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Summary

The central aim of this paper is to show how two-point Hermite interpolation can be used to con-
struct polynomial representations of solutions to some initial-boundary-value problems for the
inviscid Proudman–Johnson equation. This classic equation of fluid dynamics can be regarded
as first-order hyperbolic, and an important by-product of our analysis is an understanding of how
Hermite interpolation can be utilized for such equations. Different types of boundary conditions
may result in finite time blow-up and/or large time approach to the steady state depending on
the value of a parameter appearing in the problem.

1. Introduction

In this paper we consider some initial-boundary-value problems for the inviscid Proudman–Johnson
equation

∂3u

∂t∂z2 = u
∂3u

∂z3 − ∂u

∂z

∂2u

∂z2 . (1.1)

This equation has a long and extensive history being related to the two-dimensional Euler equation
through a separability assumption on the stream function. The so-called Proudman–Johnson equa-
tion (1) is the viscous counterpart of (1.1) and has an equally extensive literature associated with it
dating back to Riabouchinsky (2).

We are going to analyse (1.1) on the interval z in [0, 1] for different types of boundary conditions
using two-point interpolating polynomials—sometimes known as Hermite interpolating polynomi-
als. The main aim of the paper is to provide a general semi-analytic technique for constructing
polynomial solutions to the initial-value problem for (1.1) for a variety of boundary conditions.

It is important to observe that, with v = ∂2u/∂z2, (1.1) can be written in the form

∂v

∂t
− u

∂v

∂z
+ v

∂u

∂z
= 0, (1.2)

which can be regarded as first-order hyperbolic in v(z, t) with a single set of characteristics

dz

dt
= −u(z, t). (1.3)
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632 R. E. GRUNDY

Hitherto in two previous papers (3, 4), Hermite interpolation has been applied to initial-boundary-
value problems for parabolic partial differential equations. The primary motivation for the current
work is to extend these ideas to first-order hyperbolic equations with boundary and initial data
of which (1.2) with (1.3) is a particularly important example. The main challenge here, and in
hyperbolic systems in general, is that the boundary and initial data have contiguous domains of
influence in the (z, t)-plane along which certain consistency conditions involving derivatives have
to be satisfied. This is a feature that does not appear in applications to parabolic equations and leads
to new and distinctly different outcomes. As we shall see our method is specifically suited to dealing
with derivatives at spatial boundaries so the application to hyperbolic equations turns out to be
particularly pertinent. The problems we consider in the paper are chosen to illustrate two contrasting
evolutionary behaviours, namely global blow-up in finite time and large time evolution to steady
states. Our method copes well with global blow-up which is a feature that has no counterpart in the
parabolic problems we have studied in previous papers. So this is new and provides a further reason
for the present study. Although we did observe local blow-up in some reaction–diffusion problems
this is a difficult effect to analyse using two-point interpolation.

The outline of the paper is as follows. In section 2 we explain briefly what we mean by Hermite
interpolation. In section 3 we consider two problems which exhibit blow-up in finite time wherein
our results are compared with an exact solution which can be obtained in implicit closed form for
a certain class of initial data. In section 4 we consider a problem in which the characteristics enter
the domain of interest. Here, depending on the value of a parameter appearing in the problem, the
solution might blow-up in finite time or approach a steady state as t → ∞.

We must add a caveat at the outset concerning blow-up in this context since (1.1) arises from
boundary-value problems for the Euler equation on infinite domains and so our analysis offers no
direct contribution to the question of blow-up of the Euler equation on finite domains.

Throughout this paper we make extensive use of MAPLE as a manipulative and computational
tool. In the tables the use of bold digits is intended to give the reader an indication of the convergence
properties of the results. Bold digits represent ‘unconverged’ digits.

2. Two-point Hermite interpolation

We first explain what we mean by Hermite interpolation. Essentially this is a generalization of inter-
polation using Taylor polynomials and for that reason Hermite interpolation is sometimes referred
to as two-point Taylor interpolation. The idea is to interpolate a function f (z) by a polynomial p(z)
in which values of f (z) and any number of its derivatives at given points are fitted by the corres-
ponding function values and derivative of p(z). In this paper we are particularly concerned with
fitting function values and derivatives at the two end points of a finite interval say [0, 1] wherein
a useful and succinct way of writing a Hermite interpolant pn(z) of degree 2n + 1 was given for
example by Phillips (5) as

pn(z) =
n∑

j=0

{ f ( j)(0)q j (z) + (−1) j f ( j)(1)q j (1 − z)}, (2.1)

where

q j (z) = z j

j!
(1 − z)n+1

n− j∑
s=0

(
n + s

s

)
zs, (2.2)
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INITIAL-BOUNDARY-VALUE PROBLEMS 633

so that (2.1) with (2.2) satisfies

f (r)(0) = p(r)
n (0), f (r)(1) = p(r)

n (1), r = 0, 1, 2, . . . , n. (2.3)

The error on [0, 1] is given by

f (x) − pn(x) = (−1)n+1xn+1(1 − x)n+1 f (2n+2)(ξ)

(2n + 2)!
, (2.4)

where 0 < ξ < 1 and f (2n+2) is assumed to be continuous.
As an example of such a Hermite interpolant we may take n = 2 so that (2.1) with (2.3) becomes

the quintic

p2(z) = (1 − z)3(1 + 3z + 6z2) f (0) + z3(10 − 15z + 6z2) f (1)

+ z(1 − z)2(1 + 3z) f ′(0) − z3(1 − z)(4 − 3z) f ′(1)

+ 1
2 z2(1 − z)3 f ′′(0) + 1

2 z3(1 − z)2 f ′′(1), (2.5)

satisfying

p2(0) = f (0), p′
2(0) = f ′(0), p′′

2(0) = f ′′(0),

p2(1) = f (1), p′
2(1) = f ′(1), p′′

2(1) = f ′′(1).
(2.6)

The reader is referred to Davis (6) for further details, references and error analyses.
We observe that (2.1) fits an equal number of derivatives at each end point but, as we shall see

later in the paper, it is possible and indeed sometimes desirable to use polynomials which fit dif-
ferent numbers of derivatives at the end points of an interval. There are algorithms for constructing
such polynomials and a convenient representation for such a construction which fits up to n0 − 1
derivatives at x = 0 and n1 − 1 derivatives at x = 1 is given by Stoer and Bulirsch (7). This can be
written as

pn0−1,n1−1(x) =
n0−1∑
j=0

f ( j)(0)L0 j (x) +
n1−1∑
j=0

f ( j)(1)L1 j (x) (2.7)

where, with

l0 j = x j (1 − x)n1

j!
, 0 � j < n0 and l1 j = (x − 1) j xn0

j!
, 0 � j � n1,

L0,n0−1 = l0,n0−1, L1,n1−1 = l1,n1−1,

and, for k0 = n0 − 2, n0 − 3, . . . , 0

L0k0 = l0k0 −
n0−1∑

ν=k0+1

l(ν)
0k0

(0)L0ν(x),
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634 R. E. GRUNDY

while for k1 = n1 − 2, n1 − 3, . . . , 0

L1k0 = l1k0 −
n1−1∑

ν=k1+1

l(ν)
1k1

(1)L1ν(x).

Both of the representations (2.1) and (2.7) are systematically programmable and we will show later
in the paper how they can be used to advantage in the present context. This has not been employed
in previous applications of the method so it is important to see how this new flexibility can be
exploited.

3. A problem with homogeneous boundary conditions

The first problem we consider is (1.1) together with the boundary and initial conditions

u(0, t) = u(1, t) = 0, (3.1)

u(z, 0) = g(z). (3.2)

We choose this for a number of reasons: many features of the solution are known and it has a
straightforward exact solution when g(z) = Az(1 − z) with which we can compare our results; see,
for example, Childress et al. (8) and Grundy and Kay (9). A further feature which simplifies matters
is that the domain of dependence of the initial data is the whole interval [0, 1] for all t > 0. This is
in contrast to the situation in the third example, where the domains of dependence of the initial and
boundary data both vary with time.

The first step is to construct power series for u(z, t) about z = 0 and z = 1 which implicitly we
assume exist. We have

u(z, t) = A1(t)z + A2(t)z
2 + · · · + Ai (t)z

i + · · · (3.3)

and

u(z, t) = B1(t)(z − 1) + B2(t)(z − 1)2 + · · · + Bi (t)(z − 1)i + · · · , (3.4)

where the Ai (t) and Bi (t) are unknown but satisfy the differential equations

Ȧ2 = −A2 A1, Ȧ3 = − 2
3 A2

2, Ȧ4 = A1 A4 − A2 A3, etc., (3.5)

Ḃ2 = −B1 B2, Ḃ3 = − 2
3 B2

2 , Ḃ4 = B1 B4 − B2 B3, etc. (3.6)

To determine the differential equations for the remaining two unknown functions A1(t) and B1(t)
we recast (1.1) with (3.1) into the following integral forms. Integrating (1.1) on [0, z] and imposing
the relevant boundary conditions at z = 0 gives

∂

∂t

(
∂u

∂z

)
− Ȧ1 − u

∂2u

∂z2 +
(

∂u

∂z

)2

− A2
1 = 0, (3.7)

whence putting z = 1 we have

Ḃ1 − Ȧ1 + B2
1 − A2

1 = 0. (3.8)
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INITIAL-BOUNDARY-VALUE PROBLEMS 635

Going further and repeating this process for (3.7) yields

Ȧ1 + A2
1 − 2

∫ 1

0

(
∂u

∂z

)2

dz = 0. (3.9)

We now replace u(z, t) in (3.9) by a Hermite interpolant pn(z, t) constructed from (3.3) and (3.4);
for example with n = 2 (3.9) gives Ȧ1 directly as

Ȧ1 = 2
15 (A2 A1 − B2 B1) + 4

315 (A2
2 + A2 B2 + B2

2 ) − 19
35 A2

1 − 2
35 A1 B1

+ 16
35 B2

1 + 4
105 (A1 B2 − B1 A2), (3.10)

whence (3.8) gives Ḃ1.
The initial conditions for the Ai (t) and Bi (t) are given by the initial data (3.2) expanded about

z = 0 and z = 1. We therefore have

Ai (0) = g(i)(0)

i!
and Bi (0) = g(i)(1)

i!
. (3.11)

In what follows we compare our results with the exact solution given for example by Childress
et al. (8); see also (9), namely

u(x, t) = A
sinh2(r)

r2

{
z − e−2r(1−z) + (1 − z)e−2r

r(1 − e−2r )

}
, (3.12)

where r(t) is given implicitly by

t (r) = 1

A

∫ r

0

ρ2

sinh2 ρ
dρ, (3.13)

and the initial data by

u(z, 0) ≡ g(z) = Az(1 − z).

The initial data on the Ai and Bi corresponding to this exact solution is, from (3.11),

A1(0) = A, A2(0) = −2A, Ai (0) = 0, i > 2,

B1(0) = −A, B2(0) = −2A, Bi (0) = 0, i > 2.
(3.14)

We are now in a position to solve (3.5), (3.6), (3.10) and (3.8) with (3.14) for any n. Using the
facilities of MAPLE 9.5 for all the algebraic manipulations and numerical integrations we compare
our results with those of the exact solution in Tables 1 and 2. Note that for the purposes of com-
parison with (3.12) and (3.13) it is easier to compute at prescribed values of r—clearly no such
inconvenience applies to our method.
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636 R. E. GRUNDY

Table 1 Convergence of end point derivatives for A = 1 and comparison with exact values

r(t) t A1 B1

0·1 0·099889 0·969915 −1·036760 p2
0·969915 −1·036760 p3
0·969915 −1·036760 p4
0·969915 −1·036760 Exact

0·5 0·486516 0·908068 −1·264260 p2
0·908081 −1·264241 p3
0·908081 −1·264241 p4
0·908081 −1·264241 Exact

1·0 0·900859 0·948374 −1·814235 p2
0·948770 −1·813421 p3
0·948765 −1·813429 p4
0·948765 −1·813430 Exact

2·0 1·403333 1·512503 −5·113524 p2
1·522115 −5·053521 p3
1·521533 −5·055550 p4
1·521554 −5·055504 Exact

3·0 1·582834 3·701994 −20·263230 p2
3·668986 −18·548447 p3
3·660760 −18·644508 p4
3·661538 −18·640199 Exact

4·0 1·631176 16·677699 −139·600341 p2
11·544600 −78·7664233 p3
11·599360 −81·6676972 p4
11·605316 −81·487131 Exact

5·0 1·642165 – – p2
39·979193 −329·750548 p3
44·278208 −402·245687 p4
44·028933 −396·460384 Exact

Our results confirm that the solution blows-up for A = 1—a result which in fact holds for
any A. The trivial zero steady state is unstable and it can be confirmed that the solution may blow-
up positively or negatively depending on the initial data. The convergence with n and agreement
with the exact solution is clearly apparent although this agreement deteriorates as the blow-up time
is approached due to the effect of the large higher derivatives on the error. Nevertheless it appears
that the blow-up times are reliably estimated using the overflow criterion in the ordinary differential
equation solver.
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INITIAL-BOUNDARY-VALUE PROBLEMS 637

Table 2 Convergence of blow-up time estimates for A = 1 which are computed using overflow
criterion on the MAPLE ordinary differential equation solver

T

p2 1·6391
p3 1·6457
p4 1·6449
Exact 1·6449

Table 3 Convergence of blow-up times for the inhomogeneous problem with n for (3.15) and initial
data (a)g(z) = −z2 with positive blow-up and (b) g(z) = 1

2 z2 − 3
2 z with negative blow-up. This

suggests convergence for p4 to four decimal places

(a) (b)

T T

p2 1·4902 1·3757
p3 1·5067 1·3765
p4 1·5062 1·3765

3.1 A related inhomogeneous problem

It is appropriate at this stage to mention a second problem, closely related to the above, which is the
inviscid counterpart to a problem which has received considerable attention in recent years; see, for
example, (10, 11). This can be written as (1.1) subject to (3.2) and the boundary values

u(0, t) = 0, u(1, t) = −1. (3.15)

The point here is that characteristics from the z = 1 boundary do not enter the domain [0, 1] and
so the two conditions (3.15) are sufficient to determine the solution. We can now follow a similar
procedure to reveal an analogous structure. The trivial steady state solution, u = −z, is unstable
and the solution may blow-up positively or negatively depending on the initial data. The blow-up
times, which are dependent on the initial data, can be accurately computed as before and examples
are given in Table 3 for the indicated initial data.

4. Inhomogeneous boundary conditions—vorticity input at a boundary

4.1 The formulation

Encouraged by the outcome of the analysis of section 3 it is tempting to become a little more
ambitious and consider a second problem for (1.1) which is much more involved but provides us
with a possible general procedure for solving hyperbolic problems. We now consider (1.1) together
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638 R. E. GRUNDY

with the boundary conditions

u(0, t) = 0, u(1, t) = 1,
∂2u

∂z2 (1, t) = −α. (4.1)

The viscous counterpart of this problem was first considered by Grundy and McLaughlin (12) whose
conclusions were reaffirmed by Okamoto and Zhu (13). The problem is an interesting one which
has its origins in incompressible magnetohydrodynamics, specifically in magnetic field annihilation
in a current sheet formed by two regions of oppositely directed magnetic field lines. The condition
on the second derivative in (4.1) is an attempt to model the effect of various vorticity levels on this
process. We refer the reader to (14) for further details.

The mathematical difficulty here is that since all characteristics emanating from the boundary at
z = 1 enter [0, 1] for all t > 0 we need the extra boundary condition in (4.1). This observation
implies that the domain of dependence of the initial data is separated from the domain of depen-
dence of the boundary conditions by the characteristic emanating from z = 1 at t = 0 along which
the solution may lack regularity; we therefore have to deal with two regions instead of one. Since,
however, our method naturally involves end point derivatives in intervals it is possible for us to
impose any regularity conditions we wish along the bounding characteristic. In the situation here
we impose continuity of u, ∂u/∂z and ∂2u/∂z2 along this bounding characteristic. We may of course
impose less or more restrictive continuity conditions as is our wish but these are the most physically
relevant and are the ones we impose here.

Fig. 1 Plot of p4(z, t) as an approximation to u(z, t) to within 0·01 of the blow-up time with A = 1. The times
are t = 0·5, t = 1·0, t = 1·4, t = 1·58, t = 1·62, t = 1·635
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INITIAL-BOUNDARY-VALUE PROBLEMS 639

Fig. 2 The bounding characteristic z = r(t) for α = 3

Thus the hyperbolic nature of the problem means that we have to deal with two regions defined by
A: 0 � z < r(t) and B: r(t) < z � 1, where z = r(t) is the unknown equation of the characteristic
through z = 1, t = 0. A plot of r(t) is shown for a representative value of α in Fig. 2.

We now consider the problem as one involving the two regions separated by an unknown moving
boundary z = r(t), along which certain regularity conditions have to be imposed.

Region A: 0 � z < r(t)
To recast the problem as one with a fixed boundary we define a new independent variable

Z = z/r(t), (4.2)

so that 0 � Z � 1 in A. With this change of variable (1.1) becomes

r
∂v

∂t
− {ṙ Z + u} ∂v

∂ Z
+ v

∂u

∂ Z
= 0, (4.3)

where

v = ∂2u

∂z2 = 1

r2

∂2u

∂ Z2 . (4.4)

We now construct power series for u(z, t) about Z = 0 and Z = 1 of the form

u = A1(t)Z + A2(t)Z2 + · · · + Ai (t)Zi + · · · (4.5)
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640 R. E. GRUNDY

and

u = B0(t) + B1(t)(Z − 1) + B2(t)(Z − 1)2 + B3(t)(Z − 1)3 + · · · + Bi (t)(Z − 1)i + · · · , (4.6)

where

r Ȧ2 = A2(2ṙ − A1), r Ȧ3 = 1
3 (9ṙ A3 − 2A2

2), r Ȧ4 = A4(4ṙ + A1) − A2 A3, etc. (4.7)

In (4.6) B0(t), B1(t) and B2(t) are unknown functions but since Z = 1 is a characteristic

r Ḃ3 = 1
3 (9ṙ B3 − 2B2

2 ), r Ḃ4 = B4(B1 − 4B0) − B2 B3, etc. (4.8)

Writing (1.1) in characteristic form we have in addition the characteristic equations

ṙ = −B0 (4.9)

and

r Ḃ2 = −B2(2B0 + B1). (4.10)

Region B: r(t) < z � 1
By the same token we make the change of variable

Y = z − r

1 − r
, (4.11)

so that 0 � Y � 1 in B. Equation (1.1) now becomes

(1 − r)
∂v

∂t
− {ṙ(1 − Y ) + u} ∂v

∂Y
+ v

∂u

∂Y
= 0, (4.12)

where

v = ∂2u

∂z2 = 1

(1 − r)2

∂2u

∂Y 2 .

We now construct the series about Y = 0 and Y = 1 in the form

u = B0(t) + C1(t)Y + C2(t)Y
2 + C3(t)Y

3 + C4(t)Y
4 + · · · , (4.13)

u = 1 + D1(t)(Y − 1) − 1
2α(1 − r)2(Y − 1)2 + D3(t)(Y − 1)3 + D4(t)(Y − 1)4 + · · · , (4.14)

where continuity of the first two z-derivatives of u across the characteristic gives

C1 = (1 − r)B1/r and C2 = (1 − r)2 B2/r2. (4.15)

In (4.13) and (4.14) we have that

Ċ3 = −{9r4ṙC3 + 2(1 − r)4 B2
2 }

3r4(1 − r)
, (4.16)

Ċ4 = −{(4rṙ − B1(1 − r))rC4 + (1 − r)2 B2C3}
r2(1 − r)

, (4.17)

D3 = − (1 − r)2αD1

6
(4.18)
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INITIAL-BOUNDARY-VALUE PROBLEMS 641

and

D4 = a(1 − r)2

24
{α(1 − r)2 − (1 − r)Ḋ1 − ṙ D1}. (4.19)

We now recast the problem into various integral forms. First in region A we integrate (4.3) with
(4.4) over [0, Z ] to give

r
∂

∂t

(
∂u

∂ Z

)
− r Ȧ1 − ṙ Z

∂2u

∂ Z2 − ṙ
∂u

∂ Z
+ ṙ A1 − u

∂2u

∂ Z2 +
(

∂u

∂ Z

)2

− A2
1 = 0, (4.20)

and putting Z = 1 yields

r(Ḃ1 − Ȧ1) + ṙ(A1 − 2B2 − B1) + B2
1 − A2

1 − 2B0 B2 = 0. (4.21)

Repeating this procedure on (4.20) gives

r(Ḃ0 − Ȧ1) + ṙ(A1 − B1) + 2
∫ 1

0

(
∂u

∂ Z

)2

d Z − A2
1 − B0 B1 = 0. (4.22)

A final repetition of this prescription gives

r

{
2
∫ 1

0

∂u

∂t
d Z − Ȧ1

}
+ ṙ

(
A1 − 2B0 + 2

∫ 1

0
ud Z

)

+ 4
∫ 1

0
(1 − Z)

(
∂u

∂ Z

)2

d Z − A2
1 − B2

0 = 0. (4.23)

We now repeat this procedure on (4.12) in region B to give the three equations

(1 − r)Ḋ1 + D2
1 − B0 D1 + α(1 − r)2 + L1(t) = 0, (4.24)

2
∫ 1

0

(
∂u

∂Y

)2

dY − D1 + L1(t) + L2(t) = 0 (4.25)

and

2(1 − r)

∫ 1

0

∂u

∂t
dY + 2ṙ

(
B0 −

∫ 1

0
udY

)
− 1 + B2

0

+ 4
∫ 1

0
(1 − Y )

(
∂u

∂Y

)2

dY + L1 + 2L2 = 0, (4.26)

where L1(t) = − (1 − r)2

r2 (r Ḃ1 + B1 B0 + B2
1 ) and L̇2 = −(1 − r)Ḃ0.

The idea now is to construct different two-point polynomials pn(z, t) and Pn(z, t) in regions A
and B respectively which fit the various series that we have constructed. We then replace u(z, t)
in the various integral formulations by the appropriate polynomial. In this way we can construct
systems of ordinary differential equations for the unknown coefficients which appear in the series—
the details of these computations are given in the next section. Such systems have to be solved
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642 R. E. GRUNDY

subject to initial data for the coefficients. The construction of this is somewhat involved and to
avoid excessive congestion in the main body of the paper we relegate the details to the Appendix.

4.2 The solution using seventh-degree polynomials

We construct a solution in region A using the seventh-degree polynomial p3 in which B0(t), B1(t),
B2(t), B3(t), A1(t), A2(t) and A3(t) are unknown functions. In region B we again use a seventh-
degree polynomial P3 which incorporates the additional functions D1(t) and C3(t). Together with
the unknown function r(t) we thus have ten unknown functions which we determine from the closed
system of ordinary differential equations provided by (4.7)1,2, (4.8)1, (4.9), (4.10), (4.21), (4.22),
with u(z, t) replaced by p3(z, t) together with (4.24) and (4.25), (4.26) with u( y, t) replaced by
P3( y, t). We take non-negative initial data for u(z, t), satisfying the boundary conditions, by taking
the simple choice

g(z) =
(

1 + α

2

)
z − α

2
z2,

so from (A.5), (A.7) and (A.14) we have

A1(0) = 1 − 1
2α, A2(0) = −α, A3(0) = 0,

B0(0) = 1, B1(0) = 1 − 1
2α, B2(0) = − 1

2α, B3(0) = 0

and

D1(t) = (1 − 1
2α)t + O(t2), C3(t) ∼ − 1

6α(1 − 1
2α)t3 + O(t4),

r(0) ∼ 1 − t + O(t2)

(4.27)

as t → 0. The choice of the above initial data does place an artificial restriction on α for g(z) to re-
main non-negative. However, computations done with more general non-negative initial data which
does not impose a restriction on α suggests that the appropriate steady state is attained irrespective
of the initial data.

The results of the numerical integrations are shown in Tables 4 and 5 and Figs 3 to 5. The values
of the series coefficients obtained as a result of the above computations are given in Table 4. We
will return to these later.

The integrations have to be initiated at some non-zero value of t = ε due to the singular behaviour
of the system of ordinary differential equations at t = 0: we took ε = 0·001 in what follows. With
values of α up to α = 9 it is clear that in Region B the solution approaches a steady state as t → ∞;
the situation being typified in Fig. 3. Also since r → 0 as t → ∞, Region B eventually occupies
the whole region 0 < z � 1.

This steady state solution u = us(z) has been written down many times and can be easily obtained
in closed form by integrating (1.1) with u(z, t) = us(z) and applying the boundary conditions (4.1)
to obtain

us(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin
(
z
√

α
)
/sin
(√

α
)
, α > 0,

sinh
(
z
√−α

)
/sinh
(√−α

)
, α < 0,

z, α = 0.

(4.28)
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Table 4 Values of the series coefficients as the solution approaches the steady state in region B for
α = 3 and α = 9 using p3 and P3. We quote three significant figures throughout

α = 3 α = 9

A1(5·0) 0·000352 5·58 × 10−34

A2(5·0) −7·24 × 10−12 −2·94 × 10−104

A3(5·0) −2·78 × 10−12 −2·24 × 10−104

B0(5·0) 0·000352 5·58 × 10−34

B1(5·0) 0·000352 5·58 × 10−34

B2(5·0) −2·29 × 10−11 −2·88 × 10−103

B3(5·0) −8·90 × 10−12 −8·27 × 10−50

C3(5·0) −0·876 −32·2
D1(5·0) −0·282 −21·4
r(5·0) 0·000201 2·58 × 10−35

Table 5 Steady state parameters for evolution in Region B together with the exponential decay
parameter obtained from the analysis

α P3 P43 P4 Exact

1 S3 = (∂u/∂z)z=1 0·642093 0·642093 0·642093 0·642093
S0 = δ = (∂u/∂z)z=0 1·188395 1·188395 1·188395 1·188395
B0(10)/r(10) 1·188395 1·188395 – –

3 S3 = (∂u/∂z)z=1 −·281750 −·281748 −·281747 −·281747
S0 = δ = (∂u/∂z)z=0 1·754817 1·754817 1·754817 1·754817
B0(10)/r(10) 1·754817 1·754817 – –

5 S3 = (∂u/∂z)z=1 −1·754545 −1·754403 −1·754391 −1·754389
S0 = δ = (∂u/∂z)z=0 2·842258 2·842170 2·842163 2·842161
B0(10)/r(10) 2·842285 2·842162 – –

7 S3 = (∂u/∂z)z=1 −4·897131 −4·891630 −4·891351 −4·891252
S0 = δ = (∂u/∂z)z=0 5·566138 5·561299 5·561054 5·560967
B0(10)/r(10) 5·566138 5·561008 – –

9 S3 = (∂u/∂z)z=1 −21·8066 −21·0692 −21·0584 −21·0458
S0 = δ = (∂u/∂z)z=0 22·0120 21·2817 21·2710 21·2585
B0(10)/r(10) 22·003834 21·252241 – –
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644 R. E. GRUNDY

Fig. 3 The approach to the steady state for α = 3 with p3 and P3. The five values of t are, going from the
upper to the lower curves respectively, 0·01, 0·1, 0·5, 1·0. The ordinate represents p3(z), 0 � z < r(t) and
P3(z), r(t) < z � 1 as an approximation to u(z, t). The profiles for t � 1·0 are graphically indistinguishable

For larger values of α something different happens—namely blow-up in finite time. This is re-
vealed in Figs 4 and 5 which suggests that there exists a threshold value α = α∗ such that for
α < α∗ the solution approaches a steady state as t → ∞ while for α > α∗ the solution blows-up in
finite time. We now show how we can compute such an α∗.

4.3 The computation of α∗
Motivated by the results presented in Table 4 we make the following scalings as the steady state is
approached:

B0(t) ∼ r(t)S0, B1(t) ∼ r(t)S0, A1(t) ∼ r(t)S0, (4.29)

D1(t) ∼ S3 and C3(t) ∼ S4, (4.30)

where the Si are constants. The remaining variables are orders of magnitude smaller. We can now
compute the derivatives of (4.29) to give

Ḃ0 ∼ ṙ S0 = −S2
0r(t) (4.31)
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Fig. 4 Evolution towards blow-up for α = 15 and ε = 0·001 using p3 and P3. The values of t are
0·1, 0·2, 0·3, 0·4, 0·45 and the ordinate represents p3(z), 0 � z < r(t) and P3(z), r(t) < z � 1 as an
approximation to u(z, t)

using (4.9). Similarly

Ḃ1 ∼ −S2
0r(t), Ȧ1 ∼ −S2

0r(t). (4.32)

We also note that (4.9) implies that

r(t) ∼ e−S0t

as t → ∞. If we now substitute (4.29), (4.30), (4.31) and (4.32) into our equations and take the
limit t → ∞ with Ḋ1 = Ċ3 = o(1), we obtain three equations for the three unknowns S0, S3 and
S4; the remaining equations are automatically satisfied in the limit.

Putting

S3 = 1
2 (R1 + R2) and S0 = 1

2 (R2 − R1),

we can eliminate R1 via

R1 = − a

R2
(4.33)

to give two equations for R2 and S4. Finally elimination of S4 gives an equation of degree eight for
R2. We can compute an α∗ by finding the value of α for which the relevant root of the degree eight
polynomial is zero. For p3 this gives α∗ = 9·7781. We shall come back to this calculation later.
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646 R. E. GRUNDY

Fig. 5 Blow-up profile for α = 15 using p3 and P3. The ordinate represents p3(z), 0 � z < r(t) and
P3(z), r(t) < z � 1 as an approximation to u(z, t)

4.4 Computations with higher-degree polynomials

We can follow a similar procedure to that followed in the previous section using polynomials
p4 and P4 of degree nine. It turns out that we can extract a closed set of equations for the relevant
unknown functions which we could integrate with the appropriate initial data to obtain a solution.
Unfortunately the equation for D1 now becomes second-order since D4 involves Ḋ1 and the sin-
gular nature of the system near t = 0 is intensified, which hampers the initiation of the integration
for t > 0. However, we can still use this system to estimate α∗ since this only involves the steady
state solution. To avoid the difficulty in initiating the integration at t = 0 for the time dependent
system we may construct a polynomial P43 of degree eight in region B which fits four derivatives
at Y = 0 but only three at Y = 1; we simply use the algorithm (2.6) with n0 = 5 and n1 = 4 to
do this. In Region A we can still use the polynomial p4 of degree nine without difficulty since this
does not involve D1. The initial data for all the variables can be obtained by extending the analysis
of Appendix A.

We first compute the steady state parameters obtained from the analysis at the end of section 4.2.
These are presented in Table 5 along with the estimate of the exponential decay parameter obtained
from the actual computations using P3 and P43. We can see that the agreement is excellent and since
from (4.9) with r(t) ∼ r0e−δt

δ = − lim
t→∞

{
ṙ

r

}
= lim

t→∞

{
B0(t)

r(t)

}
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Table 6 The dependence of the blow-up times on ε. As in previous examples the blow-up time Tε

is determined by overflow on the ordinary differential equation solver in MAPLE 9·5

α T0·001 T0·0001 T0·00001

2·9250 2·9227 2·9224 p3 − P3
10 3·0204 3·0209 3·0209 p4 − P43

1·4186 1·4159 1·4156 p3 − P3
11 1·4326 1·4333 1·4334 p4 − P43

0·5149 0·5112 0·5109 p3 − P3
15 0·5184 0·5196 0·5197 p4 − P43

we confirm that the approach to the steady state in Region B is exponential with δ = S0. All these
values are compared with their exact equivalents, computed from (4.28) and displayed in the last
column in Table 5.

We can also refine our estimate of the threshold value α∗. We recall that the estimate for P3 was
α∗ = 9·7781; we find that for P43, α∗ = 9·8682 and for P4 , α∗ = 9·8689. This suggests that α∗ is
converging to the value π2 = 9·8696 which coincides with the value of α for which the steady state
solution (4.28) itself is singular.

As we have observed in section 4.2 the solution blows-up for α > α∗ in Region B using p3
and P3. We can reproduce this using higher-degree polynomials and results for blow-up times are
shown in Table 6 for sample values of α. We also show the effect of different values of ε → 0 on
the blow-up time.

5. Discussion

In this paper we have shown how we can systematically construct polynomial solutions to initial-
boundary-value problems for the inviscid Proudman–Johnson equation. Rather than consider the
equation itself we recast the problems into various integral forms which include the boundary con-
ditions, prior to replacement by a two point Hermite interpolant. Since the technique fits derivatives
it is particularly adept at dealing with discontinuities of derivatives of any order, in this case along
characteristics. This is illustrated particularly well by the example of section 4 which evinces the
possibilities for hyperbolic equations in general. We are aware of no other comparable technique
which deals with discontinuities in derivatives with such precision—in this way it could be regarded
as a preferred method of its kind for hyperbolic problems. Although we have not produced a formal
error analysis for the nonlinear problems encountered in the paper we have addressed this ques-
tion of accuracy using the convergence properties of Hermite interpolating polynomials on finite
intervals as the degree is increased. For the inviscid Proudman–Johnson equation considered in this
paper the results appear to be satisfactory in this respect. The method appears to be able to provide
accurate estimates of blow-up times, although it is not clear whether it can reproduce the detailed
structure of the blow-up process. We have shown how in certain circumstances it may be convenient
to fit different orders of derivative at each end of an interval. Systematically programmable algo-
rithms are available in such situations and as we have seen can be used to good advantage. It is
important to reiterate that we have used the symbolic computational package MAPLE to perform all
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648 R. E. GRUNDY

the algebraic manipulation and also as an ODE solver. This is an indispensable tool and it would
be difficult to make progress without such a facility—on a desktop machine or laptop the timings
make interactive programming a straightforward matter.
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APPENDIX

The initial data for the inhomogeneous problem of section 4

We consider (1.1) with the boundary conditions (3.3), namely

u(0, t) = 0, u(1, t) = 1,
∂2u

∂z2
(1, t) = −α (A.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/59/4/631/1942990 by guest on 16 August 2022



INITIAL-BOUNDARY-VALUE PROBLEMS 649

and the initial data

u(z, 0) = g(z), (A.2)

where g(z) satisfies the initial data compatibility condition

g(1) = 1, g′′(1) = −α. (A.3)

First it is clear that

r(0) = 1. (A.4)

Now expanding g(z) about z = 0 and comparing with (4.5) at t = 0 with Z replaced by z/r(0) with r(0) = 1
we have ∑

n
An(0)zn =

∑
n

g(n)(0)zn/n!, g(0) = 0

thus

An(0) = g(n)(0)/n!, n = 1, 2, 3 . . . , (A.5)

gives the initial conditions for the An(t).
We now outline below what happens initially at z = 1. We first consider region A where we expand

u(z, t) = a0 + t f1(η) + t2 f2(η) + t3 f3(η) + · · · (A.6)

as t → 0, η fixed, where η = (z − 1)/t . Substituting this into equation (1.1) gives

f1(η) = a1η + b1, f2(η) = a2η2 + b2η + c2,

f3(η) = −a1a2 + a3(a0 + η)3 + b3η + c3, etc.

Now (A.6) has to agree in the limit t → 0 with the initial data expanded about z = 1, namely

u(z, 0) ≡ g(z) =
∑

n
g(n)(1)(z − 1)n/n!

so that a0 = g(1), a1 = g′(1), a2 = g′′(1)/2 = −α/2, a3 = g′′′(1)/6, etc. and comparison with (4.6) gives

B0(0) = g(1), B1(0) = g′(1), B2(0) = −α/2, B3(0) = g′′′(1)/6, etc. (A.7)

which gives the initial conditions for the Bn(t).
We now turn to Region B where as a consequence of the possible non-analyticity across z = r(t) we need

a different small time expansion corresponding to (A.6), namely

u(z, t) = k0 + t F1(η) + t2 F2(η) + t3 F3(η) + · · · , (A.8)

where

F1(η) = k1η + l1, F2(η) = k2η2 + l2η + m2,

F3(η) = −k1k2η2 + k3(k0 + η)3 + l3η + m3, etc.

This expansion has to agree with (4.13), including (4.15), and (4.14). Writing (4.14) in terms of z gives

u(z, t) = 1 + D1(t)
(z − 1)

(1 − r)
− α

2
(z − 1)2 − αD1(t)

(z − 1)3

6(1 − r)
+ · · · . (A.9)
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Furthermore if we write (A.8) in terms of z and t we have

u(z, t) = k0 + l1t + m2t2 + (m3 + k3k3
0)t3 + · · · + (z − 1){k1 + l2t + (l3 + 3k3k2

0) + · · · }

+ (z − 1)2{k2 + (3k0k3 − k1k2)t + · · · } + (z − 1)3{k3 + · · ·} + · · · . (A.10)

Now (A.10) has to agree with (A.9) for all t so we must require

k0 = 1, l1 = m2 = 0, m3 + k3k3
0 = 0 (A.11)

and

k2 = −α

2
, 3k0k3 − k1k2 = 0. (A.12)

Further we observe from (4.9) with B0(0) = 1 that

r(t) = 1 − t + O(t2)

as t → 0; then the right-hand side of (A.9) can be written as

1 + D1(t)

t
(z − 1) − α

2
(z − 1)2 − αD1(t)

6t
(z − 1)3 + · · ·

so comparing with (A.10) in the same limit

D1(t) ∼ k1t (A.13)

as t → 0.
Finally we have to impose the required continuity conditions across the characteristic. To do this we put

z − 1 = −t + y in (A.10) and take the limit t → 0 to obtain

u(y, t) ∼ k0 + k1y + k2y2 + k3y3 + · · · .

Following the same procedure in (4.13) with (4.15) gives

u(y, t) = lim
t→0

{
B0(t) + yB1(t) + y2 B2(t) + C3(t)y3

(1 − r)3
+ · · ·

}

so equating these expressions gives

k0 = 1, k1 = B1(0) = g′(1), k2 = B2(0) = −α

2

and C3(t) ∼ k3t3 as t → 0. Thus combining with (A.11), (A.12) and (A.13) finally yields

D1(t) ∼ g′(1)t and C3(t) ∼ −αg′(1)

6
t3 (A.14)

as t → 0. This completes the initial data for the coefficients up to C3(t) and D3(t). We can of course continue
this process to obtain higher-order coefficients in each of the expansions as desired.
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