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Abstract. Arctic Charr (Salvelinus alpinus L.) exhibit red ornamentation at ab-
domen area during the mating season. The redness is caused by carotenoid 
components and it assumed to be related to the vitality, nutritional status, forag-
ing ability and generally health of the fish. To assess the carotenoid amount,  
the spectral data is preferred but it is not always possible to measure it. There-
fore, an RGB-to-spectra transform is needed. We test here polynomial regres-
sion model with different training sets to find good model especially for Arctic 
charr.  
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1   Introduction 

Arctic charr are an endangered fish species living in Finland [1]. It is also grown in 
fisheries and the individuals are considered valuable assets. The most striking feature 
of charr is its red abdomen area during the mating season. This red ornamentation is 
thought to be related to the ability of fish to acquire carotenoids from food since ani-
mals cannot synthesize carotenoid components (e.g. [2]). It is assumed to indicate the 
nutritional status and foraging ability. 

Since the carotenoid component seems to be important factor for evaluating vital-
ity, we are developing a system using spectral data for analyzing it. The survival of 
valuable fish in the quality evaluation is required but up until now, the spectral imag-
ing is too slow, expensive, difficult and cumbersome to use for an ordinary layman. 
The relation between RGB and spectra has been studied in many papers; see e.g. 
Baronti et al., Bochko et al., Hardeberg, Heikkinen et al. [3-6]. The 2nd and 3rd order 
polynomial was chosen for this work. 

The applying the transformation for the charr is a challenging task for many rea-
sons. First, since the charr is a natural object, its coloration vary even within one 
individual. Then its surface and shape also set limitations. Of course, the camera 
and illumination need to be somehow characterized for the transformation. If the 
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system is to be applied in fisheries and test places in nature, the number of test 
samples are limited.  

In this paper, we describe tests with two polynomial regression models and training 
samples for obtaining the RGB-to-spectral transform dedicated for Arctic charr (see 
also [7]). The training samples consist of Macbeth chart and few pages from Munsell 
book. The spectral imaging is applied all the training and fish samples. The transform 
is calculated for sRGB presentation which is commonly used in many cameras. The 
sRGB is obtained from spectral data thus making the evaluation camera independent 
and the results can be thought to be optimal in this sense. To evaluate the quality of 
the transformation, we employed two commonly used error metrics: Root-Mean-
Square error (RMSE) for spectra and ΔE of CIELab for human vision.  

2   Spectral Reconstruction Methods for Arctic Charr 

The spectral reconstruction for Arctic charr needs several stages as shown in Fig. 1. 
First, training set and polynomial are selected and this data is used for calculating the 
transformation matrix: 

X·W = Y, (1)

where 

 X = RGB values of camera for the selected samples, 
 Y = spectral reflectance corresponding the samples, and 
 W = transformation matrix. 

The transformation matrix is calculated in the least square sense using pseudo-inverse 
method. The obtained transformation matrix is then applied on the test set which con-
sists of spectral images of charr. The quality of the reconstructed image is analyzed in 
two metrics: CIELab error ΔE for human vision,  
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where 

 L,a,b = CIELab values for measured spectra, and 
 Lt,at,bt = CIELab values for measured spectra  

and root-mean-square error RMSE for the spectra 
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where 

 n=number of wavelengths, 
 S=original, measured spectra, and 
 Š=spectra approximation from transform. 
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Fig. 1. Schema for spectral reconstruction 

The best polynomial model is selected based on the error after the calculations. Ta-
ble 1 shows terms of 2nd and 3rd polynomials which both have also a constant term (1st 
order polynomial was excluded due its simplicity). 

Table 1. Terms of polynomials 

Number of terms Terms of polynomials 
10 R G B R2 G2 B2 RG RB GB 1 
20 R G B R2 G2 B2 RG RB GB  

RGB RGG RBB GRR GBB 
BRR BGG R3 G3 B3 1 

3   Reconstruction Results 

Two different training sample set where used in reconstruction. All training and fish 
data was first subjected to spectral measurements. Then the corresponding sRGB pres-
entation was calculated under illuminant ‘D65’ which is the ideal daylight 6500 K light. 

3.1   Reconstruction with Macbeth Chart 

The training set consisted of all 24 samples of Macbeth chart. The 2nd and 3rd order 
polynomials were applied to calculate the transform. Fig.2 shows an example of  
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Fig. 2. The upper image is a sRGB presentation calculated from the original spectral image. 
The lower row display sRGB presentations computed from polynomial approximated spectra: 
left image is obtained using 2nd order transform, while the right image is from 3rd order ap-
proximation. 

results: sRGB presentation for original spectra and spectra approximated from sRGB. 
The 2nd order approximation produces clearly color distortions for human point of 
view but color quality of 3rd order approximation is acceptable. 

The numerical evaluation of data is presented in Table 2.  The 3rd order polynomial 
transform produces smaller ΔE for the fish image than the 2nd order one but RMSE is 
bigger for the 3rd order. This indicates over fitting as shown in Fig. 3. 

 

Fig. 3. The 3rd order polynomial transform over fits the spectra. Note that the original spectral 
data is noisy at the ends of the wavelength range. 
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Table 2. Numerical evaluation for Macbeth chart as a training set 

Error 
metric 

 Average Standard  
deviation 

Maximum Minimum

 Image of Fish 
2nd  9.1862 6.9114 31.1366 0.1041 
3rd 2.8097 2.8057 27.2516 0.003 
 Training set 
2nd 0.7511   0.5437   1.9430   0.1354 

ΔE 

3rd 0.0551  0.0576   0.2244   0.0021 

 Image of Fish 
2nd 1.6078  2.2106   11.3326  0.1819  
3rd 3.186   3.5024   16.2798  0.2319 
 Training set 
2nd 0.0354   0.0250   0.1229   0.0094 

RMSE 

3rd 0.0262  0.0225   0.0916   0.0026 

3.2   Reconstruction with Macbeth Chart and Pages from Munsell Book 

To solve the problem of over fitting, the training samples were complemented with 
few pages from Munsell book. Munsell book is a colour atlas which has a large num-
ber of samples for different hues. The sample pages selected from the book (like YY 
or RR) have hues similar to the hues present in Arctic charr.  Fig. 4 displays the sRGB 
presentations for the new training data. The extended training set clearly improves 
color quality for 2nd order model. 

 

Fig. 4. Upper row: sRGB from measured spectra. Lower row: left image, sRGB from 2nd order 
transform and right image, sRGB from 3rd order transform. The extended training set clearly 
reduces the color distortion in the 2nd order polynomial transform. 
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Table 3 and 4 presents the numerical errors ΔE and RMSE obtained using different 
training set. The results indicate that the extending training set will reduce the average 
error in most of the cases, and that the 3rd order polynomial transform produces 
smaller errors. Tables 5 and 6 display the error calculated for skin patches of Arctic 
charr to test the transform with color variations. The results are the same also for 
these cases. The over fitting problem is also avoided as can be seen in Fig. 5. 

Table 3. CIELab error 

ΔE error 
Polynomial              Fish image Average Standard 

deviation 
Maximum Minimum 

Macb 9.1862 6.9114 31.1366 0.1041 
Mac+XYY 7.7407 6.0777 28.2561 0.1058 
Mac+XYY+XYR 8.3574 6.4532 28.2481 0.0260 

2nd 

Mac+YYRR(404) 8.2703 7.1867 31.8375 0.0360 
Macb 2.8097 2.8057 27.2516 0.003 
Mac+XYY 3.0271 3.5854 26.9802 0.0147 
Mac+XYY+XYR 3.2334 3.1669 27.0605 0.0054 

3rd 

Mac+YYRR(404) 1.8174 2.9300 27.1408 0.0030 
 Training set 

Macb 0.7511 0.5437 1.9430 0.1354 
Mac+XYY 1.3823 1.8873 17.8670 0.0617 
Mac+XYY+XYR 1.0955 1.6314 18.0721 0.0821 

2nd 

Mac+YYRR(404) 0.4700 0.5994 8.3434 0.0139 
Macb 0.0551 0.0576 0.2244 0.0021 
Mac+XYY 0.6849 1.3344 13.2440 0.0233 
Mac+XYY+XYR 0.5458 1.0999 13.9019 0.0116 

3rd 

Mac+YYRR(404) 0.0571 0.1188 2.2247 0.0016 

Table 4. RMSE error for the extended training set 

RMSE 
 Training set Average Standard deviation Maximum Minimum 
Polynomial  

Macb 0.0354 0.0250 0.1229 0.0094 
Mac+XYY 0.0254 0.0168 0.1408 0.0032 
Mac+XYY+XYR 0.0276 0.0193 0.1554 0.0049 

2nd 

 

Mac+YYRR 0.0188 0.0156 0.1620 0.0030 
Macb 0.0262 0.0225 0.0916 0.0026 
Mac+XYY 0.0222 0.0159 0.1007 0.0023 
Mac+XYY+XYR 0.0240 0.0184 0.1456 0.0020 

 
3rd 

Mac+YYR 0.0138 0.0139 0.1637 0.0016 
 Fish Image 
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Table 4. (continued) 

Macb 1.6078 2.2106 11.3326 0.1819 
Mac+XYY 1.5047 2.2076 11.0383 0.2475 
Mac+XYY+XYR 1.4981 2.1945 11.0646 0.2938 

2nd 

 

Mac+YYRR(404) 1.4041 1.9767 9.8274 0.1737 
Macb 3.186 3.5024 16.2798 0.2319 
Mac+XYY 1.5418 2.3626 10.9252 0.1089 
Mac+XYY+XYR 1.4258 2.3840 10.9380 0.1255 

3rd 

Mac+YYRR(404) 1.5349 2.1575 9.8115 0.0940 

Table 5. Numerical evaluation of a sample 

 

 

 
Average 

 
Standard 
deviation 

 
Maximum 

 
Minimum 

Polynomial ΔE 

Macb 0.5867 0.3341 1.7043 0.0928 2nd 

Mac+YYRR 0.2449 0.1011 0.9747 0.0149 
Macb 0.2009 0.0978 0.3766 0.0014 3rd 

Mac+YYRR 0.1534 0.0692 0.3573 0.0067 
 RMSE 

Macb 0.3135 0.1812 0.7583 0.0636 2nd 

Mac+YYRR 0.469 0.3878 1.1527 0.0584 
Macb 0.4224 0.5151 2.8739 0.063 3rd 

Mac+YYRR 0.4886 0.417 1.2334 0.0584 

Table 6. Numerical evaluation of another sample 

 

 

 
 
Average 

 
 
Standard 
deviation 

 
 
Maximum 

 
 
Minimum 

Polynomial ΔE 
Macb 2.2833 2.2596 14.0901 0.0905 2nd 

Mac+YYRR 1.4028 1.2312 9.9955 0.42 
Macb 0.3441 0.3428 4.1933 0.0023 3rd 

Mac+YYRR 0.445 0.2606 2.7709 0.0184 
 RMSE 

Macb 0.3835 0.3063 1.6232 0.0738 2nd 

Mac+YYRR 0.2246 0.1044 0.5408 0.0629 
Macb 0.7983 0.6225 2.1389 0.0518 3rd 

Mac+YYRR 0.296 0.1587 0.6033 0.0528 
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Fig. 5. The extended training set reduces the over fitting problem. Upper row, left image: train-
ing set Macbeth chart + Munsell YY; right image: Macbeth + Munsell YY and YR. The lower 
row, training set Macbeth chart + Munsell YY, YR and RR. 

4   Conclusions 

We have tested two polynomial regression models, 2nd and 3rd order polynomials, for 
sRGB-to-spectra transform with different training sets. The results indicate that a bare 
Macbeth chart will produce poor results both polynomials (color distortion and over 
fitting) when tested with Arctic charr. When adding more training samples from Mun-
sell book corresponding to Arctic charr coloration, the models work better.  

The obtained results clearly show that we can use RGB image to approximate the 
spectra for Arctic charr and thus make it as part of spectral based carotenoid content 
evaluation system. 
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