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POLYNOMIAL SIZE PROOFS O F  THE 
PROPOSITIONAL PIGEONHOLE PRINCIPLE 

SAMUEL R. BUSS 

Abstract. Cook and Reckhow defined a propositional formulation of the pigeonhole 
principle. This paper shows that there are Frege proofs of this propositional pigeonhole 
principle of polynomial size. This together with a result of Haken gives another proof of 
Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also 
discuss connections to provability in theories of bounded arithmetic. 

$1. Introduction. The motivation for this paper comes primarily from two 
sources. First, Cook and Reckhow [2] and Statman [7] discussed connections 
between lengths of proofs in propositional logic and open questions in com- 
putational complexity such as whether N P  = co-NP. Cook and Reckhow used the 
propositional pigeonhole principle as an example of a family of true formulae which 
had polynomial size proofs in an extended Frege system and for which the only 
known proofs in Frege systems (i.e. the usual Hilbert style propositional logic) were 
exponential size. The main result of this paper is that the propositional pigeonhole 
principle also has polynomial size Frege proofs, contrary to expectations. On the 
other hand, Haken [4] has shown that any resolution proof of the propositional 
pigeonhole principle must be of exponential size. It follows that a Frege proof 
system has an exponential speedup over resolution (this was originally proved by 
Urquhart [ l l ]  with a different set of formulae). 

The second motivation is from research in theories of bounded arithmetic. Alan 
Woods [lo] showed that Id ,  could prove the existence of an infinite number of 
primes if it were the case that I d ,  could prove the pigeonhole principle for functions 
definable by a bounded formula. Alex Wilkie [9] discovered that a weak form of the 
pigeonhole principle is provable in I d ,  + 0, and that this implies that I d ,  + 0, can 
prove the existence of an infinite number of primes; however, it is still open whether 
I d ,  + a, proves the usual version of the pigeonhole principle for functions defined 
by bounded formulae. This question is related to the size of Frege proofs of the 
propositional pigeonhole principle by a result of Paris and Wilkie [5]; namely, if 
Id, proves a relativized version of the pigeonhole principle then there are constant 
formula-depth, polynomial size Frege proofs of the propositional pigeonhole 
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principle. We show below that under some additional assumptions, the converse of 
Paris and Wilkie's theorem holds too. 

The first and main part of this paper proves the existence of short Frege proofs of 
the propositional pigeonhole principle. This proof is self-contained and elementary. 
The second part discussed connections with bounded arithmetic and presupposes 
knowledge of earlier research. 

$2. Propositional proof systems. We begin by reviewing some definitions and 
constructions of Cook and Reckhow [ 2 ] .  A propositional formula is constructed 
from propositional variables p, q, r, . . . , which are interpreted as ranging over the 
truth values "True" and "False", and from propositional unary and binary 
connective such as 7 (not), A (and), v (or) and + (implication). A Frege system 
is a Hilbert-style propositional proof system for reasoning with propositional 
formulae. For the sake of definiteness, we shall let the Frege system F have 
propositional connectives 1, A ,  v, and +, and the following 13 axioms: 

and as its only rule, modus ponens; namely, from cp and cp + rC/ infer $. In the axioms 
and the rule, any propositional formulae may be substituted for cp, I) and x. We 
follow the usual conventions concerning parentheses and the precedence of 
operations; namely, 1 has highest precedence, + has the lowest and associates from 
right to left, so cp + I) + x means cp + ($ + 1). A Frege proof, or for short an 8- 
proof, is a sequence A,, . . . , A, of propositional formulae such that each Ai either is 
an axiom or follows by modus ponens from some Aj and A, with j, k < i. The last 
formula A, is the conclusion of the proof. 

There are two common notions of the length of a proof. The first is the number of 
formulae appearing in the proof, which is often called the number of lines or number 
of inferences of the proof. The second and, in our opinion, more relevant notion is 
the total number of symbols appearing in the proof. To count the total number of 
symbols, we shall assume that the propositional variables pi are written as a "p" 
followed by digits in base 10 (say). So p108 denotes p,,, . Thus proofs are written as a 
string in a finite alphabet containing, p, 0 , .  . . , 9 ,  A ,  v, 1, +, (, ) and comma; the 
size of a proof is defined to be the total number of symbols in the proof. It is an 
important property of Frege systems that the sizes of proofs in two different Frege 
systems are polynomially related: if Fl and F2 are Frege systems then there exists a 
polynomial q such that if A is a formula in the language of PI and P2 and A has an 
F1-proof of size n then A has an P2-proof of size less than q(n). Or, in Cook and 
Reckhow's terminology, any two Frege systems can p-simulate each other. 
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The size of a formula is defined to be the total number of symbols appearing in the 
formula. 

An extended Frege proof system is a Frege system enhanced to allow the 
introduction of abbreviations. Any two extended Frege systems can p-simulate each 
other, so our work applies to any extended Frege system. For the sake of 
definiteness, we define the extended Frege system e F  to have the language, axioms 
and rules of F plus a new rule called the extension rule. (The extension rule was 
originally defined by Tseitin [8].) A sequence of formulae A,, . . . , A, is an e8-proof 
iff each Ai is an axiom or is deduced by modus ponens or by the extension rule. Ai is 
deduced by the extension rule iff Ai is of the form (pi + B) A (B +pi)  where the 
propositional variable pi does not appear in A,, . . . , Ai- , , A, or B. The size of an 
extended Frege system is again defined to be the number of symbols in the proof; 
however, in this case, there is a polynomial p such that, for any eF-proof containing 
n formulae, there is an eF-proof with the same conclusion and with size less than 
p(n). Thus for our purposes, the distinction between the size of an eF-proof and the 
number of formulae in it are unimportant (Statman [7]). 

An important open problem is whether F p-simulates eF ,  i.e., whether there is a 
polynomial q such that for any e9-proof of size n, there is an 8-proof of size less 
than q(n) with the same conclusion. The natural conjecture is that any function q 
with this property must have growth rate similar to the exponential function. 

$3. The propositional pigeonhole principle. For each natural number n > 1, we let 
PHP, be a propositional formula expressing the principle that "if n + 1 pigeons sit 
in n holes then some hole contains more than one pigeon". More formally, let [n] be 
the set {0,1,. . . , n - 1); then if f :  [n + I] + [n] then there are 0 I i < j I n such 
that f ( i )  = J ' ( j ) .  To express this propositionally, we let pi+j be propositional 
variables signifying f (i) = j and define PHP, to be the formula 

The symbols A and W are shorthand notation for writing out a long string of 
conjunctions or disjunctions respectively. It is easy to see the left-hand side expresses 
the fact that f is total (perhaps multivalued) and the right-hand side that f is not 
one-to-one. Note that the size of PHP, is proportional to n3. 

In [2], Cook and Reckhow showed that PHP, has polynomial sized eF-proofs; 
since it is an instructive example, we review it here. The idea of the proof is to define 
f, = f and f ,  from f , + ,  so that 

f. (x) i f f i+ , (x )# i ,  
h(x) = {i: :(i + I) otherwise. 

Then it is easy to see by induction on i varying from n to 1 that i f f :  [n + 11 + [n] is 
one-to-one, then f,: [i + 11 + [i] is one-to-one. In other words, we see that 
i PHP,, , - t i  PHP,; hence i PHP, + i PHP,. But PHP,  is obviously true; 
hence PHP, is valid. 

To formalize this proof in the extended Frege system e 9 ,  we use new 
propositional variables qF,j which represent the assertion that f,(i) = j. To do this, 
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we use the extension rule to define 

97,j * P i , j ,  O < i I n , O <  j < n ,  
k k + l  

q ,  q  v q  A q  0  I i I k,  0  I j  < k,  1 I k < n. 

Let A ,  be the propositional formula 

Then it is clear that there are e9-proofs of i PHP, + i A,  and 7 A,+, + i A,  for 
all 1 k < n and such that each proof has size O(n6) .  This size estimate is obtained 
by seeing that there is an e9-proof of i A,+ , + i A,  with O ( n 3 )  lines and each 
formula in this proof has size O(n3) .  Since A,  is just q;,, A q: , ,  + q;,, A q: , ,  there 
is an e9-proof of A,. Hence by using modus ponens n times the e9-proofs of 
i PHP, + i A,  and 7 A,+, + i A,  combine to give an eB-proof of PHP, of size 
O(n7) .  

There is a simple way to convert this eB-proof of PHP, into an 9-proof; namely, 
replace each propositional variable introduced by the extension rule by the formula 
it abbreviates. Let Q t j  be inductively defined by 

Q? . = p .  . 
1 . ~  I . J  and Q!, j=Q!, f '  v (Q!,:' A Q : I : , j ) ,  

and replace each occurrence of q!,j in the e9-proof by Q!,j. The result is easily 
converted into an 9-proof  of PHP, with about the same number of lines as the e 9 -  
proof. However, the size of the formulae Q;,,  and Q: , ,  is about 3"; hence the size of 
the 9-proof is O ( n 4 .  3"). 

This example was used by Cook and Reckhow to illustrate how extended Frege 
systems are apparently more efficient than Frege systems in terms of proof size. 
However this is no longer a good example, since we show below that the 
propositional pigeonhole principle does indeed have polynomial size Frege proofs. 
It would be desirable to show that 9 is exponentially less efficient than e 9 ;  our 
work merely shows that the propositional pigeonhole principle does not separate 9 
from e 9  in this way. 

$4. The polynomial size proof. The strategy for proving the existence of a short 9- 
proof of PHP, will be to show that for some constants r, s E N there is an e9-proof 
of PHP, of size O(nr)  such that the propositional variables introduced by the 
extension rule abbreviate formulae of size O(n7). The first task is to show that there 
are such proofs for handling facts about counting and addition. 

DEFINITION. We let A o B abbreviate ( A  + B )  A ( B  + A )  and A O B abbreviate 
( A  A i B )  v (1 A A B). So ++ denotes equivalence and O denotes the exclusive or. 

DEFINITION. Let p 2 1 and suppose cpb,. . . , cpf, (0 I 1 I 2) are propositional 
formulae. We define Add,(@', @', @') to be the conjunction of the following 
formulae (where 1 < i I p): 
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We follow the convention that an empty disjunction, say W,, j <  Aj with i = 0, is 
always false and an empty conjunction always true. This can be done by defining any 
empty disjunction to be (p, A i p,) and any empty conjunction to be (p, v i p,) .  

The purpose of defining Add, is that when we let x f  = 1 if cpf is true and xf  = 0 
otherwise and define ni = Ci 2'.  x f  then Add,(@', @I, G 2 )  asserts that no is the sum 
of n1 and n2 modulo 2,' '. This is easily seen once it is noted that 

is true if and only if there is a carry into the ith position of the sum. 
DEFINITION. Let m be a natural number. We let m denote the vector of 

propositional formulae $,, ..., $,, . . . such that if m has binary expansion 
Ci 2' . mi then for all i, if mi = 0 then $i is the formula (p, A i p,) and if mi = 1 then 
$i is (p, v ~ p , ) .  Thus the propositional formulae m represent the constant m. 

LEMMA 1.  Suppose cpb, . . . , cp; for 1 = 1, 2 are propositional formulae. Let 
cp:, . . . , cp; be the natural propositional formulae such that Add,(@', @', G 2 )  holds. 
Let m be the maximum size of the qt ' s  and the cp?'s. Then the size of each qP is less 
than cp2m, where c is a fixed constant (independent of p and m). 

PROOF. This is clear by inspection. 
The reason Lemma 1 is important to us is that we will shortly be describing 

extended Frege proofs in which, for formulae cpb, cpg,. . . , cp:, pt,;he extension rule 
is used to introduce new variables q,, . . . , q, for which Add,(ij, cp , G 2 )  is valid. Size 
estimates of the type given in Lemma 1 will help to determine how large the formula 
and proof sizes grow when the extended Frege proof is translated into a Frege proof 
by expanding the abbreviations introduced by the extension rule. 

DEFINITION. Let p 2 0 and suppose cpb.. . . , cp; are propositional formulae for 
1 = 0, 1. We define the propositional formulae EQ,, Less,, and LE, by 

So the formulae EQ,, Less, and LE, assert that the number coded by @O is equal to, 
less than, or not greater than (respectively) the number coded by @I. 

LEMMA 2. Let qf and rf be propositional variables for 0 5 i 5 p, 0 5 1 5 2. Then 
there are Frege proofs of 

(a) Add,(ijO, ijl, ij2) A Add,(io, ij2, i j l )  + EQ,(~', iO),  
(b) LE,(ijl, i.') A LEp(ij2, i2) A i ri  A i r i  A Add,(ijo, ijl, ij2) A Add,(io, i l ,  i 2 )  - LE,(GO, iO),  

-0 -1 (c) LEp(ijl, i l) A Less,(ij2, i2) A 1 r i  A ~ r i  A Add,(ijO, ijl, i j2)~Addp(r  , r , t 2 )  
-+ Lessp(ijo, iO).  

Furthermore, the Frege proof of (a) has size o ( P ~ ) ,  and the Frege proofs of (b) and 
(c) have size O(p8). 
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The import of Lemma 2 is that propositional versions of ordinary facts regarding 
addition and equality and inequality have short proofs of polynomial size. 

PROOF. We shall outline a description of the Frege proof for (c) and leave the rest 
to the reader. The Frege proof splits into two cases depending on whether 
EQp(G1, r ' l )  or Less(H1, r"). Let us consider only the case of equality. By LessP(G2, F2)  
we have that there is some k such that 

Since l r ; ,  we have 0 I k < p and the Frege proof further splits into p cases 
depending on the value of k. Let Carry,(Z, j )  be the formula 

which expresses that there is a "carry" into the 2'-column when adding Z and 3. 
(Compare to the definition of Add,.) The Frege proof now splits into 4 cases 
depending on the truth values of Carry,(q',, 4,) and Carry,(?,, ?,). The first three 
cases are when Carry,(q',, 4,) + Carry,(?, , r',) and in each of these it is not too hard 
to prove 

with a Frege proof with O(p3) lines, so Lessp(ijO, r") holds. The fourth case is when 
Carryk(4,,ij2) A ~Carry,(r',,r ' ,). In this case there is a Frege proof of 
/mkSj4p(qQ ++ rQ) with o ( P ~ )  lines. We then prove for m = k, k - 1,. . . ,0 that 

by a straightforward Frege proof with O(p4) lines. But, of course, i Carryo(q", G2), 
SO 

i.e., Lessp(qo, ?O). 
This completes the outline of the Frege proof of (c). Careful inspection of the 

proof shows it has O(p5) lines and every formula in the proof has size O(p3); hence 
the total size of the proof is O(ps). Q.E.D. Lemma 2. 

Unfortunately, the above treatment of addition is not efficient enough for our 
purposes and instead we must use a technique called "carry-save-addition". Carry- 
save-addition is a well-known technique for computing the summation of a vector 
of numbers with a logarithmic depth circuit (see Savage [6]). As we see below, it 
allows us to define counting with polynomial size propositional formulae; without 
the use of carry-save addition formulae of size O(n'Og('Ogn)) would be required. 
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DEFINITION. Let p L 0 and let cpb, . . . , cp; (0 5 1 < 4) be proportional formulae. 
We define C S U ~ , ( @ ~ ,  @', @2, @ ,, (j4) to be the conjunction of the following 
formulae: 

(PP * cp? 0 cp? 0 cp-0 I i I p), 

cp; * Po A l P o ,  

cp! * (cp?-, A cp,?_,) v (cp?-' A cp:-,) v (cp?-, A (P:-~) (I 5 i I p).  

The point of defining carry-save addition is that we can combine 3 numbers, say 
n2, n,, n4, to produce numbers no, n, such that the sum n2 + n, + n, is equal to no 
+ n,. The number no is the bitwise sum modulo 2 of n2, n, and n,, and n, is the 
carries which are saved. It will be convenient for us to use carry-save addition to 
combine four numbers into two with the following definition. 

DEFINITION. Let p 2 0, and let cpb, . . . , cp; be propositional formulae for 0 5 1 < 5. 
Then CSAddP{@O, @', I$', I$,, G4, q 5 )  is the formula C S U ~ , ( @ ~ ,  @', Jo, $ l ,  p) 
where J0 and I)' are the propositional formulae defined by 

I): - cpf @ cp3 @ cp: (0 < i I p), 

I)! = ($;-, A cp,"_,) v (cp;-, A cp:- ,) v (cp?-, A cp:- ,) (1 < i 5 p). 
The reason carry-save addition, CSAdd, is useful is that Lemma 1 can be 

improved upon: 
LEMMA 3. Suppose cp;,. . . , cp; for 2 I 1 I 5, are propositional formulae. Let 

96, .  . . , cp*p for r = 0,l be the natural propositional formulae such that 
CSAdd,(@O, @ ', @ 2, @ 3, G4, @ 5, is true by definition, and let m be the maximum of the 
sizes of the cpf's for 2 4 1 < 5. Then the size of each cpP and cp! is less than c . m, where 
c is a constant (independent of p and m). 

The proof of Lemma 3 is trivial; the next lemma states that polynomial-sized 
Frege proofs can show that carry-save-addition is equivalent to addition. 

LEMMA 4. There is a constant k 2 0 such that for all p 2 0 there is a Frege proof of 
size O(pk) of 

A direct proof of Lemma 4 is relatively straightforward, and we leave the details 
to the reader. Actually k = 6 suffices. 

The next definition will give an efficient means for defining and reasoning about 
counting. It is assumed, without loss of generality, that n is equal to 2P-1 for some 
p 2 1. If cp,, . . . , c p , ,  are formulae, we want to be able to define the notion of the 
cardinality of the set {i: cpi), i.e., to count how many cpi7s are true. 

DEFINITION. Let p 2 1 and n = 2P-1, and suppose sbj,. . . , s;j, cbj,. . . , c i j  are 
propositional formulae for 0 5 i < p and 0 I j < n .2-'. The formula 
V S U ~ , , ~ ( S ,  c'), where 1 < k < p, is defined to be 

and VSum,(S, c') is defined to be VSum,, , -, (S, c'). 
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Suppose that each cp,, c i J  and skJ have been assigned truth values so that cpi ++ s:si 
for 0 5 i < n, each s:;1', and each c:.' are assigned "false" and that VSum,(S, C )  is 

. . 
valid. Let si3j be the number represented by and Cisj the number represented by 
C'3J. Then it is easy to see by induction on i that CiJ + siJ is equal to the number of 
true cpk's with 2 ' -  j I k < 2'(j  + 1). In particular, C p - l q 0  + Sp-',O is equal to the 
total number of cpk's which are true. Accordingly, we make the following definition 
for counting: 

DEFINITION. Let p 2 1 and n = 2 , ' ;  let cpO, . . . , cp, - be propositional formulae 
. . 

and suppose s i J ,  c i J ,  abJ are propositional formulae for 0 I i < p, 0 I j < n 2-' 
and 0 I k I p.  The formula Count,,,(li, S, c', 4) is defined to be the conjunction of 
the tbllowing formulae: 

VSum,,,(S, c'), 

and Count,(a', S, C ,  @) is just Count ,,,- ,(a', S, c', @). 
LEMMA 5 .  Let p 2 1 and n = 2,-'. 
(a) Suppose each s:sJ and c:sj is a propositional jormula of size I m for 0 I j < n 

. . 
and 0 I k 5 p. Dejne sj;' and c$j jor 1 i < p, 0 j < 2-' n, 0 5 k 5 p to be the 
natural formulae for which VSum,(S, c') holds. Then there is a constant c, independent 

. . 
of m and n, such that the size of each s2j and cf;' is less than m . nc. 

(b) Suppose each yo, .  . . , cp, - , is a propositional formula of size I m. Dejne s2j and 
ck' and akj for 0 5 i < p, 0 5 j < 2-' n, 0 I k I p to be the natural formulae for 
which Count,(i,s',2, 4) holds. Then there is a constant c', independent of m and n, . . 
such that the size of each a;], skj and c2j is less than c' - m . nc'. 

PROOF. Let d be the constant guaranteed to exist by Lemma 3. By iteratively 
applying Lemma 3, it follows that each skj and ckJ has size I di  m, i.e., they have 
size I d"0g2n) m. Picking c = log, d makes (a) hold. 

Let b be the constant guaranteed to exist by Lemma 1. Then each a2j has 
size I b - p 3  nC m. Since p = 1 + log, n, we may choose c' slightly larger than b 
and c and have (b) hold. Q.E.D. Lemma 5. 

LEMMA 6. There is a constant k 2 0 such that for all n = 2 , '  there are Frege proofs 
of size O(nk )  of 

n -  1 

A (rj A l r j )  A ~ o u n t , ( i ,  S ,  2, ?) A count,(&, i, d, -, L E , ( ~ P -  ~ . o , & P - ~ . o  
j = O  

1 
and of 

n - 1  n -  1 
* * *  !$ (rj A i rj) A A (rj -f rj) A Count,(d, S, 2, r') A Count,(b, t ,  d ,  r") 

j = O  j = 0 

-, Lessp(iP-'.o &,- ' ,0  ). 
PROOF. Let A, be the propositional formula 

n -  1 

(rj -f rj) A Count,(i, S ,  2, ?) A count,(&, i, d, ~ l ) .  

j = O  
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The Frege proof of the first formula proceeds by showing the intermediate results 

for i = 1,. . . , p - 1 and 0 5 j < n -2- ' .  These are proved by using the proofs 
described by Lemmas 2 and 4. There are only O(n2) such intermediate steps, so it is 
clear that this gives a polynomial size proof of 

Form any integer, 0 I m < n, let B,,, be the formula r, A i r h  A A,. In addition 
to the consequences of A, derived above, we also prove that for all i = 0,. . . , p - 1 
and j such that j . 2 '  I m < ( j  + 1). 2' 

again, this is proved using Lemmas 2 and 4. The n proofs for all values of m can be 
combined to give the desired proof of 

n -  1 v (rj A ri) A A, -+ ~ e s s , ( i i ~  6 p 1 ' 0 ) .  Q.E.D. Lemma 6. 
j = O  

We are now ready to prove that there are polynomial size Frege proofs of the 
propositional pigeonhole principle. 

MAIN THEOREM 7. There is a constant k such that there are Frege proofs of size 
O(nk) of PHP,. 

PROOF. Recall that PHP, is 

Assume without loss of generality that n is a power of two and n = 2,-l. For 
conceptual convenience we will describe a polynomial size extended Frege ( e F )  
proof of PHP, and afterwards analyze the size of the Frege proof obtained by 
replacing propositional variables introduced by the extension rule with the formulae 
they abbreviate. First, we introduce new propositional variables r," for 0 I m I n 
and 0 I j < n defined by ry +-+ vo5,, , p,, j. Second, we introduce variables aTsi,j, 
s,",'.j, c,".',j for all 0 5 m 5 n and all appropriate values of i, j and k so that, for all m, 
Count,(?im, S m ,  c'", r ' " )  holds. If we think of the variables pi,j representing the graph 
of a function mapping pigeons to holes, then ? i m ~ P - l ~ o  represents the number of 
holes j mapped onto by the first m + 1 pigeons. 

There is a simple proof that i PHP, -+ vo_< j < n  ry . Hence, by Lemma 6, there is a 
polynomial size proof of 

i PHP, -+ Less,(O, ? i O ~ P - l q O  ). 

Similarly, by Lemma 6, there are n polynomial size proofs of 

for m = 0, 1,. . . , n - 1. Now it is not difficult to combine these proofs to get 
polynomial size proofs of 

i PHP, + Less,(E, ?imsP- '30 1. 
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In particular, 

i PHP, -+ Less,(E, ii"3P- 1. 
But it is straightforward to prove, using the kind of reasoning used in the proof of 
Lemma 6, that LE, (a" '~P~190 , - n). Thus, 

i PHP, -+ Less,(E, E) 

and clearly i Less,(E, i i ) ,  so PHP,. This completes the description of the polynomial 
size extended Frege proof of PHP,. 

It is easy to verify that this proof of PHP, has its number of lines bounded by a 
polynomial of n. Furthermore, Lemma 5(b) shows that if the propositional variables 
introduced by the extension rule are replaced by the formulae they abbreviate, then 
polynomial sized Frege proofs of PHP, are obtained. Q.E.D. Main Theorem. 

Although we have not analyzed the Frege proofs of PHP, carefully enough to 
determine the degree of the polynomial bounding the size of the Frege proofs, it is 
clear that the degree is fairly small, e.g., there are Frege proofs of PHP, of size 
O(nZ0). 

55. Connections to provability in bounded arithmetic. This section briefly discusses 
some connections between the existence of short Frege proofs of the propositional 
pigeonhole principle and of proofs of a relativized pigeonhole principle in the first 
order theories of bounded arithmetic. The situation described below is somewhat 
analogous to the relationship between constant depth, polynomial size circuits and 
the relativized polynomial hierarchy as discussed by Furst-Saxe-Sipser [3], Yao 
[12] and others. 

DEFINITION. The Ck- and &-formulae are defined inductively as follows: 
(1) A propositional variable is a Co-formula and a 170-formula. 
(2) If A is a Ci-formula (Ui-formula) then i A is a Ui-formula (Ci-formula). 
(3) If A,, . . . , A, are Ci-formulae (ni-formulae) then any conjunction (disjunction) 

of them is a I7, + ,-formula (Ci + ,-formula). 
(4) If A, is a Ci-formula and A, is a fli-forrnula then A, -+ A, is a Ci+ ,-formula 

and A, -+ A, is a Ci-formula. 
We say that the propositional pigeonhole principle has constant formula-depth, 

polynomial size Frege proofs iff there is a constant k such that for all n there is a Frege 
proof of PHP, of size I nk + k in which each formula is a Ck-formula. The next 
proposition is due to Paris and Wilkie and is a slight strengthening of Theorem 26 of 
[5]. It is proved by the same proof as in [ 5 ] ,  or alternatively, a constructive proof 
may be given by combining Paris and Wilkie's ideas with a strengthening of 
Theorem 4.10 of [I]. 

DEFINITION. Let Id,( f )  be Id, with a new unary function symbol f which may be 
used in induction formulae. Let PHP( f )  be the sentence 

PROPOSITION 8 (PARIS AND WILKIE [5]). If IdO(  f )  t- PHP( f )  then there are 
constant formula-depth, polynomial size Frege proofs of the propositional pigeonhole 
principle. 
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The next theorem states that if there is an additional uniformity condition on the 
Frege proofs of PHP, then the converse of Proposition 8 holds. 

THEOREM 9. Suppose I d ,  can define constant formula-depth, polynomial size Frege 
proofs of PHP,; more precisely, suppose there is a A,-function G(n,  x )  of I d ,  such that 
the graph of G ( n , )  codes a constant formula-depth, polynomial size Frege proof of 
PHP, provably in Id,.  Then Id,( f )  F PHP( f ). 

Also the same result holds for I d ,  + 52, if "polynomial size" is replaced by "size 
0 ( 2 ( ' 0 " ) ~ )  for jixed k independent of n". 

PROOF (SKETCH). Let G(n,-) be as in the hypothesis. Working in Id,( f ), let n be an 
arbitrary integer. A truth predicate T, can be defined for Ck-formulae by interpreting 
piIj to be true iff f ( i )  = j. Furthermore, T, is defined by a bounded formula and 
provably satisfies the usual inductive properties of a truth predicate. Now it can be 
shown that each axiom of the proof coded by G(n,-) is true and each inference in 
G(n,-) preserves truth. Since G is defined by a bounded formula, it follows by 
bounded induction that the final line of the proof is true, i.e., that PHP( f )  is true. 

Q.E.D. Theorem 9. 
The hypothesis of Theorem 9 is a very reasonable assumption to put on constant 

formula depth, polynomial size Frege proofs; at least if the proofs are uniform 
enough to be definable in the log-time hierarchy. Most reasonable constructions 
of constant formula-depth, polynomial size proofs would make the hypothesis of 
Theorem 9 true. It follows that we should expect the relativized pigeonhole principle 
to be provable in bounded arithmetic iff there are constant formula depth, 
polynomial size Frege proofs of the propositional pigeonhole principle. 

It seems probable that there are no constant formula depth, polynomial size Frege 
proofs of the propositional pigeonhole principle, and hence PHP( f )  is not a 
theorem of Id,.  Some partial results are known: the proof of Theorem 5.13 of [I] 
shows S i (  f )  does not prove PHP( f )  and, similarly, Theorem 21 of Paris and Wilkie 
[ 5 ]  shows that I3,( f )  does not prove PHP( f ). 

Haken [4] has shown that for some constant c, every resolution proof of PHP, 
has size at least cn. Combining this with the Main Theorem 7 above shows that Frege 
proof systems have an exponential speedup over resolution, a fact which was 
originally proved by A. Urquhart. 

THEOREM 10. The  propositional pigeonhole principle is a family of formulae PHP, 
which have polynomial size Frege proofs but require exponential size resolution proofs. 

It would be interesting to know whether depth k Frege proofs can p-simulate 
depth k + 1 Frege proofs, e.g., does there exist a family of Ck-formulae which have 
constant formula depth, polynomial size Frege proofs but do not have polynomial 
size Frege proofs using only Ck-formulae? 

Acknowledgements. I have benefited from discussions with A. Willcie and 
especially P. Shor, who suggested the use of carry-save addition. 
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