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Polynomial Interpolation

to Boundary Data on Triangles

By R. E. Barnhill* and J. A. Gregory

Abstract.   Boolean sum interpolation theory is used to derive a polynomial interpolant

which interpolates a function F E. Cr^(T), and its derivatives of order N and less, on

the boundary 37* of a triangle T.   A triangle with one curved side is also considered.

1. Introduction.  Boolean sum interpolation theory** was first used on triangles

by Barnhill, Birkhoff, and Gordon [1] to derive rational functions interpolating the

boundary data. The general theory of Boolean sum interpolation is briefly discussed in

this paper and a polynomial Boolean sum interpolant is presented, which, for any posi-

tive integer TV, interpolates a function F G CN(f), and its derivatives of order TV and

less, on the boundary dT of a triangle T. The case TV = 0 corresponds to an interpolant

constructed by other means by Nielson [6]. The interpolant requires that certain deriv-

atives of F be compatible at the vertices of T, but these conditions can be removed by

adding suitable rational terms.  The theory is generalized for a triangle with one curved

side.

The interpolant can be used to define a piecewise function which is CN(Sl) over

a triangular subdivision of a polygonal region Í2.  This has applications to computer

aided geometric design and finite element analysis. Finite dimensional, piecewise defined,

C^(Í2) interpolants can be derived by taking the boundary data to be functions inter-

polating discrete data along the sides.  Alternatively, the blending function can be incor-

porated with finite elements so as to match exactly a given boundary function on Í2;

see, for example, Marshall and Mitchell [5], who interpolate over a polygonal region Í2.

The general theory of interpolation to boundary data for a triangle with one curved

side, presented in Section 5, permits essential boundary conditions to be satisfied exactly.

2. Boolean Sum Interpolation Theory.  This section considers conditions which

are sufficient for the application of Boolean sum interpolation theory.  These conditions

motivate the formulation of the projectors considered in Section 3.  The interpolation
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POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 727

of the function F is first discussed, and this is then generalized to the interpolation of

the function F and its derivatives.

Theorem 2.1. Let Yx and Y2 be two subsets of R", and let F be a function

defined on rx U T2. Let Px and P2 be two interpolation projectors such that P¡F = F

on T¡, and P¡F is defined on Tx U T2, / = 1, 2.  77ien the Boolean sum function,

(2-0 (Pi © P2)F = (A +P2- P1P2)F,

(i) interpolates F on Vx,

(ii) interpolates F on F2 - Tx if PXFon T2 - Tx is a linear combination of

function evaluations on T2.

Proof, (i)  Since I - Px is null on Yx, where I is the identity operator, it follows

that

F-(PX ®P2)F=(I-PX)(I-P2)F

is zero on Vx.

(ii)  Also, since (7 - P2)F = 0 on T2,

F - (Px © P2)F = (I - P2)F - P,(7 - P2)F

is zero on T2 — Tx if Px on T2 — rx is a linear combination of function evaluations on

T2.    Q.ED.

In practice, P.F usually-involves F only on F¡. The hypothesis of Theorem 2.1

then becomes that PXF on T2 — Fx is a linear combination of function evaluations on

Tj n T2, where it is a necessary condition that Vx D T2 is not null.

Remark.   If the dual hypothesis holds for (P2 © PX)F, that is, P2F on Vx - T2

is a linear combination of function evaluations on Tx, then

(Px © T^F = (P2 © PX)F   on Tx U V2

and hence

PXP2F = P2PXF   onT, U r2.

We thus have sufficient conditions that the projectors satisfy the definition of weak

commutativity of Gordon and Wixom [4].

The generalization of Theorem 2.1 to the interpolation of function and deriva-

tives on rx U T2 is the following:

Theorem 2.2. Let Px and P2 be two interpolation projectors such that DaP¡F

= DaF on r,. and 7)aP,.F is defined onYx U T2, i = 1,2, for all \a\ < TV, where

al«l
«-(«i.---.«.) and D*= a,«i...3x«i.-

772e«

(i) ^(P! © P2)F = 7)aF on r, for all \a\ < TV,

(Ü) Da(Px © P2)F = DaF on T2 - Tx for all \a\ < N ifDaPxF on T2 - rx is a

linear combination of function and derivative evaluations on F2 which are interpolated

by P2F.
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728 R. E. BARNHILL AND J. A. GREGORY

Proof   The proof is an extension of the proof of Theorem 2.1.  The only compli-

cation is on T2 — Tj where

DaF - Da(Px © P2)F = Da(I - P2)F - DaPx(I - P2)F

is zero for all |a| < TV if and only if DaPx(I - P2)F = 0. A sufficient condition for

this to hold is that DaPx on T2 — Fx is a linear combination of function and derivative

evaluations on V2.  For |a| > 1 some of these derivatives may be of order greater than

TV and thus we require that these be interpolated by P2.    Q.E.D.

Note.   Since P2F interpolates DaF on T2 for all |a| < TV, then, assuming its exis-

tence, dß/dsP(DaF) is also interpolated on T2, where d/ds is any derivative along the

set T2.  Such derivatives, assuming any necessary compatibility to allow change of order

of differentiation, frequently include those required by Theorem 2.2.

Example of Rational Interpolation on Triangles. Consider the standard triangle T

with vertices at Vx = (0, 1), V2 = (1, 0), and V3 = (0, 0), where the side opposite the

vertex Vk is denoted by Ek.  Rational Hermite projectors on T are defined by

(22) txf= z *i(T^Y-yYF,,o(o>y)+Z ̂ fr^rrVi-^.oO-^^).
í<n   v   y i ¡<N   v   y/

(2-3) T2F= Z  ^(-rMo -xYF0>t(x,0)+ Z   ^(t^V - *)'Fo,,(*> 1 -*).
i<N       V - */ i<2V        N1       "V

¡<N   \x+y

(2.4) X /
x+S,*^F+"y'([ad, - >,\

where the <p¡(t) and 0((r) = (- 1)V,(1 ~ 0 are the cardinal basis functions for Hermite

two point Taylor interpolation on the interval [0, 1].  Boolean sum interpolation using

these projectors was first considered by Barnhill, Birkhoff, and Gordon [1].  Applica-

tion of Theorem 2.2 gives the following theorem.

Theorem 2.3.  777e Boolean sum functions, (T¡ © Tf)F = (T¡ + T¡ - TjT^F,

i^il './ = 1» 2, 3, interpolate F G CN(f) and its derivatives of order TV and less on

dT, provided that F satisfies the compatibility conditions

/gm + nzA fdn + mF\

(2"5) b^r^)=bi^h).      «2,«<TV;«2+«>TV,

where Vk is the vertex with adjacent sides E¡ and E^and d/ds, denotes differentation

along the side E¡.

Proof. By affine transformation and symmetry, it is sufficient to consider the

case (Tx © T2)F. TXF and T2F interpolate on rx = E2 U E3 and T2 = Ex U E3,

respectively. With reference to the hypotheses of Theorem 2.2, DaTxF, \a\ <TV, on

f2 — Tx = E2 involves linear combinations of
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POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 729

(26)   fc^)(0'0)  and  l~^ + ^l ^à-KLO),    o<«2,«<tv.

The latter derivative is interpolated by T2F, since tangential derivatives along the side

are automatically interpolated.  Also, T2F interpolates F0 n(x, 0) and hence interpolates

ffn+np
-(0,0),      0<«2, «<TV.

\dxmdynr

Thus the hypotheses of Theorem 2.2 are satisfied if F G CN(f) and satisfies the com-

patibility conditions (2.5) at the vertex V3 = (0, 0).   Q.E.D.

Precision.   The precision set is the set of polynomials for which the interpolant is

exact and is important in that it indicates the order of accuracy of the interpolant. The

precision set of the Boolean sum operator Px © P2 is at least that of P2 since

7-(P, ©P2) = 7-P2-P,(7-P2)

and I - P2 is null on the precision set of P2.  Thus the Boolean sum operator Px © P2

has at least the interpolation properties of the projector Px and the precision set of the

projector P2.

3. Polynomial Interpolation on Triangles.   By affine invariance it is sufficient to

consider the standard triangle T defined above. Projectors Px and P2 are considered,

which satisfy the conditions of Theorem 2.2 and which respectively interpolate F G

CN(f) and its derivatives of order TV and less, on the hypotenuse T1 = F3 and on the

x and y axes T2 = Ex U E2.  These projectors involve suitable combinations of the

Taylor projectors which interpolate F and its derivatives on the sides of the triangle T

along parallels to the x and y axes.  Explicitly the Taylor projectors are defined by

T2XF= Z x^FitO(0,y),
i<N

i<N

(3.1)

tIf =Z(x+y- i^'XoO - y> y)>
i<N

TlyF= Z yinFOJ(x,0),

j<N

T¡F =Y,(x+y~ l)U)F0tf(x, 1 - x),
/<JV

where x^ - x'lil and T2 denotes the Taylor projector across the side F2 along the

line through (x, y) parallel to the x axis etc.

Let

P2F = (T2 © Txy)F= Z x^Fi0(Q,y)+ Z  v<'>F0)/(x, 0)
i<N j<N

(3.2)

Y        x«)y(/)(    8' + /F    )(0, 0).

i,j<N

Then it is easily shown that for F G CN(f) the conditions of Theorem 2.2 are satisfied
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730 R. E. BARNHILL AND J. A. GREGORY

for the Boolean sum of the projectors T2 on E2 and 7Vj on Ex if

^^(°'0)=l5y^/°'0)'      rn,n<N;m+n>N

(in which case the Taylor projectors are commutative).  Thus for F satisfying the com-

patibility condition (3.3), P2F interpolates F and its derivatives of order TV and less on

T2 = Ex U E2. The precision set of P2 is the union of those of the two Taylor pro-

jectors T2 and T*, namely

!0<»</V   for all/,

0</<TV    for all i.

A projector Px is required which interpolates F and its derivatives on Tj = E3

and which satisfies the conditions of Theorem 2.2, namely that DaPxF on T2 is a linear

combination of function and derivative evaluations on T2 which are interpolated by

P2F. This is accomplished by taking a suitable combination of the two hypotenuse

Taylor projectors.

Linear Case. (Nielson's interpolant.)  Let

(3.5) PXF = yF(x, 1 - x) + xF(l - y, y),

then PXF interpolates F on T, = {x + y = 1}.  Also, on x = 0, PXF = yF(0, 1) and,

on y = 0, PjF = xF(l, 0). Thus PjF on T2 is a linear combination of function evalua-

tions on T2, and these are interpolated by

(3.6) P2F = F(0, y) + F(x, 0) - F(0, 0).

The conditions of Theorem 2.1 are thus satisfied and

(P, ®P2)F = yF(x,l-x) + xF(l -y,y) +F(x,0) +F(0,y) -F(0,0)

(3.7) -^{F(0,1 - x) + F(x, 0) - F(0, 0)}

-x{F(0,y) + F(l  - y, 0) - F(0, 0)}

interpolates F on the boundary d T of the triangle T. This is a Boolean sum derivation

of Nielson's polynomial interpolant.

If we let

F(x, 0) = (1 - x)F(0, 0) + xF(l, 0),      F(0, y) = (1 - y)F(0, 0) + yF(0, 1),

and F(x, 1 — x) — F(x, 1 - x), then

(3.8) (Pj © P2)F = yF(x, 1 - x) + xF(\ - y, y) + (1 - x - y)F(0, 0)

is an interpolation function which is linear on two sides of the triangle, whilst matching

the function F on the other side.  This interpolant could be incorporated with piecewise

linear finite elements on a triangulated polygon so as to satisfy given boundary condi-

tions exactly.

General Case.   Let
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POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 731

Z «u(x.y)u
i,j<N \°y

p(0, l)

(3.9) +

r* [dx      dyj l

2„M">(¿[¿"aV)(1'0)

t,ï,'«fe'Ô0>'
9x'3y

where a,- -, ßt -, and Yfj are the appropriate cardinal functions, be the polynomial inter-

polant over the 3(TV + l)2 dimensional set of polynomials which are of degree 2TV + 1

along parallels to the three sides of T.  The case TV = 1 is the tricubic polynomial inter-

polant of Birkhoff [3] and, for general TV, the existence of this interpolant is implied

by Lemma 4.1 of Barnhill and Mansfield [2]. Then a0 0(x, y) + ß0 0(x, y) +

r0,o(*> y) - ! and

(Daa00)(Ex) = (Daß0<0)(E2) = (DaT0,o)(^3) = 0    for all |a| < TV,

where (Daa0 0)(EX) represents Daa0 0(x, y) evaluated on the side Ex etc. Hence

(3.10)

and

(3.11)

Thus

(3.12)

(«o,o + h,o){E3) = 1

(Da[aoo+|3OiO])(F3) = 0,      KlaKTV.

PiF = oo,o(*. y)T*F + fVo(*. y)TlF

= <*0 0(x, y)Z (x+y- \)U)F0J(x, 1 - *)

j<N

+ ß0 Q(x, y) Z (x+y- l)(,)Fi;0(l - y, y)
i<N

fN/is a projector which interpolates F G C   (T) and its derivatives of order TV and less on

rx = E3.  Also, for all |a| <TV, DaPxF on y = 0 involves the derivatives,

T-- -T
9jc

,.(1,0),      0<m,«<TV.

P2F defined by Eq. (3.2) interpolates these values provided that F G CN(T) satisfies

the compatibility condition,

/r    9 3l>A       x     (d">   [     d        9~T
<3-13) (Jf Vx + Vy\ ïx^}l>0) =\^[-Vx + ̂ \

FJ(1,0),

m, « < TV; «i + n > TV.

Similarly on x = 0 we require that
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732 R. E. BARNHILL AND J. A. GREGORY

(3.14) jbx       9j>J    97"/ 'U      \9.y"L9x

«2, « < TV; m + n > TV.

The conditions of Theorem 2.2 are then satisfied and with (3.3) we have:

Theorem 3.1. Let F G CN(f) and satisfy the compatibility conditions,

(gm+zicA lbn + mF\

^fV¿-\^f¿>      ̂ n<N;m+n>N,

at each vertex Vk with adjacent sides E¡ and E¡, where 9/9s, denotes differentiation

along the side Er Then the polynomial Boolean sum function, (Px © P2)F =

(Pj + P2 - PXP2)F, where Px is defined by (3.12) and P2 is defined by (3.2), inter-

polates F and its derivatives of order N and less on the boundary dT of the triangle T.

The precision set of the interpolant is that of the projector P2; see (3.4).

Examples, (i)  For TV = 0,

(3-16) a00(x,y)=y    and    ß00(x,y) = x,

giving the linear case (35).

(ii)  For TV = 1,

% o(*>y) =y2[3-2y + 6x(l -x-y)]   and

(3 17)
ß0t0(x,y) = x2[3-2*+ 6y(l-*-;>)] •

This case is discussed further in Section 4.

4. Removal of Compatibility Conditions.  The compatibility conditions (3.15) of

Theorem 3.1 can be removed by adding suitable rational terms to the Boolean sum

interpolant (Px © P2)F.   We consider the rational Hermite projectors on the standard

triangle T defined by Eqs. (2.2)-(2.4).

Firstly, since T3 interpolates F on Ex U F2, the projector P2, defined by (3.2),

can be modified to

(4.1) P2F = P2F + T3(F - P2F)

where T3(F - P2F) is a rational compatibility correction term. We consider now the

modified Boolean sum interpolant,

(P, © P2)F = (P, © P2)F + (I - PX)T3(F - P2F),

where Px is defined by (3.12). This interpolant requires the compatibility conditions

(3.15) at the vertices Vx = (0, 1) and V2 = (1,0). Then F - (Px © P2)F has com-

patible derivatives at the vertex V3 = (0, 0) and can thus be interpolated by either of

the rational Boolean sum operators Tx © P2 or P2 © Tx.  Thus

(4.2) (Px © P2)F + (Tx © T2)[F - (Px © P2)F]

interpolates F G CN(f) and its derivatives of order TV and less on 97\ where (Tx © T2)

• [F - (Px © P2)F] is another rational compatibility correction term.  The rational
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POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 733

terms are zero if the compatibility conditions (3.15) hold.

Example.  For TV = 1, the average of (3.2) with the dual expression for (Ty © T2)F

gives the symmetric projector,

(4.3)

Then

(4.4)

P2F = F(0,y) + xFXQ(0,y) + F(x, 0) + yF0<x(x, 0)

- F(0, 0) - yFo¡x(0, 0) - xFx>0(0, 0)

2   \9x9W idydx

T3(F-P2F)=X^^\(lpi(0,0)
'd2F'

1(0, 0)
2(x + y) \\dxdyf    ''.    \dydx/

and the projector

(4.5) P2F = P2F + T3(F - P2F)

interpolates F G CN(f) on r2=£,U£2.  Now

PXF = y2 [3 - 2y + 6x(l - x - y)] [F(x, I - x) + (x + y - l)F01(x, 1 - x)}

(4.6) + x2 [3 - 2x + 6X1 -x- y)}[F(\ - y, y) + (x + y - l)Fx i0(l - y, y)]

and the Boolean sum (Px © P2)F = (Px + P2 - PXP2)F can be determined from

Eqs. (4.3)-(4.6) where

PXP2F = y2[3 - 2y + 6x(l - x - y)]

(4.7)
[•

(P2F)(x, l-x) + (x+y- l) _a_W, i _ X)ff^H
+ x2[3-2x + 6.y(l -x-y)]

(P2F)(1 -y,y) + (x+y - 1) -¿TA1 " y
9P,F

9x
',7)1

It can then be shown that

(Tx © T2)[F - (P, © P2)F]

_ (x+y - \)2x2y(3 - 2x) \

x -I U?x ~9 y\
9F\
d(1'0)

(4.8)

+
(x+y - l)2xy2(3 -2y)

\-bx     by\

\dx

3f)

dy.

[¿"¿M
(0,1)

giving the compatibly corrected interpolant, (Px © P2)F + (Tx © T2)[F - (P, © P2)F].
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734 R. E. BARNHILL AND J. A. GREGORY

5. Triangle With One Curved Side.   By affine transformation, it is sufficient to

consider the triangle with vertices at Vx = (0, 1), V2 = (1, 0) and V3 = (0, 0) and two

straight edges along the coordinate axes. We assume that the third side E3 opposite the

vertex V3 is defined by the one-to-one functions,

y = f(x)   and   x = g(y),

where g is the inverse function of /.  The Taylor projectors on E3 are now

(5.1) T3F = Z [x - g(y)](i)Fii0(g(y),y),
i<N

(5'2) T3F =  Z [y- f(x)](i)F0J(x, f(x)).
j<N

The cardinal functions a0 0(x, y) and ß0 0(x, y) of Section 3 have the properties,

[a0)0(l - f(x), y) + ß0>0(l - f(x), y)](E3) = 1

and

[Dacx0<0(l - f(x), y) + Daß0t0(l - f(x), y)](E3) = 0,

for 1 < |a| < TV.  Thus

(5.3) PXF = a0;0(l - f(x), y)T3F + j30(0(l - f(x), y)T3F

is a suitable projector on E3. The dual projector is

(5.4) PXF = a00(x, 1 - g(y))T3F + /30>0(x, 1 - g(y))T3F

or alternatively an average of these two can be considered.

The Boolean sum function (Px © P2)F, where P2 is defined by (3.2), gives a

blending function interpolant on the curved triangle.

Examples.   For the case TV = 0, (5.1), (5.2), (5.3) and (3.16) give the projector,

(5-5) P,F = yF(x, f(x)) + [1 - f(x)]F(g(y), y).

From (3.2)

(5.6) P2F = F(0, y) + F(x, 0) - F(0, 0),

so that

(Px © P2)F = yF(x, f(x)) + [1 - f(x)]F(g(y), y) + F(0, y) + F(x, 0)

(5.7) - F(0, 0) - y[F(0, f(x)) + F(x, 0) - F(0, 0)]

- [1 - fix)] [F(0, y) + F(g(y), 0) - F(0, 0)].

For the case TV= 1, (5.1)—(5.3) and (3.17) give the projector,

r< «A      PiF = ao,oO - f(x), y){F(x, f(x)) + [y- f(x)]F0 ,(x, f(x))}
(p .8 )

+ /W1 - /(*). y){F(g(y), y) + [x- g(y)]Fx>0(g(y), y)},
where
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POLYNOMIAL INTERPOLATION TO BOUNDARY DATA 735

"o.oO - fix), y) = y2 P - 8j + 6/(x){l +y- f(x)}]    and
(5-9)

iVoO - /(*). y)=n~ Ax)]2 [1 + 2/(x) + 6y{f(x) - y}].

From (3.2),

(5.10)       ^ = F(0' y) + *** .o(°' y) + *fr. 0) + yFox(x, 0)

- {F(0, 0) + ^Fo>1(0, 0) + xF10(0, 0) + xyFttl(ß, 0)}.
Hence

¿'i V= «o,oO - fix), y){F(0, f(x)) + xFXfi(0, f(x)) +F(x,0)+f(x)Fox(x,0)

- [F(0,0) +f(x)F0iX(0,0) + xFx>0(0,0)

+ xf(x)Fx>x(0,0)]

+ [y- fix)} [P0,i(0, fix)) +xFxx(0,f(x))

(5 n) +F01(x,0)-F0)1(0,0)-xF1>1(0,0)]}

+ J30>0(1 -f(x),y){F(0,y) +g(y)FXtO(0,y)+F(g(y),0) +yFo¡x(g(y),0)

- [F(0,0) +^F0)1(0,0) +s(.y)FliO(0,0)

+yg(y)Fxx(0,Q)]

+ [x- g(y)] [Fx >0(0, y) + Fx fi(g(y), 0)

+ yFXiX(g(y),Q) -Fl!0(0,0) - yFXyX(0,0)]}.

Equations (5.8)—(5.11) completely define the Boolean sum interpolant (Px © P2)F =

(Px +P2-PXP2)F.
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