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POLYNOMIAL RECURRENCES AND CYCLIC RESULTANTS

CHRISTOPHER J. HILLAR AND LIONEL LEVINE

(Communicated by Bernd Ulrich)

Abstract. Let K be an algebraically closed field of characteristic zero and
let f ∈ K[x]. The m-th cyclic resultant of f is

rm = Res(f, xm − 1).

A generic monic polynomial is determined by its full sequence of cyclic re-
sultants; however, the known techniques proving this result give no effective
computational bounds. We prove that a generic monic polynomial of degree d
is determined by its first 2d+1 cyclic resultants and that a generic monic re-
ciprocal polynomial of even degree d is determined by its first 2 · 3d/2 of them.
In addition, we show that cyclic resultants satisfy a polynomial recurrence of
length d+1. This result gives evidence supporting the conjecture of Sturmfels
and Zworski that d + 1 resultants determine f . In the process, we establish
two general results of independent interest: we show that certain Toeplitz de-
terminants are sufficient to determine whether a sequence is linearly recurrent,
and we give conditions under which a linearly recurrent sequence satisfies a
polynomial recurrence of shorter length.

1. Introduction

Let K be an algebraically closed field of characteristic zero. Given a monic
polynomial

f(x) =
d∏

i=1

(x − λi) ∈ K[x],

the m-th cyclic resultant of f is

(1.1) rm(f) = Res(f, xm − 1) =
d∏

i=1

(λm
i − 1).

One motivation for the study of cyclic resultants comes from topological dynam-
ics. Sequences of the form (1.1) count periodic points for toral endomorphisms.
If A = (aij) is a d × d integer matrix, then A defines an endomorphism T of the
d-dimensional torus T

d = R
d/Z

d given by

T (x) = Ax mod Z
d.
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1608 CHRISTOPHER J. HILLAR AND LIONEL LEVINE

Let Perm(T ) = {x ∈ T
d : Tm(x) = x} be the set of points on the torus fixed by

the map Tm. Under the ergodicity condition that no eigenvalue of A is a root of
unity, it follows (see [5]) that

#Perm(T ) = | det(Am − Id)| = |rm(f)|,
in which f is the characteristic polynomial of A.

In connection with number theory, cyclic resultants were also studied by Pierce
and Lehmer [5] in the hope of using them to produce large primes. As a simple
example, the Mersenne numbers Mm = 2m − 1 arise as cyclic resultants of the
polynomial f(x) = x − 2. Indeed, the map T (x) = 2x mod 1 has precisely Mm

points of period m. Further motivation comes from knot theory [14], Lagrangian
mechanics [7, 9], and, more recently, the study of amoebas of varieties [13] and
quantum computing [10].

The problem of recovering a polynomial from its sequence of cyclic resultants
arises naturally in several applications. Commonly, an explicit bound N = N(d)
is desired in terms of the degree d of f so that the first N resultants r1, . . ., rN

determine f (see [9, 10]). For instance, given a toral endomorphism of the type
discussed above, one would like to use a minimal amount of (coarse) period data to
recover the spectrum of the matrix A. In general, reconstruction of a polynomial
from its sequence of cyclic resultants seems to be a difficult problem. While it is
known [8] that in many instances the full sequence of resultants determines f , this
result is of little use in computation. One purpose of the present article is to give
explicit upper bounds on the complexity of this problem. Our main result in this
direction is

Theorem 1.1. A generic monic polynomial f(x) ∈ K[x] of degree d is determined
by its first 2d+1 cyclic resultants r1, . . . , r2d+1 . A generic monic reciprocal polyno-
mial of even degree d is determined by its first 2 · 3d/2 cyclic resultants.

Emperical evidence suggests that Theorem 1.1 is far from tight. A conjecture of
Sturmfels and Zworski addresses the special case of a reciprocal polynomial f , that
is, one satisfying f(1/x) = xdf(x).

Conjecture 1.2. A reciprocal monic polynomial f(x) ∈ K[x] of even degree d is
determined by its first d/2 + 1 cyclic resultants.

Recently, there has been some progress on this conjecture for a special class
of reciprocal polynomials. Kedlaya [10] has shown that for a certain reciprocal
polynomial f of degree d arising from the numerator P (t) of a zeta function of a
curve over a finite field Fq, the first d resultants are sufficient to recover f . He uses
this result to give a quantum algorithm that computes P (t) in time polynomial in
the degree of the curve and log q. A proof of Conjecture 1.2 would further reduce
the running time for Kedlaya’s algorithm. We offer the following related conjecture.

Conjecture 1.3. A generic monic polynomial f(x) ∈ K[x] of degree d is deter-
mined by its first d + 1 cyclic resultants.

Presently Conjecture 1.3 is verified only up to d = 4 (see Section 5); however, we
are able to offer a result in the direction of Conjectures 1.2 and 1.3. We say that a
sequence {an}n≥1, an ∈ K, obeys a polynomial recurrence of length � if there is a
polynomial P ∈ K[x1, . . . , x�] such that P (an, . . . , an+�−1) = 0 for all n ≥ 1. Our
theorem may then be stated as follows.
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Theorem 1.4. Let f ∈ K[x] be a monic polynomial of degree d. The sequence
{rn}n≥1 of cyclic resultants of f obeys a polynomial recurrence of length d + 1.
Moreover if f is assumed reciprocal of even degree d, then {rn} obeys a polynomial
recurrence of length d/2 + 1.

Explicit polynomial recurrences witnessing Theorem 1.4 in the cases d = 1, 2
may be found in Section 5.

The main tools used in our analysis are two general results relating linear and
polynomial recurrences. Let {an}n≥1 be given by

(1.2) an =
t∑

i=1

pi(n)µn
i ,

where the pi are nonzero polynomials in K[x], and the µi are nonzero elements of
K. Let �i = deg(pi) + 1. It is well known (see, e.g. [4]) that the sequence a obeys
a linear recurrence of length � = �1 + · · · + �t; namely,

an+� + c1an+�−1 + · · · + c�an = 0, n ≥ 1,

with coefficients ci determined by

x� + c1x
�−1 + · · · + cn =

∏
(x − µi)�i .

We say that a obeys a simple linear recurrence if all �i = 1.
The following result gives conditions under which a linearly recurrent sequence

satisfies a polynomial recurrence of shorter length.

Theorem 1.5. Let {an}n≥1 be given by (1.2), and let r be the rank of the mul-
tiplicative group A ⊂ K∗ generated by the µi. Then the sequence {an} obeys a
polynomial recurrence of length r + 2. Moreover, if {an} satisfies a simple linear
recurrence, then {an} obeys a polynomial recurrence of length r + 1.

Example 1.6. Consider the Fibonacci sequence Fn = 1√
5
(µn

+ − µn
−), where µ± =

1±
√

5
2 . Since µ− = −µ−1

+ , the group A in Theorem 1.5 is generated by µ+ and −1,
hence it has rank r = 1. As Fn obeys a simple linear recurrence, we expect the
sequence {Fn} to obey a polynomial recurrence of length r + 1 = 2. Indeed, it is
well known and easily seen by induction that F 2

n − FnFn−1 − F 2
n−1 = (−1)n, so

every pair (Fn−1, Fn) lies on the zero-locus of P (x, y) = (y2 − xy − x2)2 − 1.

Example 1.7. Let an = q(n) be a quasi-polynomial of degree d and period N ;
that is, there are polynomials q0, q1, . . . , qN−1 ∈ K[x] of degree at most d, such that
q(n) = qi(n) whenever n ≡ i (mod N). It is elementary that any such sequence
can be expressed in the form (1.2) with t = d and µi = ζi−1, where ζ is a primitive
d-th root of unity. Since the group A � Z/dZ has rank zero, Theorem 1.5 asserts
that the sequence an obeys a polynomial recurrence of length 2. By contrast, for
suitably chosen q the shortest linear recurrence for an has length (d + 1)N + 1.

We remark that Theorem 1.5 does not always give the shortest length of a
polynomial recurrence. For instance, the sequence an = 2n + (−2)n + 3n + (−3)n

satisfies the length-2 polynomial recurrence anan+1 = 0, while the theorem only
guarantees the existence of a recurrence of length r + 1 = 3.

The second general result we use gives a polynomial recurrence of length 2� − 1
which “detects” for the existence of a (homogeneous) linear recurrence of length at
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1610 CHRISTOPHER J. HILLAR AND LIONEL LEVINE

most �. Given a sequence {an}n≥1, consider the � × � Toeplitz matrix

(1.3) A�,n =

⎡
⎢⎢⎢⎣

an an+1 . . . an+�−1

an−1 an . . . an+�−2

...
...

. . .
...

an−�+1 an−�+2 . . . an

⎤
⎥⎥⎥⎦ .

Theorem 1.8. The sequence {an}n≥1 satisfies a homogeneous linear recurrence of
length at most � if and only if every Toeplitz determinant det A�,n vanishes, n ≥ �.

Although this result appears to be known in some form (for example, it is implicit
in the treatment of “number walls” in [1]), we include a proof in Section 2 as we
were unable to find a reference.

All linear recurrence relations in this paper will henceforth be assumed homoge-
neous.

Example 1.9. In the case � = 2, the theorem asserts that an is an exponential
sequence cµn if and only if a2

n = an−1an+1 for all n.

The rest of the paper is organized as follows. In Section 2, we prove Theorems 1.5
and 1.8. The proof the former theorem reduces essentially to the computation of
the Krull dimension of a semigroup algebra, and that of the latter theorem to
an inductive application of Dodgson’s rule. In Section 3, we establish a Toeplitz
determinant factorization which will be used in the proof of Theorem 1.1, along
with some related factorizations of independent interest. In Section 4 we apply
these results, together with those of [8], to prove Theorems 1.1 and 1.4. Finally, in
Section 5, we present computational evidence supporting Conjecture 1.3.

We thank Bernd Sturmfels and Maciej Zworski for bringing this problem to our
attention and for useful discussions.

2. Linear and polynomial recurrences

Let S denote the collection of all sequences {an}n≥1 with terms in K. Pointwise
sum and product give S the structure of a commutative K-algebra with unit. We
denote by E : S → S the K-algebra endomorphism (Ea)n = an+1 (the “shift
operator”).

For ξ ∈ K∗ denote by e(ξ) the exponential sequence e(ξ)n = ξn; note that e(1)
is the unit element of S. We will make use of the fact that for distinct ξ1, . . . , ξm

the sequences e(ξi) are linearly independent over K (the determinant |e(ξi)j |mi,j=1

is Vandermonde). Denote by δ the sequence δn = n. Then a sequence of the form
(1.2) can be expressed

(2.1) a =
t∑

i=1

pi(δ)e(µi).

The proof of Theorem 1.5 will make use of the subalgebra

R = K[a, Ea, E2a, . . .] ⊂ S

generated by the sequence a together with its leftward shifts. This is a finitely
generated K-algebra because a obeys a linear recurrence.
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Let Q be a commutative semigroup, written multiplicatively. The semigroup
algebra K[Q] has K-basis indexed by the elements of Q. The basis element corre-
sponding to µ ∈ Q is written [µ]. Multiplication is defined on basis elements by
[µ][λ] = [µλ] and extended by linearity.

Lemma 2.1. Let an be given by (1.2), and let Q ⊆ K∗ be the multiplicative semi-
group generated by µ1, . . ., µt.

(1) There is an inclusion of K-algebras R ↪→ K[Q][x].
(2) If the sequence an obeys a simple linear recurrence, there is an isomorphism

of K-algebras R � K[Q].

Proof. Write � =
∑

(deg pi + 1). Since a obeys a linear recurrence of length � + 1,
we have

(2.2) R = K[a, Ea, . . . , E�−1a].

Since Ee(ξ) = ξe(ξ) and Eδ = δ + 1, by (2.1) we have

(2.3) Eja =
t∑

i=1

pi(δ + j)µj
ie(µi),

and hence there is an inclusion R ⊆ R′[δ], where

(2.4) R′ = K[e(µ1), . . . , e(µt)].

Since e(µi)e(µj) = e(µiµj) the linear map e : K[Q] → R′ sending [µi] �→ e(µi)
is a K-algebra homomorphism. Since the exponential sequences e(µi) are linearly
independent, it is an isomorphism. Thus R′ � K[Q].

If {an} satisfies a simple linear recurrence, then the polynomials pi(n) are nonzero
constants. From (2.3) we have

Eja =
t∑

i=1

piµ
j
ie(µi).

Thus the linear span of the sequences a, Ea, . . ., E�−1a coincides with that of e(µ1),
. . ., e(µ�) (the transition matrix is the product of a Vandermonde and an invertible
diagonal matrix). It follows from (2.2) that

(2.5) R = K[e(µ1), . . . , e(µt)] = R′ � K[Q].

This completes the proof of (2).
To prove (1), it suffices to show that δ is transcendental over R′. Suppose it had

algebraic degree m. From among the algebraic relations

(2.6) ρ0δ
m + ρ1δ

m−1 + · · · + ρm = 0, ρj ∈ R′, ρ0 	= 0,

writing

ρ0 =
s∑

i=1

bie(ξi), bi ∈ K∗, ξi ∈ Q,

choose a relation in which the number of terms s in the leading coefficient ρ0 is
minimal. This minimality forces e(ξ1), . . . , e(ξs) to be linearly independent; equiv-
alently, the ξi must be distinct. Multiplying (2.6) by b−1

s e(ξ−1
s ) we may assume

that bs = ξs = 1.
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1612 CHRISTOPHER J. HILLAR AND LIONEL LEVINE

Suppose first that s > 1. Applying the difference operator ∆ = E − 1 to (2.6)
we obtain

E(ρ0)(δ + 1)m − ρ0δ
m + q(δ) = 0,

where q ∈ R′[x] is a polynomial of degree at most m − 1. Thus

0 =
s∑

i=1

biξie(ξi)(δ + 1)m −
s∑

i=1

bie(ξi)δm + q(δ)

=
s−1∑
i=1

bi(ξi − 1)e(ξi)δm + q(δ) + q̃(δ),

in which q̃ ∈ R′[x] again has degree at most m − 1. By the minimality of s, the
coefficient of δm must vanish, and this contradicts the linear independence of the
sequences e(ξi).

It remains to consider the case s = 1. By our rescaling convention, b1 = ξ1 = 1,
hence ρ0 = e(1). Writing ρ1 =

∑s′

i=1 cie(ψi) for distinct ψi, applying ∆ to the
relation (2.6), we obtain

e(1) [(δ + 1)m − δm] +
s′∑

i=1

ci

[
ψie(ψi)(δ + 1)m−1 − e(ψi)δm−1

]
+ p(δ) = 0,

where p ∈ R′[x] is a polynomial of degree at most m− 2. The coefficient of δm−1 is

(2.7) me(1) +
s′∑

i=1

(ψi − 1)e(ψi) = 0.

If s′ = 0 we obtain me(1) = 0, a contradiction as K has characteristic 0; if s′ = 1
and ψ1 = 1 we obtain the same contradiction. Finally, if some ψi 	= 1, then (2.7)
contradicts the linear independence of the sequences e(ψi) and e(1). �

Lemma 2.2. Let A be a finitely generated abelian group, and fix a set of generators
q1, . . . , q� for A. Let Q ⊂ A be the semigroup generated by the qi. The following
are equal:

(1) The rank of A.
(2) The Krull dimension of K[Q].
(3) The maximum number of elements in K[Q] algebraically independent over

K.

Proof. Write A = B⊕C, with B finite and C free abelian. By Maschke’s Theorem,
K[B] is a finite product of copies of K, hence K[A] � K[B] ⊗K K[C] is a finite
product of copies of K[C]. Since K[C] is a Laurent polynomial ring, it follows that
K[A] is reduced, and hence K[Q] is reduced. Now by [2, p. 466], the maximum
number of algebraically independent elements in K[Q] is equal to its Krull dimen-
sion. Finally, by Proposition 7.5 in [12], the Krull dimension of K[Q] is equal to
the rank of A. �

Proof of Theorem 1.5. By Lemma 2.1, we have R ↪→ K[Q][x] � K[Q×N]. Thus by
Lemma 2.2, the maximum number of algebraically independent elements in R is at
most rank(A × Z) = r + 1. In particular, the r + 2 elements a, Ea, . . . , Er+1a ∈ R
are algebraically dependent over K; that is, the sequence a obeys a polynomial
recurrence of length r + 2.
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If a satisfies a simple linear recurrence, then R � K[Q] by Lemma 2.1, and the el-
ements a, Ea, . . . , Era are algebraically dependent over K, so a obeys a polynomial
recurrence of length r + 1. �

We now turn to the proof of Theorem 1.8. The key step uses Dodgson’s rule [15]
relating the determinant of an �×� matrix to its four corner �−1×�−1 minors and
its central �−2× �−2 minor. For Toeplitz matrices the rule assumes a particularly
simple form: with A�,m defined as in (1.3), we have for 2 ≤ � ≤ m

(2.8) detA�,m detA�−2,m = (detA�−1,m)2 − detA�−1,m−1 detA�−1,m+1.

Proof of Theorem 1.8. We induct on �. If x1an + x2an+1 + · · · + x�an+�−1 = 0 for
all n ≥ 1, then the vector [x1, . . . , x�]T lies in the kernel of every A�,n. Conversely,
suppose A�,n is singular for all n ≥ �. For each such n, let xn = [xn1, . . . , xn�]T be
a nonzero vector in the kernel of A�,n, and consider the 2 × � matrices

Xn =
[

xT
n

xT
n+1

]
=

[
xn1 · · · xn�

xn+1,1 · · · xn+1,�

]
.

If every Xn has rank one, then each vector xn is a scalar multiple of x�, and {an}
satisfies the linear recurrence x�1an + · · · + x��an+�−1 = 0.

Suppose now that some Xn has rank two. The transposes of the first � − 1
row vectors of A�,n all lie in the kernel of Xn, so they must be linearly dependent.
In particular, the upper-left minor det A�−1,n vanishes. We now induct forwards
and backwards on m to show that detA�−1,m vanishes for all m ≥ �. The left-
hand side of (2.8) is zero since A�,m is singular. Therefore, if either detA�−1,m−1

or detA�−1,m+1 vanishes, then detA�−1,m must vanish as well. This completes
the induction on m. By induction on �, the sequence {an}n≥2 satisfies a linear
recurrence of length at most � − 1. This trivially implies that {an}n≥1 satisfies a
linear recurrence of length at most �. �

3. Determinant factorizations

If {an}n≥1 satisfies a simple linear recurrence of length � + 1, the determinants
detA�,n have a simple closed form. Note that �+1 is the minimum length for which
these determinants do not vanish, by Theorem 1.8.

Theorem 3.1. Let µi, ci ∈ K∗ (i = 1, . . . , �), and set an =
∑�

i=1 ciµ
n
i . The

determinant of the � × � Toeplitz matrix A�,n defined in (1.3) has the factorization

(3.1) detA�,n = (−1)�(�−1)/2c1 · · · c�(µ1 · · ·µ�)n−�+1
∏
i<j

(µi − µj)2.

Proof. Consider the Vandermonde matrices V = (µj−1
i )�

i,j=1 and V ′ = (µ�−i
j )�

i,j=1,
and let D be the diagonal matrix with diagonal entries ciµ

n−�+1
i , i = 1, . . . , �. The

(i, j)-entry of the product V ′DV is then

(V ′DV )i,j =
�∑

k=1

µ�−i
k ckµn−�+1

k µj−1
k =

∑
k

ckµn−i+j
k = an−i+j .

Thus A�,n = V ′DV . Since V ′ differs from V T by a row permutation of length
�(� − 1)/2 we obtain

detA�,n = (−1)�(�−1)/2 detD(detV )2,
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1614 CHRISTOPHER J. HILLAR AND LIONEL LEVINE

which yields (3.1). �

It seems likely that Theorem 3.1 can be extended to cover the situation of an
arbitrary linear recurrence. One difficulty is that in general, the factors µi − µj

occur with multiplicity. For example, if

an = (bn3 + cn2 + dn + e)µn
1 + (fn + g)µn

2 + hµn
3 ,

then

detA7,n = 1296b4f2hµ4n−12
1 µ2n−8

2 µn−6
3 (µ1 − µ2)16(µ1 − µ3)8(µ2 − µ3)4.

Of particular interest is the special case when an is a polynomial function of n.

Proposition 3.2. Let p(x) be a monic polynomial of degree �. As a polynomial in
x, the (� + 1) × (� + 1) Toeplitz determinant ∆(x) = det(p(x − i + j))�

i,j=0 equals
the constant �!�+1, independent of p.

The proof of this proposition will make use of the following generalization of the
Vandermonde determinant [11].

Lemma 3.3. Let pj(x) be polynomials (j = 0, . . . , �) with leading coefficients aj

and deg(pj) = � − j. If y0, . . . , y� are indeterminates, then

det (pj(yi))
�
i,j=0 = a0 · · · a�

∏
i<j

(yi − yj).

Proof. Perform elementary column operations from right to left, reducing the de-
terminantal calculation to that of the Vandermonde identity. �

Proof of Proposition 3.2. Set q1(x) = p(x+1)−p(x)
� , which is monic of degree � − 1.

Subtracting the first column from the second, the second from the third, and so on,
we obtain

∆(x) = ��

∣∣∣∣∣∣∣∣∣

p(x) q1(x) · · · q1(x + � − 1)
p(x − 1) q1(x − 1) · · · q1(x + � − 2)

...
...

. . .
...

p(x − �) q1(x − �) · · · q1(x − 1)

∣∣∣∣∣∣∣∣∣
.

Next, set qi+1(x) = qi(x+1)−qi(x)
�−i for i = 1, . . . , �− 1 and repeat the above reduc-

tions, initiating the column operations at the (i + 1)-st column. At the conclusion
of this process, we end up with the determinant

∆(x) = ��(� − 1)�−1 · · · 11

∣∣∣∣∣∣∣∣∣

p(x) q1(x) · · · q�(x)
p(x − 1) q1(x − 1) · · · q�(x − 1)

...
...

. . .
...

p(x − �) q1(x − �) · · · q�(x − �)

∣∣∣∣∣∣∣∣∣
.

Finally, setting yi = x − i in the statement of Lemma 3.3, it follows that

∆(x) =
�∏

k=1

kk ·
∏

0≤i<j≤�

(j − i) =
�∏

k=1

kk ·
�∏

k=1

k�+1−k = �!�+1. �

Applying Theorem 3.1 to the cyclic resultants rn given in (1.1) we obtain the
following.
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Proposition 3.4. The determinant of the 2d×2d Toeplitz matrix Rn =(rn−i+j)2
d

i,j=1

has the factorization

(3.2) detRn = (λ1 · · ·λd)2
d−1(n−2d−1)

∏
S,T

(λS − λT )2
d−|S∪T |

,

where λS :=
∏

i∈S λi, and the product is taken over all ordered pairs of disjoint
subsets S, T ⊆ {1, . . . , d}, not both empty.

Proof. Expanding the product (1.1) yields rn =
∑

S⊆{1,...,d}(−1)d−|S|λn
S . Since∏

S λS = (λ1 · · ·λd)2
d−1

, by Theorem 3.1 with � = 2d we have

(3.3) detRn = (λ1 · · ·λd)2
d−1(n−2d+1)

∏
S �=T

(λS − λT ).

For each pair of subsets S, T ⊆ {1, . . . , d} write S′ = S − S ∩ T , T ′ = T − S ∩ T .
Then λS − λT = λS∩T (λS′ − λT ′). Each ordered pair (S′, T ′) of disjoint subsets
of {1, . . . , d}, not both empty, arises in this way from 2d−|S′∪T ′| different ordered
pairs (S, T ), S 	= T . The product in (3.3) can therefore be rewritten as

∏
S �=T

(λS − λT ) =
∏
S �=T

λS∩T

∏
S′∩T ′=∅

(S′,T ′) �=(∅,∅)

(λS′ − λT ′)2
d−|S′∪T ′|

.

Every element i ∈ {1, . . . , d} is contained in 4d−1 − 2d−1 intersections of the form
S ∩ T , S 	= T . Thus, the exponent on λ1 · · ·λd is 2d−1(n− 2d + 1) + 4d−1 − 2d−1 =
2d−1(n − 2d−1). �

Remark 3.5. The degree of det Rn as a polynomial in the roots λ1, . . . , λd is signif-
icantly smaller than might be expected. Every term in the expansion of R2d has
degree d4d. On the other hand, by (3.3) the degree of detR2d is only M(d) :=∑

S,T⊆{1,...,d} max{|S|, |T |}. It is easily seen (e.g. by the weak law of large num-
bers) that M(d) ∼ 1

2d4d as d → ∞. For large d, so much cancellation occurs in the
expansion of det R2d that its degree is approximately cut in half.

4. Cyclic resultants

We are now in a position to prove the first two results stated in the Introduction.
Expanding the product formula (1.1) yields

(4.1) rn =
∑

S⊂{1,...,d}
(−1)d−|S|λn

S

where λS =
∏

i∈S λi. Thus the sequence rn obeys a simple linear recurrence of
length 2d. Note, however, that the coefficients are functions of the λi.

If f is reciprocal of even degree d, its roots come in reciprocal pairs λ±1
1 , . . . , λ±1

d/2,
and the expansion of (1.1) yields

rn =
∑
S,T

2
d
2−|S∪T |(−1)|S∪T |

(
λS

λT

)n

,

where the sum is over disjoint subsets of S, T ⊂ {1, . . . , d/2}.
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Proof of Theorem 1.1. We take “generic” to mean that f does not have a root of
unity as a zero and that no two products of distinct subsets of the roots of f are
equal; that is, λS 	= λT for distinct subsets S, T ⊂ {1, . . . , d}. The first author, in
Corollary 1.7 of [8], extending work of Fried [6], proves that a generic monic poly-
nomial f(x) ∈ K[x] is determined by its full sequence {rn}n≥1 of cyclic resultants.
By (4.1) and Theorem 1.8, the sequence {rn} obeys a polynomial recurrence of
length 2d+1 +1 given by the vanishing of (2d +1)× (2d +1) Toeplitz determinants.
Unlike the linear recurrence of length 2d + 1, this recurrence is independent of the
polynomial f . By minor expansion along the bottom row, the recurrence may be
expressed in the form

(4.2) (detRn) · rn+2d+1 = P (rn−2d+1, . . . , rn+2d), n ≥ 2d,

for some polynomial P ∈ K[x1, . . . , x2d+1 ], where Rn = (rn+i−j)2
d

i,j=1.
By Proposition 3.4, a generic polynomial f gives rise to nonsingular Rn for all

n. Moreover, a straightforward calculation using (3.2) reveals that

detRn =
(detR2d+1)n−2d

(detR2d)n−2d−1
.

It follows from this and (4.2) that for m ≥ 2d+2d+1 = 2d+1+1, the resultant rm is
determined by the resultants ri with i < m. In particular, the values r1, . . . , r2d+1

determine the full sequence of resultants, and hence they determine f .
If f is reciprocal of even degree d, we take “generic” to mean that f does not have

a root of unity as a zero and that no two quotients of the form λS/λT are equal,
where S and T are disjoint subsets of {1, . . . , d/2}. As there are 3d/2 such pairs
(S, T ), by Theorem 1.8, the sequence {rn} obeys a polynomial recurrence of length
2 · 3d/2 + 1 given by the vanishing of (3d/2 + 1)× (3d/2 + 1) Toeplitz determinants.
Moreover, the matrices R′

n = (rn−i+j)3
d/2

i,j=1 are nonsingular by Theorem 3.1. In [8,
Corollary 1.12], it is shown that the sequences of nonzero cyclic resultants generated
by a reciprocal polynomial of degree d determines it. The proof now proceeds by
minor expansion as before. �

Proof of Theorem 1.4. The elements λS ∈ K appearing in (4.1) lie in the multi-
plicative subgroup A ⊆ K∗ generated by λ1, . . . , λd. By Theorem 1.5 applied to
(4.1), the sequence {rn} obeys a polynomial recurrence of length rank A+1 ≤ d+1.

If f(x) is reciprocal, its roots λi come in reciprocal pairs, and the rank of A is
at most d/2. By Theorem 1.5 it follows that {rn} obeys a polynomial recurrence
of length d/2 + 1. �

We close this section with an example illustrating the techniques used in proving
Theorem 1.1. By (4.1) the resultants rm of a monic quadratic polynomial f(x) =
x2 + ax + b satisfy a linear recurrence of length 5. By Theorem 1.8 it follows that

detA5,n =

∣∣∣∣∣∣∣∣∣∣

rn rn−1 rn−2 rn−3 rn−4

rn+1 rn rn−1 rn−2 rn−3

rn+2 rn+1 rn rn−1 rn−2

rn+3 rn+2 rn+1 rn rn−1

rn+4 rn+3 rn+2 rn+1 rn

∣∣∣∣∣∣∣∣∣∣
= 0.
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Minor expansion along the bottom row gives our polynomial recurrence

(4.3) rn+4

∣∣∣∣∣∣∣∣

rn−1 rn−2 rn−3 rn−4

rn rn−1 rn−2 rn−3

rn+1 rn rn−1 rn−2

rn+2 rn+1 rn rn−1

∣∣∣∣∣∣∣∣
= P (rn−4, rn−3, . . . , rn+3),

expressing rn+4 as a rational function in rn−4, . . . , rn+3. For generic f , the deter-
minant on the left side of (4.3) never vanishes, so the entire sequence of resultants
is determined by the values of r1, . . . , r8.

While (4.3) gives a polynomial recurrence for rm of length 9, there in fact exists
a recurrence of length 3 by Theorem 1.4. Explicitly, this recurrence is given by
(5) below. The coefficients of this shorter recurrence depend on the polynomial f ,
whereas (4.3) gives a universal recurrence independent of f .

5. Computations

Here we list here explicit polynomial recurrences witnessing Theorem 1.4 in the
cases d = 1 and d = 2. The cyclic resultants of a monic linear polynomial f(x) =
x + a obey the length-2 recurrence

rn+1 = −arn − a − 1.

For a monic quadratic f(x) = x2+ax+b we have the length-3 polynomial recurrence

(a + b + 1) [(a − 2)rn+2 + a(a − b − 1)rn+1 + (a − 2b)brn − (a − b − 1)(a + b + 1)]

= −r2
n+2 − (a − 2b)rn+1rn+2 − abrnrn+2 + (a − b − 1)br2

n+1

− (a − 2)b2rnrn+1 − b3r2
n.

We close with the explicit reconstructions of polynomials from their cyclic resul-
tants in the cases d = 2, 3. For quadratic f = x2 + ax + b, two nonzero resultants
suffice to determine a, b:

a =
r2
1 − r2

2r1
, b =

r2
1 − 2r1 + r2

2r1
.

For cubic f = x3 + ax2 + bx + c, four nonzero resultants give inversion:

a =
−12r2r

3
1 − 12r1r

2
2 + 3r3

2 − r2r
4
1 − 8r2r1r3 + 6r2

1r4

24r2r2
1

, b =
−r2

1 − 2r1 + r2

2r1
,

c =
−3r3

2 + r2r
4
1 + 8r2r1r3 − 6r2

1r4

24r2
1r2

.

In addition, a monic quartic polynomial can be explicitly reconstructed using five
resultants; however, the expressions are too cumbersome to list here. We remark
that the pattern of monomial denominators found in the inversions above does not
continue for higher degree reconstructions.
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