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Polynomial Phylogenetic Analysis of Tree Shapes

Pengyu Liu∗, Priscila Biller, Matthew Gould, and Caroline Colijn,
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Abstract

Phylogenetic trees are a central tool in evolutionary biology. They demonstrate1

evolutionary patterns among species, genes, and with modern sequencing technologies,2

patterns of ancestry among sets of individuals. Phylogenetic trees usually consist of tree3

shapes, branch lengths and partial labels. Comparing tree shapes is a challenging aspect of4

comparing phylogenetic trees as there are few tools to describe tree shapes in a5

quantitative, accurate, comprehensive and easy-to-interpret way. Current methods to6

compare tree shapes are often based on scalar indices reflecting tree imbalance, and on7

frequencies of small subtrees. In this paper, we present tree comparisons and applications8

based on a polynomial that fully characterizes trees. Polynomials are important tools to9

describe discrete structures and have been used to study various objects including graphs10

and knots. There are also polynomials that describe rooted trees. We use tree-defining11

polynomials to compare tree shapes randomly generated by simulations and tree shapes12

reconstructed from data. Moreover, we show that the comparisons can be used to estimate13

parameters and to select the best-fit model that generates specific tree shapes.14

Key words : Phylogenetics, Polynomials, Tree Shapes, Tree Metrics15
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2 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

A tree is a natural data structure that represents hierarchical relations between16

objects. In phylogenetics, a tree structure usually includes its tree shape, that is, the17

unlabeled underlying graph, as well as branch lengths reflecting either evolutionary18

distance or time. Estimating the branch lengths can be a challenge for tree reconstruction19

methods, with Bayesian and maximum likelihood methods yielding inconsistent results20

(Brown, 2010), high demands on memory and processor time (Binet, 2016), and/or lack of21

strong support for a molecular clock (in the case of timed trees). As a consequence, the22

inferred phylogenetic trees may have a consistent tree shape but differing root heights and23

branch lengths.24

The shapes of phylogenetic trees can carry information about macroevolutionary25

processes, as well as reflecting the data used and the choice of the evolutionary model26

(Kirkpatrick, 1993; Purvis, 2011; Aldous, 1996). The ecological fitness and the presence of27

selection can also affect the shapes of trees (Dayarian, 2014; Maia, 2004). In the study of28

infectious diseases, where the shapes of phylogenetic trees of pathogens reveal diversity29

patterns that represent a combination of unfixed neutral variation, variation under30

selection, demographic processes and ecological interactions, it is not clear how informative31

the tree shapes are of the underlying evolutionary and epidemiological processes. However,32

effort is being made to explore this question, with the main focus often on the frequency of33

cherries and tree imbalance (Grenfell, 2004; Lambert, 2013; Plazzotta, 2016; Volz, 2013).34

One of the main topics of inquiry in phylogenetic tree shapes has been asymmetry,35

since a key observation was made that the shapes of phylogenetic trees reconstructed from36

data are more asymmetric than tree shapes simulated by simple models (Aldous, 1996).37

Various ways to measure the asymmetry were developed (Aldous, 1996; Colless, 1982;38

Fusco, 1995; Sackin, 1972; Stich, 2009) and it was shown that these asymmetric measures39

can distinguish random trees generated by different models (Agapow, 2002; Kirkpatrick,40

1993; Matsen, 2006). At the same time, mathematical models that produce imbalanced41

trees were developed (Aldous, 2001; Blum, 2006). As statistical tools, the distributions of42
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POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 3

tree shapes under simple models can be used to test evolutionary hypotheses (Blum, 2006;43

Mooers, 1997; Wu, 2016). In (Manceau, 2015), and mathematical models can be developed44

to match the macroevolutionary patterns observed in the phylogenetic trees reconstructed45

from data.46

As the cost of DNA sequencing is decreasing, more genomic data are being collected47

and becoming available. More organisms are being sequenced progressively at the48

whole-genome scale (Bedford, 2015; Chewapreecha, 2014; Colijn, 2018) and the evolution49

of certain pathogens is being tracked in real time (Hadfield, 2018). As a consequence, both50

the number and the size of trees reconstructed from data are increasing. Accordingly, a51

major challenge in tree shape analysis is that there are few tools to describe and compare52

trees in a quantitative, accurate, comprehensive and easy-to-interpret way, especially for53

large trees. Scalar indices describing asymmetry or the frequency of subtrees have a54

limitation in that many different tree shapes may have the same index. A labelled tree is a55

tree shape whose vertices have unique labels. An alternative approach to comparing tree56

shapes is using metrics defined for labelled trees, for example, the well known57

Robinson-Foulds metric (Robinson, 1981), Billera-Holmes-Vogtmann metric (Billera, 2001)58

and Kendall-Colijn metric (Kendall, 2016), among others. These metrics depend on the59

labels of the vertices, that is, two labelled trees with the same tree shape but the labels60

re-arranged are not identical and the distances between them can be very large. Recently,61

metrics defined for rooted unlabelled trees or rooted tree shapes have also been introduced62

(Colijn, 2018), making use of integer labels assigned to tree shapes. However, these metrics63

have several limitations, including the challenge of interpreting the integer labels, the64

treatment of non-binary trees, and the metrics’ performance in distinguishing trees from65

different processes or datasets.66

Graph polynomials and knot polynomials are important tools in the mathematical67

study of discrete structures, and can be used to describe the structures in interpretable68

ways. For example, the Tutte polynomial (Tutte, 1954) is a renowned polynomial for69
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4 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

graphs and the Jones polynomial (Jones, 1985) is one of the most important tools to study70

knots. In (Liu, 2021), a method to assign a unique polynomial to each tree shape is71

introduced. These polynomials provide a new way to describe tree shapes quantitatively72

and comprehensively. The coefficients of the polynomial of a tree can be considered as a73

generalization of the clade size distribution of the tree. In addition, the set of coefficients of74

a tree polynomial can be treated as a vector, and vectors are natural objects on which to75

define metrics. In this paper, we introduce the polynomial representations for tree shapes76

and we define and examine a metric based on the trees’ unique polynomials. We show that77

the polynomial representations for tree shapes have perfect resolution and reasonably low78

computation time, and the polynomial metric has a performs well at clustering trees,79

compared to other high-resolution metrics. We also show that the polynomials can be used80

for parameter estimation, and for choosing the best-fit model to generate a tree shape.81

Materials and Methods82

Tree Polynomials83

In this paper, a tree shape or simply a tree represents an unlabeled tree, that is a84

graph with no cycles, without information about branch lengths or labels unless otherwise85

stated. We define the bivariate polynomial P (T, x, y) for a rooted unlabeled tree T in the86

following way. If T is the trivial tree with a single vertex, then P (T, x, y) = x. Otherwise T87

has k branches at its root and each branch leads to a subtree of T . Let T1, T2, ... , Tk be88

the k rooted subtrees whose roots are adjacent to the root of T . We define the polynomial89

for T by P (T, x, y) = y+
∏k

i=1 P (Ti, x, y). If all of the subtrees are the trivial tree, then the90

polynomial is defined and we have a rooted k-star whose polynomial is P (T, x, y) = xk + y.91

If there exists a non-trivial subtree Ti, then we apply the definition to compute P (Ti, x, y).92

The polynomial P (T, x, y) can be computed by recursively applying the definition until we93

reach all tips of T . As another example, the polynomial for the three-tip rooted binary tree94
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POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 5

T is P (T, x, y) = x(x2 + y) + y = x3 + xy + y, as T has two subtrees adjacent to the root, a95

trivial tree T1 with P (T1, x, y) = x and a cherry T2 with P (T2, x, y) = x2 + y. It is proved96

in (Liu, 2021) that the polynomial distinguishes unlabeled rooted trees and can be97

generalized to distinguish unlabeled unrooted trees. A rooted tree can be reconstructed98

from its polynomial by computing its Newick code, which can be obtained by recursively99

subtracting y and factoring the rest of the polynomial. Methods to factor large multivariate100

polynomials can be found in (Monagan, 2018). The coefficients of a tree polynomial can be101

written as a matrix. Let T be a rooted tree with n tips. Its coefficient matrix C(T ) or102

(c(a,b)) is displayed as follows, where c(a,b) is the coefficient in the term c(a,b)xayb.103

C(T ) =

























1 y y2 . . . yn

1 c(0,0) c(0,1) c(0,2) . . . c(0,n)

x c(1,0) c(1,1) c(1,2) . . . c(1,n)

x2 c(2,0) c(2,1) c(2,2) . . . c(2,n)

...
...

...
...

. . .
...

xn c(n,0) c(n,1) c(n,2) . . . c(n,n)

























= (c(a,b))104

Let T be a rooted tree with n tips. The coefficient c(a,b) in the term c(a,b)xayb of C(T ) can105

be interpreted as the number of ways in T to choose b clades (with more than one tip)106

such that these clades include n− a tips of T in total. The clade size distribution of a tree107

T is the vector whose i-th element is the number of clades in T containing i tips. The108

second column in the matrix C(T ) is the clade size distribution of the tree T , where109

c(n−k,1) indicates the number of clades with k tips (Liu, 2021). It is also showed in (Liu,110

2021) that if we substitute the variable y in a polynomial P (T, x, y) by a prime number or111

a Gaussian prime p, the resulting polynomial P (T, x, p) can still distinguish all rooted112

binary trees. This property of the polynomial can be utilized to make tree analysis faster.113
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6 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

Tree metrics114

In this paper, we use three tree metrics or distances. The first is a tree metric based115

on the Laplacian spectrum. The metric is the Jensen-Shannon distance over the spectrum116

densities introduced in (Lewitus, 2016). We call it Lewitus-Morlon metric. The second117

metric is based on the subtree size distribution. The subtree size distribution of a tree is118

defined as a vector whose n-th entry is the number of n-tip subtrees in the tree. The119

metric is defined using the Manhattan distance over the subtree size distribution vectors.120

We name it the “subtree-Manhatttan metric”. The third metric is based on the121

polynomial. Let T1, T2 be two trees and C(T1) = (c
(a,b)
1 ), C(T2) = (c

(a,b)
2 ) be the coefficient122

matrices of the polynomials P (T1, x, y), P (T2, x, y). We define a function123

µ(c1, c2) =

{

|c1 − c2| /(c1 + c2) if c1 6= 0 or c2 6= 0

0 if c1 = 0 and c2 = 0
124

and the metric by125

d(T1, T2) =
∑

06i,j6n

µ(c
(i,j)
1 , c

(i,j)
2 )126

This metric is not only defined for trees of the same size, but also for trees of127

different sizes where it’s natural to assign a coefficient of 0 to each term that is absent in a128

polynomial.129

Parameter estimation and model selection130

To estimate parameters for trees, we use the polynomial metric or the131

subtree-Manhattan metric together with the weighted average of the neighboring observed132

data with the nearest neighbor kernel smoother. Specifically, we generate a set of observed133

trees T using a random tree generator with the different vectors of parameters ρ. For any134

tree T in T , let ρ(T ) be the vector of parameters used to generate T . We estimate the135

parameters of a tree T0 by the weighted average as follows:136

ρ̂(T0) =

∑

T∈T
K(T0, T )ρ(T )

∑

T∈T
ρ(T )

137
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POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 7

where K(T0, T ) is the k-nearest-neighbor kernel function, that is, K(T0, T ) = 1/k if T is a138

k nearest neighbor of T0 under the polynomial metric and K(T0, T ) = 0 otherwise. We139

choose different k for different sets of observed trees. For a set of observed trees T , we140

generate another set S of 1,000 random trees. For each k from 1 to 20, we estimate141

parameters of trees in S using the set of observed trees T , and we have the average142

estimation error for each k. We choose the k that has minimum average estimation error143

for the set of observed trees T .144

We use naive Bayes classifiers (Rish, 2001) together with the polynomial to perform145

model selection. Naive Bayes classifiers assume independence of the predictor variable. We146

label each tree according to the underlying model (beta splitting, the explosive radiation147

and trait evolution), and use the trees’ polynomial coefficients as features.148

Simulations149

Beta splitting trees The beta splitting random trees used in this paper are150

generated by the beta-splitting model introduced in (Aldous, 1996). At each branching151

event, the probability of one child clade containing i tips and the other child clade152

containing n− i tips is given by the following formula.153

p(i|n) =
1

an(β)

Γ(β + i+ 1)Γ(β + n− i+ 1)

Γ(i+ 1)Γ(n− i+ 1)
154

The Γ(z) in the formula is the Gamma function and an(β) is a normalizing constant.155

Our sets of n-tip modeled beta splitting trees consist of trees generated with β = 0,156

β = −1, and β = −1.5, and there are 100 trees for each parameter. These choices of β157

correspond to the Yule model, the Aldous branching model and the proportional to158

distinguishable arrangements (PDA) model (Blum, 2006). We also use sets of beta159

splitting trees consisting of 1,000 such trees, with n tips and parameters β that are160

uniformly randomly chosen from the interval [−1.5, 8.5].161
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8 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

Explosive radiation trees The explosive radiation trees were simulated with a162

modification of the birth-death model proposed by Steel (2001). Steel’s model builds on163

the traditional constant birth-death model by setting lineage-specific speciation rates.164

More precisely, the rate of speciation events on a given lineage is a function of t, the time165

to the last speciation event on that lineage. This time t is reset to 0 at every speciation,166

and the birth (λi) and death (µi) rates of a given lineage i are then defined as follows:167

λi(t) =

{

λB if t < τ

λA otherwise

µi(t) = µ,

168

where λA, λB, µ and τ are parameters of the model.169

All rates are defined as the number of events per tip per time unit. The choice of170

the time unit is not relevant to our experiments, as the polynomial does not make use of171

information on branch lengths.172

A data set of n-tip explosive radiation trees contains 1,000 random trees generated173

with the birth rate λB fixed at 1.0 (per arbitrary time unit), the time shifting the birth174

rates τ fixed at 0.5 time unit, and both the birth rate λA and the death rate µ uniformly175

randomly chosen from the interval [0, 1].176

Trait evolution trees This data set was simulated following the birth-death model177

proposed by Heard (1996). In this model, each lineage has an associated trait value (x)178

which is “inherited” at speciation events with some stochastic change. The model for trait179

evolution implemented here is a linear-Brownian variation, where additive changes are180

made to the trait value at each speciation event: xnew = max{xold + ǫ, 0.01}. The stochastic181

change ǫ is drawn from a normal distribution with expectation zero and standard deviation182

σx. Both σx and x0 (the trait value at the root) are parameters of the model.183

The birth (λi) and death (µi) rates are defined as λi = x and µi = µ, respectively.184

Similar to the explosive radiation model, the death rate µ is constant in time and across185

lineages. Notice that there are numerous ways to produce trees with a given number of186

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.02.10.942367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942367
http://creativecommons.org/licenses/by/4.0/


POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 9

species from an evolutionary model (Hartmann, 2010). For all evolutionary models used in187

our analysis, trees are simulated forward in time until n tips are first reached. Our data188

sets of n-tip trait evolution trees contain 1,000 random trees generated with the initial189

birth rate fixed at 1.0 (per arbitrary time unit), and the birth rate variation at a speciation190

event and the death rate uniformly randomly chosen from the interval [0, 1].191

We do not down-sample the simulated trees despite the fact that the data we use192

(see below) are only a small minority of the true numbers of tips in the relevant settings.193

This would be infeasible at genuine scales given the comparatively high true population194

sizes of circulating pathogens. For example, only a very small minority of circulating195

influenza infections lead to a sequence deposition in the database, with many others going196

undetected and/or unsequenced. Those that are sequenced may not be unique exemplars197

of their sequences in the population, as transmission may occur without detectable198

variation. As a consequence, in comparing simulation models to data, we interpret199

simulated branching events as diversification events that are likely to be ancestral to200

sampled tips and therefore observed, and ”death” events as, effectively, sampling events201

that stop onward transmission of the particular lineage.202

Data203

HIV and influenza virus trees The HIV trees were described and analyzed204

previously (Chindelevitch, 2019). Briefly, HIV-1 sequence data from three studies were205

used. The Wolf et al. study (Wolf, 2017) provided data from a concentrated epidemic of206

HIV-1 subtype B, occurring primarily in men who have sex with men (MSM) in Seattle,207

USA. The Novitsky et al. study (Novitsky, 2013) describes data from a generalized208

epidemic of HIV-1 subtype C in Mochudi, Botswana, a village in which the HIV-1209

prevalence in the adult population at the time was estimated to be approximately 20%.210

Hunt et al. (Hunt, 2013) describes data from a national survey of the generalized epidemic211

of HIV-1 subtype C in South Africa. These datasets reflect a diverse set of spatial scales212
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10 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

and epidemiological contexts. Phylogenetic reconstruction was described in (Chindelevitch,213

2019); briefly, trees were reconstructed using RAxML (Stamatakis, 2014), which is a214

maximum likelihood method, under a general time-reversible (GTR) model of nucleotide215

substitution. We use a GTRCAT model for rate variation among sites. Each tree was216

based on a random sample of 100 sequences. We use a subtype D sequence as an outgroup217

to root HIV-1 subtype B phylogenies.218

Our influenza virus trees were previously described in (Colijn, 2018). We aligned219

HA protein sequences from NCBI, focusing on human influenza A (H3N2). Data were220

downloaded from NCBI on 22 Jan. 2016. We included full-length HA sequences with221

collection date. The USA dataset (n = 2168) includes sequences from the USA with222

collection dates between Mar. 2010 and Sep. 2015. The tropical dataset (n = 1388)223

includes sequences with a location listed as tropical, with collection dates within Jan. 2000224

and Oct. 2015. Accession numbers are included in the Supporting Information of Colijn225

(2018). Fasta files were aligned with mafft, and for both the tropical and USA datasets,226

500 taxa were selected uniformly at random 200 times. We inferred 200 corresponding227

phylogenetic trees with FastTree (Price, 2010). Where necessary we re-aligned the 500228

selected sequences before performing tree inference. This process resulted in 200 “tropical”229

influenza virus trees and 200 “USA” influenza virus trees, each with 500 tips,230

reconstructed from the HA region of human H3N2 samples. Note that this approach is231

distinct from the perhaps more familiar phylogenetic methods where bootstrapping or232

Bayesian reconstructions results in many trees on one set of tips. These are likely to share233

features and structures because they describe the ancestry of the same set of taxa. Here,234

each tree has a different set of tips (though there is some overlap).235

WHO influenza virus clades We used several influenza virus clades, described in236

(Hayati, 2020). In that work we downloaded all human H3N2 full-length HA sequences237

with dates between 1980 and May 2018 and created a large, timed phylogeny of H3N2238

using RAxML and Least Squares Dating (Stamatakis, 2014; To, 2016). This “full” tree has239
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Data Data source Virus Size (tips)

Wolf (100 trees) Wolf (2017) HIV-1 subtype B 500

Novitsky (100 trees) Novitsky (2013) HIV-1 subtype C 500

Hunt (100 trees) Hunt (2013) HIV-1 subtype C 500

USA (200 trees) NCBI Human influenza A 500

Tropical (200 trees) NCBI Human influenza A 500

A1B/135N NCBI Human influenza A 60

A1B/135K NCBI Human influenza A 63

3c3.B NCBI Human influenza A 117

A3 NCBI Human influenza A 227

Table 1. Summary of virus phylogenies.

over 12,000 tips. We used the Nextflu (Neher, 2015) augur pipeline240

(https://bedford.io/projects/nextflu/augur/) to assign a WHO clade designation to241

the sequences. The WHO defines named clades using specific mutations in the HA1 and242

HA2 subunits of the HA protein. The full list of mutations is available at: https:243

//github.com/nextstrain/seasonal-flu/blob/master/config/clades_h3n2_ha.tsv.244

We assign a sequence to a clade if it contains all the mutations defining that clade. We245

then extracted the subtrees of the “full” tree corresponding to specific WHO clades246

A1B/135N (60 tips), A1B/135K (63 tips), 3c3.B (117 tips) and A3 (227 tips). These are247

recent and appropriately-sized trees which we use here to demonstrate parameter248

estimation for simple models, and model selection among our four random tree models.249

Implementation250

We developed an R package named treenomial, which is available at CRAN. We251

also prepared a demonstration named treeverse, which displays a 3-dimensional projection252

of the polynomial metric space of all binary tree shapes up to 16 tips with interactive253

options available at https://magpiegroup.shinyapps.io/treeverse/.254
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Results255

Tree Representations and Metrics256

We compare the polynomial to other tree representation methods in terms of257

computation time and resolution. These tree-representing methods include the Colless258

index (Agapow, 2002), gamma statistics (Pybus, 2000), the Sackin index (Sackin, 1972),259

the subtree size distribution and more recently introduced Laplacian spectrum (Lewitus,260

2016). The resolution of a tree-representing method (for n-tip trees) is defined to be the261

ratio of the number of unique representations to the total number of non-isomorphic tree262

shapes with n tips. We compute these representations for all tree shapes with 15 tips263

(where there are 4850 non-isomorphic tree shapes). Figure 1 A displays the computation264

time and the resolution of these methods, where the data point “combined” is the vector265

comprising the Colless index, gamma statistics and the Sackin index. The results show266

that Laplacian spectrum, the polynomial, and the subtree size distribution (with more267

than one parameter) have higher resolution than scalar summary statistics while the scalar268

Colless index, gamma statistics and the Sackin index have lower resolution. As there are269

vastly numerous non-isomorphic tree shapes with hundreds of tips, it is not feasible to270

compute the resolution for larger trees, but we know that the resolution of the subtree size271

distribution decreases as the number of tips increases, and the Laplacian spectrum is not272

guaranteed to have 100% resolution for all trees, that is, there are non-isomorphic trees273

with the same spectrum density (Lewitus, 2016). The polynomial, on the other hand, is274

guaranteed to distinguish all trees (Liu, 2021). In Figure 1 B, we show how computation275

time of the subtree size distribution, the Laplacian spectrum and the polynomial for a276

single tree changes as the size of trees increase. Among the high-resolution277

tree-representing methods we compared, the polynomial has low computation time and278

keeps the resolution at 100% for trees of any size.279

Tree representations can induce tree metrics, which are important tools in280

comparing phylogenetic trees. We compare the polynomial metric with the metric induced281
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A B

Figure 1. A: the comparison of tree representing methods, where the combined is the a combined vector of the
Colless index, gamma statistics and the Sackin index. B: the comparison of the computation time for trees of
different sizes. These are based on the computation time for random trees with 100 to 1,000 tips with increment of
50 tips; each data point denotes the average computation time over 1,000 trees.

by high-resolution tree-representing methods, that is, Lewitus-Morlon metric and the282

subtree-Manhattan metric. The polynomial metric is a genuine metric on trees, in the283

sense that it only gives a distance of zero if two trees have identical shapes, it is284

symmetric, and obeys the triangle inequality (see the supplement for proof; in contrast, the285

subtree-Manhattan metric and Lewitus-Morlon metric are not metrics in the mathematical286

distance sense (Lewitus, 2016)). The polynomial metric also has the advantage that the287

distance between a pair of trees is bounded above by the number of non-zero entries in the288

coefficient matrix of the larger tree. More precisely, let the larger tree be of n tips; the289

polynomial distance between the trees has an upper bound of n⌊n/2⌋ − ⌊n/2⌋2. The290

distribution of the pairwise distances between trees of the same size resembles a normal291

distribution, which gives a relative reference for how large the distance between a pair of292

trees is compared to what one might expect. See Supplementary Figure 1 for the293

distribution. Figure 2 A-C displays visualizations of the three distances between trees in a294

data set of 100-tip modeled beta splitting trees. We apply the k-medoids clustering295

algorithm PAM described in (Kauffman, 1990) to, respectively, the Lewitus-Morlon296

distance matrix, the subtree-Manhattan distance matrix and the polynomial distance297

matrix of a set of the 100-tip modeled beta splitting trees. We repeat this experiment for298

100 times; Figure 2 D shows the misclassification rates. The polynomial metric has smaller299

misclassification rates than the other two metrics, which indicates that the polynomial has300

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.02.10.942367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942367
http://creativecommons.org/licenses/by/4.0/


14 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

the potential to perform better in tasks involving clustering phylogenetic trees.301

Subtree-ManhattanLewitus-Morlon Polynomial

A B

C D

Figure 2. A-C: the multidimensional scaling plots of the three distances between trees in a set of 100-tip random
trees, where each dot represent a random tree. D: the comparison of the misclassification rates of k-medoids
clustering.

Parameter Estimation and Model Selection302

Parameter estimation We show that the polynomial can be used to create303

likelihood free methods for parameter estimation. Here, we display the results of parameter304

estimation using the polynomial metric together with a simple weighted average method305

described in the method section. We generate a set of 250-tip beta splitting trees and use306

the set of random trees as observed data in the parameter estimation method; we then307

estimate the parameter β for 100 beta splitting trees with 250 tips. Figure 3 A shows the308

result of the estimation, and Figure 3 B shows the result of the estimation for 500-tip beta309

splitting trees. See Supplementary Table 1 for the summary of the estimation. In general310

the estimation works better for larger trees, and is better when the parameter β is in the311

interval [−1.5, 2]. We note that where a likelihood model is available, maximizing the312

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.02.10.942367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942367
http://creativecommons.org/licenses/by/4.0/


POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 15

likelihood may well be better than likelihood-free inference based on tree descriptions, but313

these results indicate that the polynomial contains relevant information that314

high-performance likelihood-free inference methods could utilize.315

We also generate a set of 750-tip explosive radiation trees and use the set of random316

trees as observed data in the parameter estimation method to estimate the birth rate λB317

and death rate µ for 100 explosive radiation trees with 750 tips. Figure 3 C-D shows the318

results of the estimation. The results are not as good as the results for beta splitting trees,319

especially the results for the birth rate λB. Supplementary Tables 1-3 give details of the320

relationship between estimated and true values. We also use the subtree-Manhattan metric321

and the same weighted average method to perform parameter estimation for the same data322

sets. See Supplementary Figure 4; we find that the polynomial metric performs better than323

the subtree-Manhattan metric with the weighted average method in estimating parameters324

for both beta splitting trees and the explosive radiation trees.325

Model selection The beta splitting model and the explosive radiation model are326

different random tree generators. The beta splitting model uses the Markov branching327

process while the explosive radiation model uses a birth-death process. Both processes are328

commonly used in random tree generators, for example, the trait evolution model is329

another tree generator based on the birth-death process. Figure 2 shows that the330

polynomial has the potential to distinguish different tree generating models. In this331

section, we use the polynomial together with naive Bayes classifiers to estimate which332

model is used to generate a tree.333

We generate a set of 500-tip beta splitting trees, a set of 500-tip explosive radiation334

trees, and a set of 500-tip trait evolution trees. We use these sets of random trees as335

observed data together with the naive Bayes classifiers to classify random trees generated336

by these three models. Figure 3 E shows the results of the experiment where we only use337

the set of beta splitting trees and the set of explosive radiation trees to train the naive338

Bayes classifier, and use the classifier to classify a set of 1,000 beta splitting trees and 1,000339
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A B

C D

E F

Figure 3. A-B: the comparisons between the real parameter and the estimated parameter of the beta splitting
random trees with 250 tips and 500 tips using polynomials. C-D: the comparisons between the real parameters and
the estimated parameters of the explosive radiation random trees with 750 tips using polynomials. E-F: the results
of using naive Bayes classifiers to select the model generating random trees with 500 tips using polynomials.

explosive radiation trees. Figure 3 F shows the results of the experiment where we use all340

three sets of random trees to train the naive Bayes classifier and use the classifier to classify341

a set of 1,000 beta splitting trees, 1,000 explosive radiation trees, and 1,000 trait evolution342

trees. The accuracy of the first experiment is 93.1% and of the second experiment is 83.5%,343

where the main misclassification (58.1% of the misclassified cases) is between the explosive344

radiation model and the trait evolution model, the two models based on the birth-death345

processes. Supplementary Figure 3 shows the results for 250-tip and 750-tip trees, and that346
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this model selection method is more robust with larger trees. The results show that the347

polynomial together with naive Bayes classifiers can be a good tool in finding a tree348

generator that fits a given tree, as not only are trees from different random processes349

distinguished well, but the two different birth-death processes are also well distinguished.350

We also use the subtree size distribution and the standard naive Bayes classifiers to351

perform model selection for the same data sets. See Supplementary Figure 4. Compared to352

the polynomial, the accuracy of the first experiment using the subtree size distribution is353

82.7% and of the second experiment is 71.6%, where more explosive radiation trees are354

classified as beta splitting trees. To further understand the differences between the355

polynomial and the subtree size distribution in the naive Bayes classifiers, we display the356

most informative features in the classifiers in Supplementary Figure 5. It shows that for357

the subtree size distribution, the most informative features in model selection are the358

number of subtrees with approximately 400 tips, which could be considered as a359

description of tree imbalance for more imbalanced trees would have more subtrees with 400360

tips than the balanced ones. On the other hand, Supplementary Figure 5 B shows that361

other than the clade size distribution (the dark thin strip at the bottom), the most362

informative features for the polynomial also include the coefficients in the black area at the363

top, which are interpreted as the numbers of ways to choose as many clades (with more364

than one tips) as possible so that the clades contain all or most of the tips in a tree.365

Compared to the subtree size distribution, this extra information gives the performance of366

the model selection method a boost.367

Applications to Data368

Human influenza virus A H3N2. Influenza virus A is highly seasonal outside the369

tropics and most cases occur in the winter (Russell, 2008), whereas there is relatively little370

seasonal variation in the tropics. This demonstrative data set provides trees for the same371

virus circulating with different epidemiological dynamics (seasonal forcing in temperate372
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18 P. LIU, P. BILLER, M. GOULD, AND C. COLIJN

regions, vs lack of seasonality in the tropics). The second data set consists of three samples373

of trees inferred from HIV-1 sequences in different settings: subtype B among men who374

have sex with men (MSM) in Seattle (Wolf, 2017), HIV 1C circulating at the village scale375

in Botswana (Novitsky, 2013) and a national-level dataset from South Africa (Hunt, 2013).376

As with influenza virus, it is to be hoped that these different epidemiological patterns are377

revealed in the shapes of reconstructed phylogenetic trees (Chindelevitch, 2019; Colijn,378

2018).379

A B

C D

E F

Figure 4. A: the MDS plots of the polynomial distances between the influenza trees. B: the MDS plots of the
polynomial distances between the HIV trees. C: the results of k-medoids clustering for the influenza trees using the
polynomial metric. D: the results of k-medoids clustering for the HIV trees using the polynomial metric. E-F: the
mean conditional a posteriori probabilities (over the 1,000 naive Bayes classifiers) of the model estimation for the
influenza clades.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 29, 2020. ; https://doi.org/10.1101/2020.02.10.942367doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.10.942367
http://creativecommons.org/licenses/by/4.0/


POLYNOMIAL PHYLOGENETIC ANALYSIS OF TREE SHAPES 19

We visualize the polynomial distances between trees in these two sets by classical380

MDS in Figure 4 A-B. We also use the k-medoids clustering on the data and we have the381

results displayed in Figure 4 C-D. The influenza trees are very well separated into desired382

groups under the k-medoids clustering. This indicates that classifying the epidemiological383

process behind a tree using the polynomial metric would likely be possible. In the384

supplement, we also compute the binary differences (Choi, 2010) of the polynomials for385

these trees, which improves the results of the k-medoids clustering. See Supplementary386

Figure 6. For these particular challenges, however, typically a researcher would know387

whether their data were from the tropics or not, or what the broad epidemiological setting388

(village, national, Western population MSM) was at the time of collection. We therefore389

focus on more specific estimation questions (parameter estimation and model choice).390

As an example of applying the parameter estimation and model selection methods391

to data, we first select the models that best fit the four WHO influenza clades, A1B/135N392

(60 tips), A1B/135K (63 tips), 3c3.B (117 tips) and A3 (227 tips), then estimate the393

parameters for the model that best fits the clade. To select the model that best fits a clade,394

we generate a set of beta splitting trees, a set of of explosive radiation trees and a set of395

trait evolution trees of the same size as the clade. We use these sets of trees and naive396

Bayes classifiers to estimate the a-posterior probabilities of the clade being generated by397

the models. Figure 4 E shows that if we select only from the beta splitting model and the398

explosive radiation model, then all four clades are deemed more likely to be generated by399

the explosive radiation model, a tree generator based on the birth-death model. Figure 4 F400

shows that if we include the trait evolution model, the small clades A1B/135N (60 tips)401

and A1B/135K (63 tips) are predicted to be generated by either the explosive radiation402

model or the trait evolution model. The classifiers predict that for larger clades, the most403

likely model is the explosive radiation model. Both models seem reasonable for influenza,404

as a new variant that has polymorphisms allowing it to evade immunity that has built up405

in the population due to exposure to previous influenza viruses could have an early rapid406
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rise (explosive radiation). However, influenza viruses have numerous traits (including407

interactions with host immunity) that could influence the branching rates in influenza408

virus phylogenies.409

A B

C

Clade A3 Explosive Radiation

Distance: 1988.17

Trait Evolution

Distance: 3166.69

Beta Splitting

Distance: 3286.25

Figure 5. A: The MDS plots of the polynomial distances between the random trees generated by the three different
models and influenza virus clade A3. B: the distribution of the estimated parameters of clade A3 over 100
replicates. C: the plots of clade A3 and the nearest random trees generated by the three different models.

As an example, we examine influenza virus clade A3 (227 tips) in detail and410

estimate its parameters. First, we generate a set of beta splitting trees, a set of explosive411

radiation trees, and a set of trait evolution trees, all with 227 tips. For each set, we choose412

250 random trees to visualize. In total we thus have 751 trees including clade A3. Figure413

5A shows a visualization of the polynomial distances among these trees. Figure 5B shows414

the results of estimating the parameters (repeated 100 times with different sets of random415

trees) of the explosive radiation model for clade A3. The 95% confidence interval of the416

birth rate λB is (0.50, 0.54) and the 95% confidence interval of the death rate µ is417

(0.52, 0.56). The 95% confidence interval of R0 of the clade is (0.906, 1.019).418
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Lastly, we plot, in Figure 5 C, clade A3 and the nearest random trees to the clade419

from each model in the sets of 250 random trees displayed in Figure 5 A. The polynomial420

distances between a pair of 227-tip trees has the upper bound of 12,882. Assuming the421

distribution of the pairwise distances will be normal as displayed in Supplementary422

Figure 1, all of the polynomial distances between clade A3 and the trees in Figure 5 C are423

below average pairwise distances of 227-tip trees. We also perform the same analysis on424

clade 3c3.B which has 117 tips (Supplementary Figure 7). Throughout our comparisons425

between simulated and real trees, we note that we have not simulated realistic total426

populations of either HIV or influenza in the relevant settings and then down-sampled to427

match the sizes of observed trees as this would be infeasible. This affects the interpretation428

of our estimates.429

Discussion430

We have introduced a new way to describe and analyze phylogenetic trees using a431

polynomial that uniquely characterizes trees. We compare the polynomial to other indices432

and methods describing tree shapes. The polynomial is easy to compute and it has the433

advantage of describing trees in full resolution, that is, the descriptions are different if and434

only if the two tree shapes are not isomorphic. Moreover, the polynomials have the435

potential to be extended to record information about the branch lengths.436

We also introduced some basic methods for tree analysis using the polynomial. The437

methods discussed in this paper include a tree metric, a parameter estimation method438

based on the metric, and a naive Bayes classifier directly trained by the coefficients of the439

polynomials. We chose these simple and tractable methods to show that the polynomial440

can be utilized in likelihood free methods for various tasks in analyzing phylogenetic trees.441

These polynomial based methods can distinguish trees from different models and different442

data sets, help estimate parameters, and aid in model selection. We have also applied these443

polynomial based methods to estimate parameters and select the best-fit model for the444
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chosen WHO influenza virus clades. The results show that the tree shapes of the influenza445

clades are most similar to random trees generated by either the explosive radiation model446

or the trait evolution model, both of which are based on the birth-death process compared447

to the beta splitting model which is based on the Markov branching process. We also448

computed the nearest (in the polynomial distance) trees from each model to a449

WHO-defined influenza clade. This information, together with the distribution of the450

pairwise polynomial distances between trees being normal, can be used to assess how well451

a simulated tree resembles a tree reconstructed from data.452

The simple methods used in this paper for parameter estimation and model453

selection can be improved in terms of computation efficiency among other aspects. And454

indeed, in estimation problems, it may be best to collect a wide range of tree descriptors455

(including polynomial coefficients, scalar summaries such as the Sackin and Colless456

imbalance measures and other high-resolution characterizations of the tree) (Saulnier,457

2017), and let feature selection sort out which are best for a particular problem. Different458

models and data will yield trees with different features, and in some of these, simple scalar459

summary statistics may perform well. Our results show that in our simulation examples460

the polynomial coefficients are informative and would likely add to such an analysis,461

probably with the most benefit where scalar imbalance measures do not contain sufficient462

information about trees to perform the desired estimation task. Characterizing trees in the463

polynomial’s high-resolution metric way also allows selection of the closest tree to a tree464

from data, and visualizations of the space of trees derived from a model or datasets of465

interest. The polynomial can be used to obtain novel features or pseudo-metrics for466

clustering and estimation; as an example, the binary differences (Choi, 2010) can be used467

to improve clustering for the influenza and HIV trees (Supplementary Figure 6).468

Our polynomial is not the only one that uniquely represents rooted binary trees.469

Other polynomials, such as the ones introduced in (Andrén, 2009), (Chaudhary, 1991),470

(Negami, 1996) and (Botti, 1993), (Matsen, 2012) are also good candidates for tree471
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analysis. Thus it is worth investigating more about how these different polynomials can be472

used to analyze phylogenetic trees and how different results can they yield. The473

computation of most of these polynomials requires going through all subtrees or all474

permutations of a given size, which can be computationally heavy, while the polynomial475

used in this paper has a recursive formula which makes the computation more efficient.476

To compare trees with different sizes is another challenge in tree comparison. In this477

paper, we have compared trees with the same number of tips and we have proposed a way478

to compare trees with different sizes. In our demonstration treeverse, trees with different479

sizes are compared and the distances between the trees are visualized by an interactive 3-D480

MDS plot. There are various ways to compare the coefficient vectors and compare trees481

with different sizes, but for trees whose sizes are drastically different, the sizes naturally482

remain a dominating factor in the resulting tree comparisons.483

Because polynomial coefficients can be treated as vectors, and vectors give rise to484

metrics, there are alternative metrics that can be defined using tree polynomials (both485

those used here and others (Andrén, 2009; Chaudhary, 1991; Negami, 1996)). Once trees486

are encoded as vectors, a range of regression, inference and dimension reduction and other487

machine learning tools can, as a result, be applied to trees. In addition, other tree shape488

statistics or further information about the trees (including measures of branch length) can489

easily be appended to the vectors to integrate distinct sources of data. This provides a490

scheme to study phylogenetic trees comprehensively.491

There remains considerable scope to improve the clustering and classification tools492

used here, which we used to demonstrate that parameter estimation and model choice can493

be done. One challenge in this work is that there are too many polynomial coefficients;494

however, feature selection, hyperparameter optimization and dimension reduction tools495

could be used to reduce the number of features in a systematic way. Furthermore, we used496

one- or two-dimensional estimation tasks as demonstrations. Realistic models of evolution497

are likely to contain multiple parameters (for example, time-dependent speciation and498
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extinction rates; intra- and inter-group competition parameters, relative fitness), so more499

advanced and modern statistical inference tools could be considered. The simpler500

estimation we have provided is a proof of principle for using polynomial coefficients in501

estimation tasks.502
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Supplementary Material507

The polynomial metric We prove that the polynomial metric is a genuine metric.508

It is easy to check that d(T1, T2) = 0 if and only if T1 ≃ T2, and d(T1, T2) = d(T2, T1). We509

show that the triangular inequality is true for the metric, that is,510

d(T1, T3) 6 d(T1, T2) + d(T2, T3). We only need to prove the following inequality holds for511

a, b, c > 0.512

|a− c|

a+ c
6

|a− b|

a+ b
+

|b− c|

b+ c
513

Note that if a > c > b or c > a > b, we have514

|a− c|

a+ c
6

|a− b|

a+ c
+

|b− c|

a+ c
6

|a− b|

a+ b
+

|b− c|

b+ c
515

If a > b > c, we have516

a− c

a+ c
6

2b(a− c)

(a+ b)(b+ c)
=

a− b

a+ b
+

b− c

b+ c
517

This is equivalent to b2 + ac 6 ab+ bc, which is true because ac− bc 6 ab− b2. Similarly,518

the equality also holds when c > b > a.519

If b > a > c, we have520

a− c

a+ c
6

2(b2 − ac)

(a+ b)(b+ c)
=

b− a

a+ b
+

b− c

b+ c
521
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This is equivalent to ab(b− a) + 3c(b2 − a2) + c2(b− a) > 0, which is true as b > a.522

Similarly, the equality also holds when b > c > a. Therefore the polynomial metric is a523

genuine metric.524

A B

Supplementary Figure 1. A-B: the distribution of all pairwise polynomial distances between all rooted binary trees
with 13 and 14 tips, where the black solid curves are normal fits.

The distribution of polynomial distances between all pairs of trees with n tips525

resembles a normal distribution. Supplementary Figure 1 displays the distribution for trees526

with 13 and 14 tips, where the black solid curves are normal fits. For the distribution for527

13-tip trees, the estimated mean value is 17.70, the estimated standard deviation is 5.37,528

and Shapiro-Wilk normality test has W of 0.99 and p-value of 6.21× 10−15. For the529

distribution for 14-tip trees, the estimated mean value is 20.54, the estimated standard530

deviation is 6.10, and Shapiro-Wilk normality test has W of 0.99 and p-value of531

4.43× 10−15.532

Parameter estimation and model selection We show the supplementary results of533

parameter estimation and model selection in complement to the figures displayed in the534

main result section. Supplementary Figure 2 shows the results of parameter estimation for535

750-tip beta splitting trees, 250-tip and 500-tip explosive radiation trees. Supplementary536

Table 1, 2 and 3 show the summaries of the estimation. Supplementary Figure 3 shows the537

results of model selection for 250-tip and 750-tip random trees generated by the three538

models. Supplementary Figure 4 shows the results parallel to the results displayed in539

Figure 3 with subtree size distributions instead of polynomials.540
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Models R2 Coeff. Est. Std. Err. p-value

BS-Poly 0.77 Intercept 0.016 0.25 0.95
250 tips Slope 1.06 0.06 <2e-16

BS-Poly 0.78 Intercept -0.038 0.22 0.86
500 tips Slope 1.012 0.056 <2e-16

BS-Poly 0.85 Intercept 0.026 0.21 0.23
750 tips Slope 1.024 0.043 <2e-16

BS-SSD 0.41 Intercept -0.84 0.55 0.13
250 tips Slope 1.009 0.13 4.31e-12

BS-SSD 0.37 Intercept -0.79 0.71 0.27
500 tips Slope 1.076 0.16 9.52e-10

Supplementary Table 1. The summary of linear fit of the real parameter and the estimated parameter for beta
splitting trees.

Models R2 Coeff. Est. Std. Err. p-value

ER-Poly 0.035 Intercept 0.33 0.15 0.033
250 tips Slope 0.46 0.25 0.063

ER-Poly 0.043 Intercept 0.36 0.13 0.006
500 tips Slope 0.43 0.21 0.037

ER-Poly 0.09 Intercept 0.29 0.14 0.048
750 tips Slope 0.58 0.22 0.011

ER-SSD 0.07 Intercept 0.40 0.10 0.001
750 tips Slope 0.44 0.16 0.008

Supplementary Table 2. The summary of linear fit of the real parameter and the estimated parameter λB for
explosive radiation trees.

Models R2 Coeff. Est. Std. Err. p-value

ER-Poly 0.24 Intercept 0.12 0.05 0.016
250 tips Slope 0.67 0.12 1.87e-07

ER-Poly 0.46 Intercept 0.067 0.041 0.11
500 tips Slope 0.84 0.091 7.44e-15

ER-Poly 0.69 Intercept 0.034 0.031 0.28
750 tips Slope 0.94 0.075 <2e-16

ER-SSD 0.59 Intercept -0.008 0.035 0.815
750 tips Slope 1.40 0.12 <2e-16

Supplementary Table 3. The summary of linear fit of the real parameter and the estimated parameter µ for
explosive radiation trees.

In Supplementary Figure 5, we show the importance of features in the naive Bayes541

classifiers used for model selection with both subtree size distributions and polynomials.542

As the naive Bayes classifiers assume independence of variables, the Shannon entropy543

reflects the importance of the features, where a feature with smaller entropy means the544

feature is more important in the classifier.545
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A B

C D

E

Supplementary Figure 2. A-B: the comparisons between the real parameters and the estimated parameters of the
explosive radiation random trees with 250 tips using polynomials. C-D: the comparisons between the real
parameters and the estimated parameters of the explosive radiation random trees with 500 tips using
polynomials.E: the comparisons between the real parameter and the estimated parameter of the beta splitting
random trees with 750 using polynomials.

Polynomial binary differences Binary differences, based on presence and absence546

of components, though in general not metrics, are one of the commonly used indices in, for547

example, taxonomic, ecologic, biogeographic comparison and classification (Choi, 2010).548

They provide effective insights about clusters though they are not metrics in general. We549

define the polynomial binary differences used in this paper by the number of terms that550

are present in the polynomial of one tree but are absent in the polynomial of the other.551

More precisely, the binary difference of two trees T1 and T2 are calculated by counting the552
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A B

C D

Supplementary Figure 3. A-B: the results of using naive Bayes classifiers to select the model generating random
trees with 250 tips using polynomials. C-D: the results of using naive Bayes classifiers to select the model
generating random trees with 750 tips using polynomials.

number of terms that are present in P (T1, x, y) but are absent in P (T2, x, y), or the553

number of terms that are present in P (T2, x, y) but are absent in P (T1, x, y). This provides554

another way to compare polynomials (trees). Supplementary Figure 6 shows the results of555

k-medoids clustering on the binary differences of the influenza trees and the HIV trees,556

which are better than the polynomial metric in this task.557

WHO influenza clades For clade 3c3.B, the 95% confidence interval of the birth558

rate λB is (0.56, 0.60) and the 95% confidence interval of the death rate µ is (0.58, 0.62).559

The 95% confidence interval of R0 of the clade is (0.918, 1.013).560
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A B

C D

E F

Supplementary Figure 4. A-B: the comparisons between the real parameter and the estimated parameter of the
beta splitting random trees with 250 tips and 500 tips using subtree size distributions. C-D: the comparisons
between the real parameters and the estimated parameters of the explosive radiation random trees with 750 tips
using subtree size distributions. E-F: the results of using naive Bayes classifiers to select the model generating
random trees with 500 tips using subtree size distributions.

A B

Supplementary Figure 5. A: the feature importance (Shannon entropy) in the naive Bayes classifier used for model
selection with subtree size distributions. B: the feature importance (Shannon entropy) in the naive Bayes classifier
used for model selection with polynomials.
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A B

Supplementary Figure 6. A: the results of k-medoids clustering for the influenza trees using the polynomial binary
differences. B: the results of k-medoids clustering for the HIV trees using the polynomial binary differences.

A B

C

Clade 3c3.B Explosive Radiation

Distance: 847.667

Trait Evolution

Distance: 1202.99

Beta Splitting

Distance: 1067.86

Supplementary Figure 7. A: the MDS plots of the polynomial distances between the random trees generated by the
three different models and the clade 3c3.B. B: the distribution of the estimated parameters of the clade 3c3.B over
100 replicates. C: the plots of the clade A3 and the nearest random trees generated by the three different models.
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