schemes can be characterized completely in

the following way, cf.[82,16]
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Theorem 6.1. A finite set Θ ⊂ Π′ is an ideal interpolation scheme if and only

if Θ can be represented as

Θ(f) = {(qj,k(D)f) (xj) : k = 0, . . . ,mj − 1, j = 1, . . . , n} , f ∈ Π,

where the polynomial spaces

Qj = span {qj,k : k = 0, . . . ,mj − 1} ⊂ Π, j = 1, . . . , n,

are closed under differentiation, i.e., q(D)Qj ⊆ Qj , q ∈ Π.

In view of this result, the notion of “ideal interpolation scheme” is a very

reasonable generalization of the univariate Hermite interpolation scheme, in par-

ticular, since, for d > 1, m–fold (common) zeros of (finite sets of) polynomials

correspond to m–dimensional spaces of polynomials which are closed under dif-

ferentiation, cf. [57]. For example, a triple zero of f ∈ Π at a point x0 ∈ R
2 could

either mean that

f (x0) =
∂f

∂ξ1
(x0) =

∂f

∂ξ2
(x0) = 0

or that there exists a nonzero y ∈ R
2 such that

f (x0) = Dyf (x0) = D2
yf (x0) = 0.

Conversely, if I is a zero dimensional ideal, i.e., if the associated variety is finite,

then there always exist a set Θ of dual functionals which may, however, be defined

in a field extension of K – this corresponds to the fact that polynomials with real

coefficients (like p(x) = x2 +1) might have complex zeros. And again, the spaces

of “local” differential conditions from Theorem 6.1 are the natural generalization

of the multiplicity of such a zero. We want to emphasize once more that in two

and more variables multiplicity of a polynomial zero is a structured quantity and

not just a matter of counting, cf. [57,84].

Now, suppose that we are given a zero dimensional ideal I, then there exists

a finite set Θ of linearly independent dual functionals such that

I = {p ∈ Π : Θ(p) = 0} .

These dual functionals define an ideal interpolation scheme and any two interpo-

lation spaces P1,P2 ⊂ Π (clearly, dimP1 = dimP2 = #Θ) are equivalent modulo

I, in the sense that for each polynomial p ∈ P1 there exists q ∈ P2 such that

p − q ∈ I and reciprocally. More precisely, given any data y ∈ K
Θ, the affine
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space of all solutions of the interpolation problem Θ(p) = y is given by p∗ + I,

where p∗ is any polynomial satisfying Θ (p∗) = y.

6.2. Gauß elimination on the Vandermonde matrix

The straightforward approach to finding a solution of the interpolation prob-

lem

Θ(p) = y, y ∈ K
Θ, (6.4)

is to view it as a linear system and to determine (formally) bi–infinite coefficient

vectors c =
(

cα ∈ K : α ∈ N
d
0

)

such that

∑

α∈Nd
0

cαΘ(xα) =
[

Θ(xα) : α ∈ N
d
0

]

c = y. (6.5)

The matrix VΘ =
[

Θ(xα) : α ∈ N
d
0

]

in equation (6.5) is called the Vandermonde

matrix with respect to Θ. Since the functionals in Θ were assumed to be lin-

early independent, we know that rankVΘ = #Θ, hence there exist #Θ linearly

independent column vectors from VΘ. In other words, there exists a set A ⊂ N
d
0,

#A = #Θ, such that

rank [Θ (xα) : α ∈ A] = #Θ.

Consequently, any such set A yields an interpolation space, namely the one

spanned by {xα : α ∈ A}. Usually, however, this set A is far from being unique,

which raises the question about a good choice of A. This selection can be “au-

tomated” by using an appropriate version of Gaussian elimination as proposed

in [22,82], see also [92]. The idea is to eliminate column–by–column, processing

the multiindices with respect to some term order ≺. Recall that a term order is

a total ordering on N
d
0 which has 0 as minimal element and is compatible with

addition in N
d
0. In the process of elimination it can happen that a zero column,

say with index α, is produced, that is, there exist coefficients cβ , β � α, cα = 1,

such that

0 =
∑

β�α

cβΘ(xα) = Θ





∑

β�α

cβxα



 .

This means that the polynomial

p(x) =
∑

β�α

cβxα



30 M. Gasca and T. Sauer / Polynomial interpolation

belongs to I. But even more is true: recording these “unwanted” (in terms of

polynomial interpolation) polynomials in a proper way yields a Gröbner basis (see

[93] for details) for the ideal I. And in fact, the goal in [22,82] was not to compute

the interpolation polynomials but the Gröbner basis for ideal I = ker Θ which is

implicitly defined by Θ. This approach and the connection to Gröbner bases has

also been mentioned in [104]. Moreover, it is worthwhile to note that, though this

approach formally performs elimination on an infinite matrix, it always works on

a finite matrix only: as shown in [105] the set A of multiindices constructed above

always satisfies

A ⊂
{

α ∈ N
d
0 : |α| ≤ #Θ − 1

}

.

A different approach towards elimination “by segments” in the Vandermonde

matrix has been taken in [15], collecting all monomials of the same total degree

into one object and mutually orthogonalizing them to obtain uniqueness. The

result of this elimination process is then the least interpolation space described

above. We will, however, omit the technical details of this intricate method which

is also described in [8] from the linear algebra point of view.

6.3. Choosing the right representer by reduction

We now turn back to the problem of choosing a “good” solution for the

interpolation problem Θ(p) = y, where y ∈ K
Θ is some given data vector. As

mentioned before, any two solutions p, p′ of this problem differ exactly by an

element from I = ker Θ and thus belong to the same equivalence class modulo

I. Hence, the problem of finding a “good” interpolation polynomial is equivalent

to finding a “good” representer for this equivalence class.

One way of obtaining this representer is in fact motivated by the univariate

case: let x0, . . . , xn be (for the sake of simplicity) distinct points in R and let

p ∈ Π be any polynomial which satisfies

p (xj) = yj , j = 0, . . . , n,

for some given data yj , j = 0, . . . , n. Of course, the “standard” interpolation

polynomial would be the unique one of degree n which can be obtained from p

“algebraically” by division with remainder. Indeed, if we write p in the form

p = qω + r, ω = (x − x0) · · · (x − xn), deg r < deg ω = n+1, then r is the desired

polynomial and can be obtained by performing the Euclidean algorithm. But we

can also interpret the above division in a slightly different way which allows for
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generalization to the multivariate case: the fact that the remainder polynomial

r has degree n is equivalent to the property that no multiple of the leading term

xn+1 of ω divides any homogeneous term of r any more. Such a polynomial is

called reduced.

Reduction is now the key to the multivariate case, where a division algo-

rithm, straightforwardly extending the univariate Euclidean algorithm, can be

defined to divide by a finite family of polynomials, cf. [39, p. 63 ff.] for an excel-

lent introduction. The idea is to use some term order and try to cancel leading

terms of a given polynomial by a monomial multiple of the leading term of some

polynomial from the finite set of divisors to end up with a reduced remainder

polynomial. Since in some steps of the algorithm there can be more than one

divisor whose leading term divides the homogeneous target term, there can (and

often will) be ambiguities due to which even the remainder may not be unique

any more. There is, however, an important case where the reduced remainder is

unique, namely if the divisors form a Gröbner basis of the ideal they generate.

Recall that a finite set P of polynomials is a Gröbner basis for the ideal 〈P〉 if

any polynomial f ∈ 〈P〉 can be written as

f =
∑

p∈P

qpp,

where the degree (i.e., the ≺–maximal power with respect to a given term order

≺) of any term in the sum on the right hand side does not exceed the degree (in the

same sense) of p. If the term order based notion of degree is replaced by the total

degree, then the basis with the respective property is called an H–basis. H–bases

have been introduced by Macaulay as early as 1916 [79], while Gröbner bases

have been brought up by Buchberger in his doctoral thesis in 1965, cf. [19,21].

Actually, the first major application of Gröbner bases was to compute a unique

representer for each equivalence class modulo the ideal I, in order to generate a

“multiplication table” modulo I, that is, to describe the action of multiplication

by a given polynomial f ∈ Π as an automorphism on the equivalence class. As

shown in [106] the idea of reduction can also be carried over to the grading by

total degree, yielding a constructive approach to H–bases. For the details and

more facts about H–bases, Gröbner bases and their applications, the reader is

once more referred to [93].
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6.4. Normal form interpolation

One can use the algebraic technique of reduction to generate interpolation

spaces: associated to each equivalence class modulo ker Θ, hence associated to

any family of solutions of an ideal interpolation scheme Θ with respect to a

given right hand side y, there is a “standard” element of this equivalence class,

i.e., a “standard” interpolant, which can be obtained by the reduction process.

This representer is often called the normal form modulo I = ker Θ. It can

be shown that the set of all normal forms is a #Θ–dimensional linear subspace

of Π which admits unique interpolation. Moreover, acting on Π, reduction and

interpolation are the same operation. The “free parameter” in this process is

the notion of degree; if the degree is chosen to be based on a term order, then

one enters the Gröbner basis environment and generates an interpolation space

which is generated by #Θ monomials which are ≺–minimal, where ≺ is again the

underlying term order. Moreover, as shown in [105], this approach can actually

be interpreted as term order least interpolation using single monomials instead

of homogeneous terms. In the total degree setting, on the other hand, the least

interpolation space can be obtained by a properly chosen reduction process where

one deals with H–Bases then. Conversely, if the set Θ of dual functionals is

given, then the Gauß elimination techniques on the Vandermonde matrix yield,

as a by–product, a Gröbner basis or an H–basis, respectively, depending on the

elimination technique to be used.

Summarizing we can say that the strong duality between interpolation and

the generation of “good” bases for zero dimensional ideals nicely connects ideas

from both Numerical Analysis and Computer Algebra and allows for the appli-

cation of methods and techniques from one field in the other.

7. Final remarks

7.1. Software for polynomial interpolation

Besides the theoretical study of multivariate polynomial interpolation there

is still the problem of how to compute interpolation polynomials in a numerically

efficient and stable way. Of course, the first way to do so is the “naive” one which

first generates the Vandermonde matrix
[

xα
j : j = 0, . . . , N, α ∈ A

]

, #A = N + 1,
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and then applies a “standard solver” like the famous LAPACK [2] to it. Unfor-

tunately, Vandermonde matrices are known to be rather ill-conditioned and a

“blind” application of linear algebra cannot be expected to produce good results.

This phenomenon, by the way, becomes more and more apparent as the number

of variables increases, which is, for example the case in optimization problems, cf.

[38]. From this perspective, it might be useful to have software available which

makes use of the structural properties of polynomial interpolation to obtain al-

gorithms with better numerical properties.

Right now there are, to our knowledge, two different packages which are

freely available on the Internet and which correspond to two “competing” ap-

proaches to multivariate interpolation. The first one is a set of m–files (MAT-

LAB command files) developed by C. de Boor on the basis of the computational

treatment of least interpolation in [15], which can be downloaded via anonymous

ftp from

ftp://ftp.cs.wisc.edu/Approx

The interested reader is also referred to [13] where also some important details

of the implementation are provided.

The other software is MPI, a C++ class library by T. Sauer based on the

Newton approach from [107] which can be obtained from

http://www.mi.uni-erlangen.de/~sauer/interpol

The class library includes a templated class polynomial (i.e., it is possible to use

coefficients of arbitrary type which supports the basic field operations) with the

basic linear space operations and point evaluation. Interpolation polynomials are

easily generated by submitting two arrays containing the nodes and the values

to be interpolated there, and can be manipulated in various ways. For example,

it is possible to add further interpolation points without having to compute the

interpolation polynomial from scratch every time, an ability which is one of the

very handy properties of any Newton–like scheme. Some numerical experiences

with MPI are described in [103], details on the Horner scheme used in this

software and its surprisingly good numerical properties are given in [100].

We will not try to make any comparison between these two packages since

they are designed for completely different purposes and work in very different

environments. An obvious fact, however, is that the MATLAB–routines are easier

to handle and therefore are much more suitable for the casual user who is mainly
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interested in interactively experimenting with polynomial interpolation without

having to write and compile a program. On the other hand, the C++–routines in

MPI are much more trimmed for efficiency, but in order to apply them clearly

a certain background in programming is needed to use classes in an appropriate

way.

The final question, however, is if polynomial interpolation is a reasonable

method in practice at all. It is well–known from the univariate case that interpo-

lation polynomials often oscillate up to a point which renders them useless – this

is one of the reasons why spline functions are much more useful for the interpo-

lation of large data sets. On the other hand, it is the degree of the polynomial

which causes the oscillations (and also the difficulties emerging from roundoff

errors, cf. [100]), so that in higher dimensions polynomial interpolation may be

a reasonable tool for a “moderate” number of nodes. Up to now very little can

be said on the usefulness of polynomial interpolation in serious applications so

that we can only invite people to try the available routines and to report their

experiences.

7.2. The bibliography

Here below we present a selection of over one hundred references which, in

our opinion, is very representative of the development in the last 25 years of the

subject, specially in the constructive approaches which have been mentioned in

the preceding sections.

The list includes in some cases old papers which are related to the recent

ones, and can be used as a source of further references of the different authors.

For readers interested in multivariate polynomial interpolation we recommend,

for example, to enlarge the bibliography cited here of de Boor, Ciarlet, Gasca,

Goldman, Hakopian, Le Mehauté, R. Lorentz, Phillips, Sauer, and respective

coauthors, who summarize the different approaches in different countries.
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[93] H. M. Möller and T. Sauer. H–bases for polynomial interpolation and system solving.

This volume.
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