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Polynomial Minimum Root Separation

By Siegfried M. Rump

Abstract.   The  minimum root  separation  of an  arbitrary  polynomial  P is

defined as the minimum of the distances between distinct (real or complex) roots

of P.   Some asymptotically good lower bounds for the root separation of P are

given, where P may have multiple zeros.   There are applications in the analysis of

complexity of algorithms and in the theory of algebraic and transcendental

numbers.

1.  Introduction.   Let P(x) be a polynomial with arbitrary (real or complex)

coefficients a{ of degree n > 0 with zeros X,-, so that

(1) F0Ossí<h-¿s"n'ñ&-*¡>'        °n*°-
1=0 i=l

We define sep(/°), the minimum root separation of P, by (cf. [CH74])

sep(F) = min   IX, - X-|,

and the minimum real root separation of P by

rsep(i>) = minfJX,. - X-l for real \ =£ X-}.

In case of the nonexistence of two distinct (real) roots we set sep(P) = °° (rsep(i*) =

In analyzing the computing time of an algorithm which isolates the real zeros

of an arbitrary polynomial P with real algebraic coefficients (see [Ru76] ) the problem

of a lower bound for rsep(f) arose.  In detail, it was unsatisfactory that the known

lower bounds (see [Ca47], [Gu61], [Ma64], [Gu67] and [CH74]) have a "-«2 in the

exponent", so log{sep(P)~l} = 0(n2) providing that P is not assumed to be squarefree,

i.e. may have multiple zeros.   Furthermore, the discriminant Z3(P) (see [vW66]) is

involved except in the paper of Giiting [Gu67], so that the bounds hold only for

polynomials without multiple zeros.  The main tool of this paper is to derive asymptot-

ically better bounds without using D(P) to obtain general estimates, including the

advantage not to have to restrict attention to polynomials without multiple zeros.

There are applications of the following lemmas and theorems also in the theory

of algebraic and transcendental numbers (see [Ge59] and [Sn57] ), but we shall not

speak of this here.
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328 SIEGFRIED M. RUMP

2.  Some Investigations.   Throughout the paper the assumptions about the

polynomials change so they are stated in every theorem separately.   For P as in (1)

we define the size of P as

s = siP)=\P\x = ¿  la,I,
1=0

and the degree of P as deg(P) = n for an =£ 0.   In estimations for sep(P) or rsep(P)

one can assume n > 2.  We define

1^2 = I E I«/!2!*     and    |/»L =   max   |«f|.

For multivariate polynomials A E C[xx, . . . , xr], r > 2, we can write /I =

2"= o^i ' x'r with B¡ E C[xx, . . . , xr_ j ] and define recursively

\A\X = ±  15,1,.
1 = 0

It is well known that for any polynomial P one can construct a polynomial P *

having the roots of P as simple zeros, namely

P* =P/gcdiP,P'),

where P' denotes the first derivative of P.  If the coefficients of P are rational integers,

so are the coefficients of P*.  Therefore, from every lower bound of se\~>(P) or rsep(P),

assuming P to be squarefree and using D(P), one can obtain another for arbitrary P

(perhaps having multiple zeros) by replacing s by 2k ■ s, where k = deg(P*), because

\P*\X <2k ■ \P\X (cf. [Mi74, Theorem 2]).  However, the known lower bounds
2

contain a factor like s~n, so after applying the above observation we have a 2~"

in the worst case.

Note that some of our main results can be sharpened in several ways, e.g. by

replacing s = |P|j by \P\2 or even \P\M or by taking Gaussian integers instead of

rational integers.   However, no effort was made to do this because only bounds

depending on s were needed in the author's special purpose.

We start with a very useful but nevertheless relatively unknown inequality (see

[La05] and [Ma60]):

Lemma  1. Let P be an arbitrary complex polynomial of size s with leading

coefficient an.   Then

\a„\ ■ fl max(l,|X,|)<s,
i=i

where X,- are the roots of P.

From this lemma one can derive a first root separation bound in a very simple

manner.

Theorem 1.  Let P be an arbitrary complex polynomial of size s and degree n.

With D = D(P) denoting the discriminant of P one has

sep(/>) > min(l, \an |)"(|nn+1) • |D| • {(2«)""1 . s«0n«+3)^-1

//P has integral coefficients, the factor min( 1, \a   \)"^ln n + i^ can be omitted.
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POLYNOMIAL MINIMUM ROOT SEPARATION 329

Proof.   We can choose the notation so that | A, | > | X2 | > • • • > | \n |.  There-

fore, by Lemma 1 we obtain, with d = $l\a   |,

\\\<d,      I X, -\2\<d *\\2\<dVt,

because otherwise

\Xx\>\\2\>d'/2 =»|X, • A2|>|X2I2 >d.

By induction we see that

(2) \\i\<d1'i,       l</<«.

It is known [vW66, Section 35], that

i^)i = k~2 • n p'(\)i     i=i
Suppose now

sepiP) = | \k - Xk.|,   where 1 < k, k' < n.

Then

(3) \DiP)\ = \an\n-l'{    II     nx,-)l[  {      ft       |Xfc-X,.|l-seP(P).
I i=l;i*k '     l í=l;í#fc,k' '

Finally, from P'(x) = 2"=,/«; • */_1 and (2) we get

(4) \P'(j\)\ < ¿ |; • ay. • X^11 < n • s • </<«- '>/'.
/=i

Combining (2), (3) and (4) with | \ - \ \ < | \ | + |A.| < 2d yields

(5) sep(P)>|Z)| • {kj""1 •"""' -s""1 ■<*" •(2d)"-2}-1,

where m < E?=1 (« - 1)//' < (n - 1) ■ {In « + 7 + 1/(2«)} <« • {In n + 1}, 7 =

0.577 . . .  (Euler's constant) from [Kn69, 1.2.7, p. 74].  Putting this in (5), we get

the estimation of Theorem 1.   D

The presumably very first lower bound of sep(P) in [Ca47] is derived in a

similar way, but without using the very sharp Lemma 1, and gives, therefore, a weaker

result.   One of the last and best lower bounds of sep(P) can be found in [Gu67,

Theorem 7]. Giiting proved this inequality in the same way by splitting the product

of the P'(\) in (3), in another product again using Lemma 1.

We, instead, start with a lower bound of \P(ß)\, where ß is a given algebraic

number and P(ß)¥^0.

3. Lower Bounds for rsepíP).    To obtain asymptotically better results we shall

see that for given polynomials P, Q with P(ß) =# 0 = Q(ß) a lower bound for the

absolute value of P(ß) plays an important rôle.  Indeed \P(ß)\ cannot be arbitrarily

small, as shown in [Sn57], [Gu61] and [Gu67].  These estimates either use Rest/", Q)

,2«-2
ii^-ty
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330 SIEGFRIED M. RUMP

2
or contain a factor 2~n  , i.e. assume P and Q have no common roots or are asymp-

totically weak.

In his paper [Lo73] Loos proposed the use of resultants to construct polynomials

having predefined zeros.  Doing this, one can derive good lower bounds for several

purposes.   For the problem above we follow Collins and Loos (cf. [CL76, Theorem 5]):

Lemma 2.  Let P, Q be arbitrary integral polynomials (perhaps having common

roots) of degrees 0 < m = deg(P), 0 < n = deg(ß) and sizes e = s(P), f = s(Q). If

for some (real or complex) ß

P(ß)^0,   butQ(ß) = 0,

then

\P(ß)\> {(e+iy -T + 1}"1.

Proof.   Let R(y) be the resultant of Q(x) and y - P(x) with respect to x.  Then

(6) R(y) = b% • fi (y-W,

where bn denotes the leading coefficient and j3f are the roots of Q.  Now | v - P(x)\x

i=i

<

e + 1 and a generalization of Hadamard's determinant theorem (cf. [CH74, Theorem

2] ) gives

(7) \RL<ie+l)n -fm.

Let

R(y) = Z ri ■ yl = / • £ ri • yi~k *»* rk * °-
(=0 i=k

Then the roots of

(8) R(y)=trfyn~i+k
y   ' i=k

are the inverses of the roots of R.  It is well known that, for every root a = P(k) of R,

W laKIrJ-^IHL + KlÄL + l

holds, because R is, as P and Q, an integral polynomial.  Hence, for the roots of R

we have, with (7), (8), (9) and \R L = \R~L,

la-1! = \P(\y1\<(e+ l)n -fm + 1.

Taking the inverse proves our assertion.    D

We have immediately:

Lemma 3.  Let P be an arbitrary integral polynomial of size s and degree n > 2.

If 7 (real or complex) satisfies

P'(j) = 0,   butP(y)¥=0,

then

\P(y)l>{nn - (s + I)""1 • sn + I}"1 > {nn ■ (s + l)2""1}-1.
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Proof.   We can apply Lemma 2 with Q = P', e = s and f = \P' \x <n ■ s.    D

We know by our intuition (and the Theorem of Rolle), that there is a root 7 of

P' between two roots of P.  If the value of P at 7 is rather large then, again intuitively,

the polynomial needs some space to go from this value to zero.   These are the funda-

mental considerations of the following lower bound for rsep(P).

Theorem  2.  Let P be an arbitrary integral polynomial (perhaps having multiple

zeros) of size s and degree n.   Then

rsep(P) > 2 • {nn + 1 ■ (s + l)2"}"1.

Proof.   Let P(a) = P(ß) = 0 such that rsep(P) = |a - 0|.  We distinguish three

cases:

(a) -1 <a<ß < I.  With P\x) = ^"=iia¡ • x1'"1 and \p\ < 1 we get

(10) l^'GOl < Z I»' • "i ■ vf~l I < Z I' ■ai\<n-s.
1=1 1=1

Applying the Theorem of Rolle, we have a 7 with

(11) a<7<|3    and   P'(y) = 0.

The maximum slope of Pin the interval (a, ß) Ç [-1, 1] is by (10) less

Figure 1

Minimum real root separation

than or equal to n ■ s.  So (see Figure 1) applying Lemma 3 yields

10-7l >\P(y)\ •(« -s)-1 > {nn+l •(!+ I)2"}-1,

and a similar inequality, replacing ß by a, gives the result.

(b) |a|>|0|>l.  Take x" -P(l/x) = 2f=0fl,.-x"-'', observe |a-01 >

|(a - 0)/a0 I = I a- ' - 0- M and apply (a).

(c) I a I < 1, |0 I > 1.  In replacing, if necessary, P(x) by P(-x) we can write

- 1 < a < 1 < 0.   From the definition of rsep(P) = | a - 0 I we get P(l) ¥= 0.

Moreover, P(l) is an integer, so that |P(1)I > 1 holds.  Together with (10) we have

|0-a|> la- l\>\P(l)\l(n -s)>(n ■ s)~l >2 • {n"+1 ■ (s + l)2"}"1.    D

The distinction between these three cases sharpens the bound with a factor sn.

It is possible to generalize the result to complex zeros to obtain a lower bound for

sep(P), but we first derive a much better estimation as a basis for a bound of sep(P).
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Theorem 3.  Let P be an arbitrary integral polynomial (perhaps having multiple

zeros) of size s and degree n.   Then

rsep(P)>2 -y/2 ■ {n"/2 + 1 -is + l)"}-1.

Proof.   Let P(a) = P(ß) - 0 for real a, 0 with rsep(P) = | a - 0 |.   As in the proof

of Theorem 2 we distinguish three cases:

(a)  -1 < a < 0 < 1.   By the Theorem of Rolle we get again a real y with

-l<a<7<0<! and P'(y) = 0.  We expand P in a Taylor series:

(12) 0 = Piß) = Pij) + ~Y • P"io>),

where   y < u> < 0 and h = I y - ß\.  Therefore

O3) 2 • |P(7)| = h2 ■ |P"(w)| > 2 • {nn ■ (s + l)"-1 • sn + l}"1

by Lemma 3.  On the other hand, | u> \ < 1, so

(14) |P"(co)l < Zi-(i-l)-arJ-2
(=2

<n2 ■ s.

Combining (13) and (14) yields

h2 >2    {nn + 2    (s+ I)2"}"1,

and replacing ß by a in (12) gives the stated result.

(b) |a|>|0|>l.   See proof of Theorem 2.

(c) |a| < 1, \ß I > 1.  We can adjust this case as in the proof of Theorem 2

(with some changes).    D

4.  Lower Bounds for sep(P).  As we remarked in the last number, in the real

case it is very easy to find a root of P' in the vicinity of two roots a, 0 of P (in fact

between them).   In the complex plane a "between" does not exist, so our hope is to

find a root of P' in the circle with diameter (a, 0).  However, we cannot prove this

in general, but we can state the following lemma using a theorem due to Grace-

Heawood in its original version:

Lemma 4. Let P be an arbitrary complex polynomial of degree n.   Let P(a) =

P(0) = 0 for a # 0, where the multiplicities of a and ß may be greater than one.

Then at least one zero y of the derivative P' of P satisfies P(y) =£ 0 and

\y-a\<2n-e   and    \y-ß\<2n-e   with e = \ß - a\.

Proof.   We know from [Mn49, Theorem 25.2] the existence of at least one

zero of P' in the circle C of

radius e • csc- with center ** -     ,      it = 3.14 ....
2m - 2 2
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We are finished when we have proved

(15) \+csc^<2n.

Figure 2

Minimum root separation in the complex plane

By Lucas' Theorem (cf. [Mn49, Theorem 6, 1]) we can assume n > 3, hence

ÏÏ TT \      _ 7T2      _ / 1 TX _ TT

Sin 2« - 2      In - 2   ' I       (2n - 2)2 (     3 ' 2n - 2 ~ 6n - 6 "

Therefore

1,             ri       ,1,6« - 6     .6        - -
- + csc T-=- < - +- <-■ n<2n,
2 2/1-2 2 TT TT

so (15) and our lemma is proved.  D

Lemma 4 shows that the needed zero y of P' cannot lie arbitrarily far away.

Now we can use the same idea as in the proof of Theorem 3, expanding P in a complex

Taylor series at a root of P and computing P(y).  Because the square root is to be taken

we obtain a very good lower bound.

Theorem 4.  Let P be an arbitrary integral polynomial (perhaps having

multiple zeros) of size s and degree n.   Then

sep(P) > {2 • n"l2 + 2 ■ is + l)"}"1.

Proof   Let  a and ß be zeros of P such that | a - 01 = sep(P).  If | a | > 1 and

10 I > 1, then a" ' and 0"1 are roots of P(x) = x" ■ P(l/x) and |a~ l - 0" ' I =

|a - 01/laß| < |a - 0|, so we may assume that either | a I < 1 or |0| < 1.  Suppose

101 < 1, and let 7 be a root of P' for which |0 - 7 | is minimal.   Then

(16) 0 = P(ß) = P(7) + ¿ TT • P(i)(y),
1=2

where « = 0 - 7 and P^ denotes the ith derivative of P.  Also,

IP<fc)(7)l<¿  |w(H-l).in-k+ l)-aryn-k\
(17) i=fc

<nk -s -max(l, |"v|)".
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We may assume that |a - 0| < 1/4«2 since otherwise sep(P) = I a - 0| > l/4n2 >

{2 ■ n"l2 + 2 ■ (s + 1 )"}"', proving the theorem.   By Lemma 4, \h\ = \y -01 <

2 ■ n ■ |a-0|< 1/2«.  Therefore |-yj < |0| + I7 - 0| < 1 + 1/2« and \y\" <

(1 + 1/2«)" <ev\  Hence by (17) we have

(18) |P(k)(7)|<e'/2 -nk ■ s.

By (16), (17) and (18),

n
,Vi . n.2i . „2|P(7)| <eAAh2\-n2-s- £

i=2

(« • h)1-2

<ev>Ah2\-n2   s¿íiM
1=2

ti

i!

(19)

< e* . \h2\ ■ n2 ■ s ■ 4 • (e1/2 - 1.5) < I«2 I • «2 ■ s.

By Lemma 3,

(20) {«" -(s-f- i)2""1}-1 <|P(7)|.

By (19) and (20), |/i2|>{«" + 2 • (s + l)2"}"1.  Hence |0 - a¡ > |«| • 1/2« > 1/2«.

{«"/2+1 • (s + I)"}"1 = {2 • «"/2 + 2 ■ (s + I)"}"1, completing the proof.    D

Some of the estimates in the proof can be sharpened in obvious ways, but this

improves Theorem 4 only slightly and would complicate it unnecessarily.

One interesting application of the last theorem is that the imaginary part of a

root of an arbitrary integral polynomial is equal to zero or not less than {4 • «"'2 + 2 •

(s+ I)"}"1.

Another sharpening of the estimate in Theorem 4 can be obtained in making

further assumptions, e.g., that one can find a nonreal root 7 of P' (see [Gu67]).

5. Best Bounds and Further Research. Suppose P to be an arbitrary integral

polynomial of degree n and size s.  Then for lower bounds of sep(P) we have just

proved

log sep(P)~ ' < —-— • log « + « • log(s + l) + c,

where P may have multiple zeros and c is a real constant (the basis for the logarithm

is 2).  Mignotte observed [Mi76], that a corollary of a deep theorem of Schmidt/

Wirsing (cf. [Sm72, Theorem 71]) can be used to prove

lim   log^r'->[^L±l]
S-^oo log s

for fixed degree « and assuming P to have no multiple roots.  This leads to:

Problem 1.   Find a better lower bound for sep(P) or rsep(P).

In their paper [CL76] Collins and Loos described a new algorithm for isolating

the real zeros of an integral polynomial.   Its computing time is dominated by

(21) 0{n10 +n1 -login ■ s)3},
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where O denotes Landau's Symbol: /= 0(g) <=> there exists a positive real constant

c with /< c ■ g.  Obviously, |P^|, < 2" ■ s where P     denotes the primitive part of

P*-'', so that with Theorem 4 for the fth derivative of P

(22) log sept/0)-l = 0{n2 + n ■ log(s + 1)}

holds.   The summand «     in (21) occurs only because of our inability to omit the

summand «2 in (22).  So we state:

Problem 2.  Prove that

log sep(P(i))_1 =0{n ■ \og(n • s)}

holds for every (squarefree) integral polynomial P.

The problem is solved if P has only real simple zeros (cf. [Ob63, Satz 5.3]):

Lemma (Riesz).   Let P be an integral polynomial with only real simple zeros.

Then

sep(P') > sep(P).

However, this does not remain true if P has complex zeros (take P(x) = x3 -

2x2 + x - 2 = (x2 + 1) • (x - 2); then sep(P) = 2 > 2/3 = sep(P')). Nevertheless,

we hope to find something like sep(P') > 1/« • sep(P).
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