POLYNOMIAL SIZE PROOFS OF THE PROPOSITIONAL PIGEONHOLE PRINCIPLE

SAMUEL R. BUSS

Abstract

Cook and Reckhow defined a propositional formulation of the pigeonhole principle. This paper shows that there are Frege proofs of this propositional pigeonhole principle of polynomial size. This together with a result of Haken gives another proof of Urquhart's theorem that Frege systems have an exponential speedup over resolution. We also discuss connections to provability in theories of bounded arithmetic.

§1. Introduction. The motivation for this paper comes primarily from two sources. First, Cook and Reckhow [2] and Statman [7] discussed connections between lengths of proofs in propositional logic and open questions in computational complexity such as whether $N P=$ co- $N P$. Cook and Reckhow used the propositional pigeonhole principle as an example of a family of true formulae which had polynomial size proofs in an extended Frege system and for which the only known proofs in Frege systems (i.e. the usual Hilbert style propositional logic) were exponential size. The main result of this paper is that the propositional pigeonhole principle also has polynomial size Frege proofs, contrary to expectations. On the other hand, Haken [4] has shown that any resolution proof of the propositional pigeonhole principle must be of exponential size. It follows that a Frege proof system has an exponential speedup over resolution (this was originally proved by Urquhart [11] with a different set of formulae).

The second motivation is from research in theories of bounded arithmetic. Alan Woods [10] showed that $I \Delta_{0}$ could prove the existence of an infinite number of primes if it were the case that $I \Delta_{0}$ could prove the pigeonhole principle for functions definable by a bounded formula. Alex Wilkie [9] discovered that a weak form of the pigeonhole principle is provable in $I \Delta_{0}+\Omega_{1}$ and that this implies that $I \Delta_{0}+\Omega_{1}$ can prove the existence of an infinite number of primes; however, it is still open whether $I \Delta_{0}+\Omega_{1}$ proves the usual version of the pigeonhole principle for functions defined by bounded formulae. This question is related to the size of Frege proofs of the propositional pigeonhole principle by a result of Paris and Wilkie [5]; namely, if $I \Delta_{0}$ proves a relativized version of the pigeonhole principle then there are constant formula-depth, polynomial size Frege proofs of the propositional pigeonhole

Received July 4, 1986.
Research supported in part by NSF postdoctoral fellowship DMS85-11465 and by the Mathematical Sciences Research Institute.
principle. We show below that under some additional assumptions, the converse of Paris and Wilkie's theorem holds too.

The first and main part of this paper proves the existence of short Frege proofs of the propositional pigeonhole principle. This proof is self-contained and elementary. The second part discussed connections with bounded arithmetic and presupposes knowledge of earlier research.
§2. Propositional proof systems. We begin by reviewing some definitions and constructions of Cook and Reckhow [2]. A propositional formula is constructed from propositional variables p, q, r, \ldots, which are interpreted as ranging over the truth values "True" and "False", and from propositional unary and binary connective such as \neg (not), \wedge (and), $\vee(o r)$ and \rightarrow (implication). A Frege system is a Hilbert-style propositional proof system for reasoning with propositional formulae. For the sake of definiteness, we shall let the Frege system \mathscr{F} have propositional connectives \neg, \wedge, \vee, and \rightarrow, and the following 13 axioms:

$$
\begin{array}{ll}
\varphi \rightarrow \psi \rightarrow \varphi \wedge \psi, & \varphi \rightarrow \psi \rightarrow \varphi, \\
\varphi \wedge \psi \rightarrow \varphi, & \neg \varphi \rightarrow \varphi \rightarrow \psi, \\
\varphi \wedge \psi \rightarrow \psi, & \\
\varphi \rightarrow \varphi \vee \psi, & \\
\hline \psi \rightarrow \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi), \\
\psi \rightarrow \varphi \vee \psi, & \\
\neg \neg \neg \rightarrow(\varphi \rightarrow \psi \rightarrow \chi) \rightarrow(\psi \rightarrow \varphi \rightarrow \chi), \\
\varphi \rightarrow \neg), \\
\varphi \rightarrow \neg \neg, &
\end{array}
$$

and as its only rule, modus ponens; namely, from φ and $\varphi \rightarrow \psi$ infer ψ. In the axioms and the rule, any propositional formulae may be substituted for φ, ψ and χ. We follow the usual conventions concerning parentheses and the precedence of operations; namely, \neg has highest precedence, \rightarrow has the lowest and associates from right to left, so $\varphi \rightarrow \psi \rightarrow \chi$ means $\varphi \rightarrow(\psi \rightarrow \chi)$. A Frege proof, or for short an \mathscr{F} proof, is a sequence A_{1}, \ldots, A_{n} of propositional formulae such that each A_{i} either is an axiom or follows by modus ponens from some A_{j} and A_{k} with $j, k<i$. The last formula A_{n} is the conclusion of the proof.

There are two common notions of the length of a proof. The first is the number of formulae appearing in the proof, which is often called the number of lines or number of inferences of the proof. The second and, in our opinion, more relevant notion is the total number of symbols appearing in the proof. To count the total number of symbols, we shall assume that the propositional variables p_{i} are written as a " p " followed by digits in base 10 (say). So $p 108$ denotes p_{108}. Thus proofs are written as a string in a finite alphabet containing, $p, 0, \ldots, 9, \wedge, \vee, \neg, \rightarrow,($,$) and comma; the$ size of a proof is defined to be the total number of symbols in the proof. It is an important property of Frege systems that the sizes of proofs in two different Frege systems are polynomially related: if \mathscr{F}_{1} and \mathscr{F}_{2} are Frege systems then there exists a polynomial q such that if A is a formula in the language of \mathscr{F}_{1} and \mathscr{F}_{2} and A has an \mathscr{F}_{1}-proof of size n then A has an \mathscr{F}_{2}-proof of size less than $q(n)$. Or, in Cook and Reckhow's terminology, any two Frege systems can p-simulate each other.

The size of a formula is defined to be the total number of symbols appearing in the formula.

An extended Frege proof system is a Frege system enhanced to allow the introduction of abbreviations. Any two extended Frege systems can p-simulate each other, so our work applies to any extended Frege system. For the sake of definiteness, we define the extended Frege system e \mathscr{F} to have the language, axioms and rules of \mathscr{F} plus a new rule called the extension rule. (The extension rule was originally defined by Tseĭtin [8].) A sequence of formulae A_{1}, \ldots, A_{n} is an e \mathscr{F}-proof iff each A_{i} is an axiom or is deduced by modus ponens or by the extension rule. A_{i} is deduced by the extension rule iff A_{i} is of the form $\left(p_{i} \rightarrow B\right) \wedge\left(B \rightarrow p_{i}\right)$ where the propositional variable p_{i} does not appear in $A_{1}, \ldots, A_{i-1}, A_{n}$ or B. The size of an extended Frege system is again defined to be the number of symbols in the proof; however, in this case, there is a polynomial p such that, for any e \mathscr{F}-proof containing n formulae, there is an $\mathrm{e} \mathscr{F}$-proof with the same conclusion and with size less than $p(n)$. Thus for our purposes, the distinction between the size of an e \mathscr{F}-proof and the number of formulae in it are unimportant (Statman [7]).
An important open problem is whether $\mathscr{F} p$-simulates $\mathrm{e} \mathscr{F}$, i.e., whether there is a polynomial q such that for any e \mathscr{F}-proof of size n, there is an \mathscr{F}-proof of size less than $q(n)$ with the same conclusion. The natural conjecture is that any function q with this property must have growth rate similar to the exponential function.
§3. The propositional pigeonhole principle. For each natural number $n>1$, we let PHP_{n} be a propositional formula expressing the principle that "if $n+1$ pigeons sit in n holes then some hole contains more than one pigeon". More formally, let $[n]$ be the set $\{0,1, \ldots, n-1)$; then if $f:[n+1] \rightarrow[n]$ then there are $0 \leq i<j \leq n$ such that $f(i)=f(j)$. To express this propositionally, we let $p_{i, j}$ be propositional variables signifying $f(i)=j$ and define PHP_{n} to be the formula

$$
\bigwedge_{0 \leq i \leq n} \bigvee_{0 \leq j<n} p_{i, j} \rightarrow \underset{0 \leq i<m \leq n}{ } \bigvee_{0 \leq j<n}\left(p_{i, j} \wedge p_{m, j}\right)
$$

The symbols \mathbb{A} and \mathbb{W} are shorthand notation for writing out a long string of conjunctions or disjunctions respectively. It is easy to see the left-hand side expresses the fact that f is total (perhaps multivalued) and the right-hand side that f is not one-to-one. Note that the size of PHP_{n} is proportional to n^{3}.

In [2], Cook and Reckhow showed that PHP_{n} has polynomial sized e \mathscr{F}-proofs; since it is an instructive example, we review it here. The idea of the proof is to define $f_{n}=f$ and f_{i} from f_{i+1} so that

$$
f_{i}(x)= \begin{cases}f_{i+1}(x) & \text { if } f_{i+1}(x) \neq i \\ f_{i+1}(i+1) & \text { otherwise }\end{cases}
$$

Then it is easy to see by induction on i varying from n to 1 that if $f:[n+1] \rightarrow[n]$ is one-to-one, then $f_{i}:[i+1] \rightarrow[i]$ is one-to-one. In other words, we see that $\neg \mathrm{PHP}_{i+1} \rightarrow \neg \mathrm{PHP}_{i}$; hence $\neg \mathrm{PHP}_{n} \rightarrow \neg \mathrm{PHP}_{1}$. But PHP_{1} is obviously true; hence PHP $_{n}$ is valid.

To formalize this proof in the extended Frege system e \mathscr{F}, we use new propositional variables $q_{i, j}^{k}$ which represent the assertion that $f_{k}(i)=j$. To do this,
we use the extension rule to define

$$
\begin{array}{ll}
q_{i, j}^{n} \leftrightarrow p_{i, j}, & 0 \leq i \leq n, 0 \leq j<n, \\
q_{i, j}^{k} \leftrightarrow q_{i, j}^{k+1} \vee\left(q_{i, k}^{k+1} \wedge q_{k+1, j}^{k+1}\right), & 0 \leq i \leq k, 0 \leq j<k, 1 \leq k<n .
\end{array}
$$

Let A_{k} be the propositional formula

$$
\underset{0 \leq i \leq k}{\mathbb{M}} \underset{0 \leq j<k}{\mathbb{W}} q_{i, j}^{k} \rightarrow \underset{0 \leq i<m \leq k}{\mathbb{V}} \underset{o}{\mathbb{V} \leq j<k} q_{i, j}^{k} \wedge q_{m, j}^{k} .
$$

Then it is clear that there are e \mathscr{F}-proofs of $\neg \mathrm{PHP}_{n} \rightarrow \neg A_{n}$ and $\neg A_{k+1} \rightarrow \neg A_{k}$ for all $1 \leq k<n$ and such that each proof has size $O\left(n^{6}\right)$. This size estimate is obtained by seeing that there is an e \mathscr{F}-proof of $\neg A_{k+1} \rightarrow \neg A_{k}$ with $O\left(n^{3}\right)$ lines and each formula in this proof has size $O\left(n^{3}\right)$. Since A_{1} is just $q_{0,0}^{1} \wedge q_{1,0}^{1} \rightarrow q_{0,0}^{1} \wedge q_{1,0}^{1}$ there is an e \mathscr{F}-proof of A_{1}. Hence by using modus ponens n times the e \mathscr{F}-proofs of $\neg \mathrm{PHP}_{n} \rightarrow \neg A_{n}$ and $\neg A_{k+1} \rightarrow \neg A_{k}$ combine to give an $\mathrm{e} \mathscr{F}$-proof of PHP_{n} of size $O\left(n^{7}\right)$.

There is a simple way to convert this e \mathscr{F}-proof of PHP_{n} into an \mathscr{F}-proof; namely, replace each propositional variable introduced by the extension rule by the formula it abbreviates. Let $Q_{i, j}^{k}$ be inductively defined by

$$
Q_{i, j}^{n}=p_{i, j} \quad \text { and } \quad Q_{i, j}^{k}=Q_{i, j}^{k+1} \vee\left(Q_{i, k}^{k+1} \wedge Q_{k+1, j}^{k+1}\right),
$$

and replace each occurrence of $q_{i, j}^{k}$ in the e \mathscr{F}-proof by $Q_{i, j}^{k}$. The result is easily converted into an \mathscr{F}-proof of PHP_{n} with about the same number of lines as the e \mathscr{F} proof. However, the size of the formulae $Q_{0,0}^{1}$ and $Q_{1,0}^{1}$ is about 3^{n}; hence the size of the \mathscr{F}-proof is $O\left(n^{4} \cdot 3^{n}\right)$.
This example was used by Cook and Reckhow to illustrate how extended Frege systems are apparently more efficient than Frege systems in terms of proof size. However this is no longer a good example, since we show below that the propositional pigeonhole principle does indeed have polynomial size Frege proofs. It would be desirable to show that \mathscr{F} is exponentially less efficient than e \mathscr{F}; our work merely shows that the propositional pigeonhole principle does not separate \mathscr{F} from e \mathscr{F} in this way.
§4. The polynomial size proof. The strategy for proving the existence of a short \mathscr{F} proof of PHP_{n} will be to show that for some constants $r, s \in \mathbf{N}$ there is an e \mathscr{F}-proof of PHP_{n} of size $O\left(n^{r}\right)$ such that the propositional variables introduced by the extension rule abbreviate formulae of size $O\left(n^{s}\right)$. The first task is to show that there are such proofs for handling facts about counting and addition.

Definition. We let $A \leftrightarrow B$ abbreviate $(A \rightarrow B) \wedge(B \rightarrow A)$ and $A \oplus B$ abbreviate $(A \wedge \neg B) \vee(\neg A \wedge B)$. So \leftrightarrow denotes equivalence and \oplus denotes the exclusive or.

Definition. Let $\rho \geq 1$ and suppose $\varphi_{0}^{l}, \ldots, \varphi_{\rho}^{l}(0 \leq l \leq 2)$ are propositional formulae. We define $\operatorname{Add}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}\right)$ to be the conjunction of the following formulae (where $1 \leq i \leq \rho$):

$$
\begin{aligned}
& \varphi_{0}^{0} \leftrightarrow \varphi_{0}^{1} \oplus \varphi_{0}^{2}, \\
& \varphi_{i}^{0} \leftrightarrow \varphi_{i}^{1} \oplus \varphi_{i}^{2} \oplus \underset{0 \leq j<i}{\mathbb{W}}\left(\varphi_{j}^{1} \wedge \varphi_{j}^{2} \wedge \underset{j<k<i}{\mathbb{M}}\left(\varphi_{k}^{1} \oplus \varphi_{k}^{2}\right)\right) .
\end{aligned}
$$

We follow the convention that an empty disjunction, say $\mathbb{W}_{0 \leq j<i} A_{j}$ with $i=0$, is always false and an empty conjunction always true. This can be done by defining any empty disjunction to be ($p_{0} \wedge \neg p_{0}$) and any empty conjunction to be ($p_{0} \vee \neg p_{0}$).

The purpose of defining $\operatorname{Add}_{\rho}$ is that when we let $x_{i}^{l}=1$ if φ_{i}^{l} is true and $x_{i}^{l}=0$ otherwise and define $n^{l}=\Sigma_{i} 2^{i} \cdot x_{i}^{l}$ then $\operatorname{Add}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}\right)$ asserts that n^{0} is the sum of n^{1} and n^{2} modulo $2^{\rho+1}$. This is easily seen once it is noted that

$$
\bigvee_{0 \leq j<i}\left(\varphi_{j}^{1} \wedge \varphi_{j}^{2} \wedge \mathbb{M}_{j<k<i}\left(\varphi_{k}^{1} \oplus \varphi_{k}^{2}\right)\right)
$$

is true if and only if there is a carry into the i th position of the sum.
Definition. Let m be a natural number. We let \bar{m} denote the vector of propositional formulae $\psi_{0}, \psi_{1}, \ldots, \psi_{\rho}, \ldots$ such that if \bar{m} has binary expansion $\Sigma_{i} 2^{i} \cdot m_{i}$ then for all i, if $m_{i}=0$ then ψ_{i} is the formula $\left(p_{0} \wedge \neg p_{0}\right)$ and if $m_{i}=1$ then ψ_{i} is $\left(p_{0} \vee \neg p_{0}\right)$. Thus the propositional formulae \bar{m} represent the constant m.

Lemma 1. Suppose $\varphi_{0}^{l}, \ldots, \varphi_{\rho}^{l}$ for $l=1,2$ are propositional formulae. Let $\varphi_{0}^{0}, \ldots, \varphi_{\rho}^{0}$ be the natural propositional formulae such that $\operatorname{Add}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}\right)$ holds. Let m be the maximum size of the φ_{i}^{1} 's and the φ_{i}^{2} 's. Then the size of each φ_{i}^{0} is less than $c \rho^{2} m$, where c is a fixed constant (independent of ρ and m).

Proof. This is clear by inspection.
The reason Lemma 1 is important to us is that we will shortly be describing extended Frege proofs in which, for formulae $\varphi_{0}^{1}, \varphi_{0}^{2}, \ldots, \varphi_{\rho}^{1}, \varphi_{\rho}^{2}$, the extension rule is used to introduce new variables q_{0}, \ldots, q_{ρ} for which $\operatorname{Add}_{\rho}\left(\vec{q}, \vec{\varphi}^{1}, \vec{\varphi}^{2}\right)$ is valid. Size estimates of the type given in Lemma 1 will help to determine how large the formula and proof sizes grow when the extended Frege proof is translated into a Frege proof by expanding the abbreviations introduced by the extension rule.

Definition. Let $\rho \geq 0$ and suppose $\varphi_{0}^{l} \ldots, \varphi_{\rho}^{l}$ are propositional formulae for $l=0,1$. We define the propositional formulae $\mathrm{EQ}_{\rho}, \operatorname{Less}_{\rho}$, and LE_{ρ} by

$$
\begin{aligned}
\operatorname{EQ}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}\right) & \equiv \mathbb{M}_{0 \leq i \leq \rho}\left(\varphi_{i}^{0} \leftrightarrow \varphi_{i}^{1}\right) \\
\operatorname{Less}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}\right) & \equiv \mathbb{V}_{0 \leq i \leq \rho}\left(\neg \varphi_{i}^{0} \wedge \varphi_{i}^{1} \wedge \mathbb{X}_{i<j \leq \rho}\left(\varphi_{j}^{0} \leftrightarrow \varphi_{j}^{1}\right)\right), \\
\operatorname{LE}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}\right) & \equiv \operatorname{EQ}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}\right) \vee \operatorname{Less}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}\right)
\end{aligned}
$$

So the formulae EQ_{ρ}, Less $_{\rho}$ and LE_{ρ} assert that the number coded by $\vec{\varphi}^{0}$ is equal to, less than, or not greater than (respectively) the number coded by $\vec{\varphi}^{1}$.

Lemma 2. Let q_{i}^{l} and r_{i}^{l} be propositional variables for $0 \leq i \leq p, 0 \leq l \leq 2$. Then there are Frege proofs of
(a) $\operatorname{Add}_{\rho}\left(\vec{q}^{0}, \vec{q}^{1}, \vec{q}^{2}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{r}^{0}, \vec{q}^{2}, \vec{q}^{1}\right) \rightarrow \mathrm{EQ}_{\rho}\left(\vec{q}^{0}, \vec{r}^{0}\right)$,
(b) $\mathrm{LE}_{\rho}\left(\vec{q}^{1}, \vec{r}^{1}\right) \wedge \mathrm{LE}_{\rho}\left(\vec{q}^{2}, \vec{r}^{2}\right) \wedge \neg r_{\rho}^{1} \wedge \neg r_{\rho}^{2} \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{0}, \vec{q}^{1}, \vec{q}^{2}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{r}^{0}, \vec{r}^{1}, \vec{r}^{2}\right)$ $\rightarrow \mathrm{LE}_{\rho}\left(\vec{q}^{0}, \vec{r}^{0}\right)$,
(c) $\operatorname{LE}_{\rho}\left(\vec{q}^{1}, \vec{r}^{1}\right) \wedge \operatorname{Less}_{\rho}\left(\vec{q}^{2}, \vec{r}^{2}\right) \wedge \neg r_{\rho}^{1} \wedge \neg r_{\rho}^{2} \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{0}, \vec{q}^{1}, \vec{q}^{2}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{r}^{0}, \vec{r}^{1}, \vec{r}^{2}\right)$ $\rightarrow \operatorname{Less}_{\rho}\left(\vec{q}^{0}, \vec{r}^{0}\right)$.

Furthermore, the Frege proof of (a) has size $O\left(\rho^{5}\right)$, and the Frege proofs of (b) and (c) have size $O\left(\rho^{8}\right)$.

The import of Lemma 2 is that propositional versions of ordinary facts regarding addition and equality and inequality have short proofs of polynomial size.

Proof. We shall outline a description of the Frege proof for (c) and leave the rest to the reader. The Frege proof splits into two cases depending on whether $\mathrm{EQ}_{\rho}\left(\vec{q}^{1}, \vec{r}^{1}\right)$ or Less $\left(\vec{q}^{1}, \vec{r}^{1}\right)$. Let us consider only the case of equality. By Less ${ }_{\rho}\left(\vec{q}^{2}, \vec{r}^{2}\right)$ we have that there is some k such that

$$
\neg q_{k}^{2} \wedge r_{k}^{2} \wedge \mathbb{K}_{k<j \leq \rho}\left(q_{j}^{2} \leftrightarrow r_{j}^{2}\right) .
$$

Since $\neg r_{\rho}^{2}$, we have $0 \leq k<\rho$ and the Frege proof further splits into ρ cases depending on the value of k. Let $\operatorname{Carry}_{i}(\vec{x}, \vec{y})$ be the formula

$$
\bigvee_{0 \leq j<i}\left(x_{j} \wedge y_{j} \wedge \mathbb{M}_{j<e<i}\left(x_{e} \oplus y_{e}\right)\right)
$$

which expresses that there is a "carry" into the 2^{i}-column when adding \vec{x} and \vec{y}. (Compare to the definition of Add $_{\rho}$.) The Frege proof now splits into 4 cases depending on the truth values of $\operatorname{Carry}_{k}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ and Carry $_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right)$. The first three cases are when $\operatorname{Carry}_{k}\left(\vec{q}_{1}, \vec{q}_{2}\right) \rightarrow \operatorname{Carry}_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right)$ and in each of these it is not too hard to prove

$$
\underset{m \geq k}{\mathbb{W}}\left(\neg q_{m}^{0} \wedge r_{m}^{0} \wedge \mathbb{M}_{m<j \leq \rho}\left(q_{j}^{0} \leftrightarrow r_{j}^{0}\right)\right)
$$

with a Frege proof with $O\left(\rho^{3}\right)$ lines, so $\operatorname{Less}_{\rho}\left(\vec{q}^{0}, \vec{r}^{0}\right)$ holds. The fourth case is when $\operatorname{Carry}_{k}\left(\vec{q}_{1}, \vec{q}_{2}\right) \wedge \neg \operatorname{Carry}_{k}\left(\vec{r}_{1}, \vec{r}_{2}\right)$. In this case there is a Frege proof of $\mathbb{\bigwedge}_{k \leq j \leq \rho}\left(q_{j}^{0} \leftrightarrow r_{j}^{0}\right)$ with $O\left(\rho^{3}\right)$ lines. We then prove for $m=k, k-1, \ldots, 0$ that

$$
\begin{aligned}
& \underset{m \leq n<k}{ }\left(r_{n}^{0} \wedge \neg q_{n}^{0} \wedge \mathbb{\bigwedge}_{n<j \leq \rho}\left(q_{j}^{0} \leftrightarrow r_{j}^{0}\right)\right) \\
& \\
& \quad \vee\left(\mathbb{M}_{m \leq j \leq \rho}\left(q_{j}^{0} \leftrightarrow r_{j}^{0}\right) \wedge \operatorname{Carry}_{m}\left(\vec{q}^{1}, \vec{q}^{2}\right) \wedge \neg \operatorname{Carry}_{m}\left(\vec{r}^{1}, \vec{r}^{2}\right)\right)
\end{aligned}
$$

by a straightforward Frege proof with $O\left(\rho^{4}\right)$ lines. But, of course, $\neg \operatorname{Carry}_{0}\left(\vec{q}^{1}, \vec{q}^{2}\right)$, so

$$
\mathbb{W}_{0 \leq n \leq \rho}\left(r_{n}^{0} \wedge \neg q_{n}^{0} \wedge \mathbb{M}_{n<j \leq \rho}\left(q_{j}^{0} \leftrightarrow r_{j}^{0}\right)\right),
$$

i.e., $\operatorname{Less}_{\rho}\left(\vec{q}^{0}, \vec{r}^{0}\right)$.

This completes the outline of the Frege proof of (c). Careful inspection of the proof shows it has $O\left(\rho^{5}\right)$ lines and every formula in the proof has size $O\left(\rho^{3}\right)$; hence the total size of the proof is $O\left(\rho^{8}\right)$.
Q.E.D. Lemma 2.

Unfortunately, the above treatment of addition is not efficient enough for our purposes and instead we must use a technique called "carry-save-addition". Carry-save-addition is a well-known technique for computing the summation of a vector of numbers with a logarithmic depth circuit (see Savage [6]). As we see below, it allows us to define counting with polynomial size propositional formulae; without the use of carry-save addition formulae of size $O\left(n^{\log (\log n)}\right)$ would be required.

Definition. Let $\rho \geq 0$ and let $\varphi_{0}^{l}, \ldots, \varphi_{\rho}^{l}(0 \leq l \leq 4)$ be proportional formulae. We define $\operatorname{CSum}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}, \vec{\varphi}^{3}, \vec{\varphi}^{4}\right)$ to be the conjunction of the following formulae:

$$
\begin{aligned}
& \varphi_{i}^{0} \leftrightarrow \varphi_{i}^{2} \oplus \varphi_{i}^{3} \oplus \varphi_{i}^{4} \quad(0 \leq i \leq \rho) \\
& \varphi_{0}^{1} \leftrightarrow p_{0} \wedge \neg p_{0} \\
& \varphi_{i}^{1} \leftrightarrow\left(\varphi_{i-1}^{2} \wedge \varphi_{i-1}^{3}\right) \vee\left(\varphi_{i-1}^{2} \wedge \varphi_{i-1}^{4}\right) \vee\left(\varphi_{i-1}^{3} \wedge \varphi_{i-1}^{4}\right) \quad(1 \leq i \leq \rho)
\end{aligned}
$$

The point of defining carry-save addition is that we can combine 3 numbers, say n_{2}, n_{3}, n_{4}, to produce numbers n_{0}, n_{1} such that the sum $n_{2}+n_{3}+n_{4}$ is equal to n_{0} $+n_{1}$. The number n_{0} is the bitwise sum modulo 2 of n_{2}, n_{3} and n_{4}, and n_{1} is the carries which are saved. It will be convenient for us to use carry-save addition to combine four numbers into two with the following definition.

DEFINITION. Let $\rho \geq 0$, and let $\varphi_{0}^{l}, \ldots, \varphi_{\rho}^{l}$ be propositional formulae for $0 \leq l \leq 5$. Then $\operatorname{CSAdd}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}, \vec{\varphi}^{3}, \vec{\varphi}^{4}, \vec{\varphi}^{5}\right)$ is the formula $\operatorname{CSum}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\psi}^{0}, \vec{\psi}^{1}, \vec{\varphi}^{5}\right)$ where $\vec{\psi}^{0}$ and $\vec{\psi}^{1}$ are the propositional formulae defined by

$$
\begin{aligned}
& \psi_{i}^{0} \equiv \varphi_{i}^{2} \oplus \varphi_{i}^{3} \oplus \varphi_{i}^{4} \quad(0 \leq i \leq \rho) \\
& \psi_{0}^{1} \equiv p_{0} \wedge \neg p_{0} \\
& \psi_{i}^{1} \equiv\left(\psi_{i-1}^{2} \wedge \varphi_{i-1}^{3}\right) \vee\left(\varphi_{i-1}^{2} \wedge \varphi_{i-1}^{4}\right) \vee\left(\varphi_{i-1}^{3} \wedge \varphi_{i-1}^{4}\right) \quad(1 \leq i \leq \rho)
\end{aligned}
$$

The reason carry-save addition, CSAdd, is useful is that Lemma 1 can be improved upon:

Lemma 3. Suppose $\varphi_{0}^{l}, \ldots, \varphi_{\rho}^{l}$ for $2 \leq l \leq 5$, are propositional formulae. Let $\varphi_{0}^{r}, \ldots, \varphi_{\rho}^{r}$ for $r=0,1$ be the natural propositional formulae such that $\operatorname{CSAdd}_{\rho}\left(\vec{\varphi}^{0}, \vec{\varphi}^{1}, \vec{\varphi}^{2}, \vec{\varphi}^{3}, \vec{\varphi}^{4}, \vec{\varphi}^{5}\right)$ is true by definition, and let m be the maximum of the sizes of the φ_{i}^{l} 's for $2 \leq l \leq 5$. Then the size of each φ_{i}^{0} and φ_{i}^{1} is less than $c \cdot m$, where c is a constant (independent of ρ and m).

The proof of Lemma 3 is trivial; the next lemma states that polynomial-sized Frege proofs can show that carry-save-addition is equivalent to addition.

Lemma 4. There is a constant $k \geq 0$ such that for all $\rho \geq 0$ there is a Frege proof of size $O\left(\rho^{k}\right)$ of

$$
\begin{aligned}
& \operatorname{CSAdd}_{\rho}\left(\vec{q}^{0}, \vec{q}^{1}, \vec{q}^{2}, \vec{q}^{3}, \vec{q}^{4}, \vec{q}^{5}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{6}, \vec{q}^{0}, \vec{q}^{1}\right) \\
& \quad \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{7}, \vec{q}^{2}, \vec{q}^{3}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{8}, \vec{q}^{4}, \vec{q}^{5}\right) \wedge \operatorname{Add}_{\rho}\left(\vec{q}^{9}, \vec{q}^{7}, \vec{q}^{8}\right) \rightarrow \mathrm{EQ}_{\rho}\left(\vec{q}^{6}, \vec{q}^{8}\right)
\end{aligned}
$$

A direct proof of Lemma 4 is relatively straightforward, and we leave the details to the reader. Actually $k=6$ suffices.

The next definition will give an efficient means for defining and reasoning about counting. It is assumed, without loss of generality, that n is equal to $2^{\rho-1}$ for some $\rho \geq 1$. If $\varphi_{0}, \ldots, \varphi_{n-1}$ are formulae, we want to be able to define the notion of the cardinality of the set $\left\{i: \varphi_{i}\right\}$, i.e., to count how many φ_{i} 's are true.

Definition. Let $\rho \geq 1$ and $n=2^{\rho-1}$, and suppose $s_{0}^{i, j}, \ldots, s_{\rho}^{i, j}, c_{0}^{i, j}, \ldots, c_{\rho}^{i, j}$ are propositional formulae for $0 \leq i<\rho$ and $0 \leq j<n \cdot 2^{-i}$. The formula $\operatorname{VSum}_{\rho, k}(\vec{s}, \vec{c})$, where $1 \leq k<\rho$, is defined to be

$$
\bigwedge_{i=1}^{k} \bigwedge_{j=0}^{n \cdot 2-i-1} \operatorname{CSAdd}_{\rho}\left(\vec{s}^{i, j}, \vec{c}^{i, j}, \vec{s}^{i-1,2 j}, \vec{c}^{i-1,2 j}, \vec{s}^{i-1,2 j+1}, \vec{c}^{i-1,2 j+1}\right)
$$

and $\operatorname{VSum}_{\rho}(\vec{s}, \vec{c})$ is defined to be $\operatorname{VSum}_{\rho, \rho-1}(\vec{s}, \vec{c})$.

Suppose that each $\varphi_{i}, c_{k}^{i, j}$ and $s_{k}^{i, j}$ have been assigned truth values so that $\varphi_{i} \leftrightarrow s_{0}^{0, i}$ for $0 \leq i<n$, each $s_{k+1}^{0, i}$ and each $c_{k}^{0, i}$ are assigned "false" and that $\operatorname{VSum}_{\rho}(\vec{s}, \vec{c})$ is valid. Let $S^{i, j}$ be the number represented by $\vec{s}^{i, j}$ and $C^{i, j}$ the number represented by $\vec{c}^{i, j}$. Then it is easy to see by induction on i that $C^{i, j}+S^{i, j}$ is equal to the number of true φ_{k} 's with $2^{i} \cdot j \leq k<2^{i}(j+1)$. In particular, $C^{\rho-1,0}+S^{\rho-1,0}$ is equal to the total number of φ_{k} 's which are true. Accordingly, we make the following definition for counting:

DEFINITION. Let $\rho \geq 1$ and $n=2^{\rho-1}$; let $\varphi_{0}, \ldots, \varphi_{n-1}$ be propositional formulae and suppose $s_{k}^{i, j}, c_{k}^{i, j}, a_{k}^{i, j}$ are propositional formulae for $0 \leq i<\rho, 0 \leq j<n \cdot 2^{-i}$ and $0 \leq k \leq \rho$. The formula Count ${ }_{\rho, r}(\vec{a}, \vec{s}, \vec{c}, \vec{\varphi})$ is defined to be the conjunction of the following formulae:

$$
\begin{aligned}
& \operatorname{VSum}_{\rho, r}(\vec{s}, \vec{c}) \\
& \bigwedge_{i=0}^{r} \bigwedge_{j=0}^{n \cdot 2-i-1} \operatorname{Add}_{\rho}\left(\vec{a}^{i, j}, \vec{s}^{i, j}, \vec{c}^{i, j}\right) \\
& \mathbb{\bigwedge}_{j=0}^{n-1}\left(\left(\vec{s}_{0}^{0, j} \leftrightarrow \varphi_{j}\right) \wedge \bigwedge_{k=1}^{\rho} \neg \vec{s}_{k}^{0, j} \wedge \bigwedge_{k=0}^{\rho} \neg \vec{c}_{k}^{0, j}\right)
\end{aligned}
$$

and Count ${ }_{\rho}(\vec{a}, \vec{s}, \vec{c}, \vec{\varphi})$ is just Count ${ }_{\rho, \rho-1}(\vec{a}, \vec{s}, \vec{c}, \vec{\varphi})$.
Lemma 5. Let $\rho \geq 1$ and $n=2^{\rho-1}$.
(a) Suppose each $s_{k}^{0, j}$ and $c_{k}^{0, j}$ is a propositional formula of size $\leq m$ for $0 \leq j<n$ and $0 \leq k \leq \rho$. Define $s_{k}^{i, j}$ and $c_{k}^{i, j}$ for $1 \leq i<\rho, 0 \leq j<2^{-i} \cdot n, 0 \leq k \leq \rho$ to be the natural formulae for which $\operatorname{VSum}_{\rho}(\vec{s}, \vec{c})$ holds. Then there is a constant c, independent of m and n, such that the size of each $s_{k}^{i, j}$ and $c_{k}^{i, j}$ is less than $m \cdot n^{c}$.
(b) Suppose each $\varphi_{0}, \ldots, \varphi_{n-1}$ is a propositional formula of size $\leq m$. Define $s_{k}^{i, j}$ and $c_{k}^{i, j}$ and $a_{k}^{i, j}$ for $0 \leq i<\rho, 0 \leq j<2^{-i} \cdot n, 0 \leq k \leq \rho$ to be the natural formulae for which Count ${ }_{\rho}(\vec{a}, \vec{s}, \vec{c}, \vec{\varphi})$ holds. Then there is a constant c^{\prime}, independent of m and n, such that the size of each $a_{k}^{i, j}, s_{k}^{i, j}$ and $c_{k}^{i, j}$ is less than $c^{\prime} \cdot m \cdot n^{c^{\prime}}$.

Proof. Let d be the constant guaranteed to exist by Lemma 3. By iteratively applying Lemma 3, it follows that each $s_{k}^{i, j}$ and $c_{k}^{i, j}$ has size $\leq d^{i} \cdot m$, i.e., they have size $\leq d^{\left(\log _{2} n\right)} \cdot m$. Picking $c=\log _{2} d$ makes (a) hold.

Let b be the constant guaranteed to exist by Lemma 1 . Then each $a_{k}^{i, j}$ has size $\leq b \cdot \rho^{3} \cdot n^{c} \cdot m$. Since $\rho=1+\log _{2} n$, we may choose c^{\prime} slightly larger than b and c and have (b) hold. \quad Q.E.D. Lemma 5.

Lemma 6. There is a constant $k \geq 0$ such that for alln $=2^{\rho-1}$ there are Frege proofs of size $O\left(n^{k}\right)$ of

$$
\mathbb{M}_{j=0}^{n-1}\left(r_{j} \wedge \neg r_{j}^{\prime}\right) \wedge \operatorname{Count}_{\rho}(\vec{a}, \vec{s}, \vec{c}, \vec{r}) \wedge \operatorname{Count}_{\rho}\left(\vec{b}, \vec{t}, \vec{d}, \vec{r}^{\prime}\right) \rightarrow \operatorname{LE}_{\rho}\left(\vec{a}^{\rho-1,0}, \vec{b}^{\rho-1,0}\right)
$$

and of

$$
\begin{aligned}
& \bigvee_{j=0}^{n-1}\left(r_{j} \wedge \neg r_{j}^{\prime}\right) \wedge \bigwedge_{j=0}^{n-1}\left(r_{j}^{\prime} \rightarrow r_{j}\right) \wedge \operatorname{Count}_{\rho}(\vec{a}, \vec{s}, \vec{c}, \vec{r}) \wedge \operatorname{Count}_{\rho}\left(\vec{b}, \vec{t}, \vec{d}, \vec{r}^{\prime}\right) \\
& \rightarrow \operatorname{Less}_{\rho}\left(\vec{a}^{\rho-1,0}, \vec{b}^{\rho-1,0}\right)
\end{aligned}
$$

Proof. Let A_{ρ} be the propositional formula

$$
\bigwedge_{j=0}^{n-1}\left(r_{j}^{\prime} \rightarrow r_{j}\right) \wedge \operatorname{Count}_{\rho}(\vec{a}, \vec{s}, \vec{c}, \vec{r}) \wedge \operatorname{Count}_{\rho}\left(\vec{b}, \vec{t}, \vec{d}, \vec{r}^{\prime}\right) .
$$

The Frege proof of the first formula proceeds by showing the intermediate results

$$
A_{\rho} \rightarrow \operatorname{LE}_{\rho}\left(\vec{a}^{i, j}, \vec{b}^{i, j}\right) \wedge \mathrm{LE}_{\rho}\left(\vec{b}^{i, j}, \overline{2^{i}}\right)
$$

for $i=1, \ldots, \rho-1$ and $0 \leq j<n \cdot 2^{-i}$. These are proved by using the proofs described by Lemmas 2 and 4 . There are only $O\left(n^{2}\right)$ such intermediate steps, so it is clear that this gives a polynomial size proof of

$$
A_{\rho} \rightarrow \mathrm{LE}_{\rho}\left(\vec{a}^{\rho-1,0}, \vec{b}^{\rho-1,0}\right) .
$$

For m any integer, $0 \leq m<n$, let $B_{m, \rho}$ be the formula $r_{m} \wedge \neg r_{m}^{\prime} \wedge A_{\rho}$. In addition to the consequences of A_{ρ} derived above, we also prove that for all $i=0, \ldots, \rho-1$ and j such that $j \cdot 2^{i} \leq m<(j+1) \cdot 2^{i}$

$$
B_{m, \rho} \rightarrow \operatorname{Less}_{\rho}\left(\vec{a}^{i, j}, \vec{b}^{i, j}\right)
$$

again, this is proved using Lemmas 2 and 4. The n proofs for all values of m can be combined to give the desired proof of

$$
\bigvee_{j=0}^{n-1}\left(r_{j} \wedge r_{j}^{\prime}\right) \wedge A_{\rho} \rightarrow \operatorname{Less}_{\rho}\left(\vec{a}^{\rho-1,0}, \vec{b}^{\rho-1,0}\right) . \quad \text { Q.E.D. Lemma } 6 .
$$

We are now ready to prove that there are polynomial size Frege proofs of the propositional pigeonhole principle.

Main Theorem 7. There is a constant k such that there are Frege proofs of size $O\left(n^{k}\right)$ of PHP_{n}.

Proof. Recall that PHP_{n} is

$$
\underset{0 \leq i \leq n}{ } \mathbb{X}_{0 \leq j<n} \mathbb{W}_{i, j} \rightarrow \underset{0 \leq i<m \leq n}{W} \underset{0 \leq j<n}{W}\left(p_{i, j} \wedge p_{m, j}\right) .
$$

Assume without loss of generality that n is a power of two and $n=2^{\rho-1}$. For conceptual convenience we will describe a polynomial size extended Frege (e \mathscr{F}) proof of PHP_{n} and afterwards analyze the size of the Frege proof obtained by replacing propositional variables introduced by the extension rule with the formulae they abbreviate. First, we introduce new propositional variables r_{j}^{m} for $0 \leq m \leq n$ and $0 \leq j<n$ defined by $r_{j}^{m} \leftrightarrow \mathbb{W}_{0 \leq k \leq m} p_{k, j}$. Second, we introduce variables $a_{k}^{m, i, j}$, $s_{k}^{m, i, j}, c_{k}^{m, i, j}$ for all $0 \leq m \leq n$ and all appropriate values of i, j and k so that, for all m, Count ${ }_{\rho}\left(\vec{a}^{m}, \vec{s}^{m}, \vec{c}^{m}, \vec{r}^{m}\right)$ holds. If we think of the variables $p_{i, j}$ representing the graph of a function mapping pigeons to holes, then $\vec{a}^{m, \rho-1,0}$ represents the number of holes j mapped onto by the first $m+1$ pigeons.

There is a simple proof that $\neg \mathrm{PHP}_{n} \rightarrow \mathrm{~W}_{0 \leq j<n} r_{j}^{0}$. Hence, by Lemma 6, there is a polynomial size proof of

$$
\neg \operatorname{PHP}_{n} \rightarrow \operatorname{Less}_{\rho}\left(\overline{0}, \vec{a}^{0, \rho-1,0}\right) .
$$

Similarly, by Lemma 6, there are n polynomial size proofs of

$$
\neg \mathrm{PHP}_{n} \rightarrow \operatorname{Less}_{\rho}\left(\vec{a}^{m, \rho-1,0}, \vec{a}^{m+1, \rho-1,0}\right)
$$

for $m=0,1, \ldots, n-1$. Now it is not difficult to combine these proofs to get polynomial size proofs of

$$
\neg \mathrm{PHP}_{n} \rightarrow \operatorname{Less}_{\rho}\left(\bar{m}, \vec{a}^{m, \rho-1,0}\right)
$$

In particular,

$$
\neg \operatorname{PHP}_{n} \rightarrow \operatorname{Less}_{\rho}\left(\bar{n}, \vec{a}^{n, \rho-1,0}\right)
$$

But it is straightforward to prove, using the kind of reasoning used in the proof of Lemma 6, that $\mathrm{LE}_{\rho}\left(\vec{a}^{n, \rho-1,0}, \bar{n}\right)$. Thus,

$$
\neg \operatorname{PHP}_{n} \rightarrow \operatorname{Less}_{\rho}(\bar{n}, \bar{n})
$$

and clearly $\neg \operatorname{Less}_{\rho}(\bar{n}, \bar{n})$, so PHP_{n}. This completes the description of the polynomial size extended Frege proof of PHP_{n}.

It is easy to verify that this proof of PHP_{n} has its number of lines bounded by a polynomial of n. Furthermore, Lemma 5(b) shows that if the propositional variables introduced by the extension rule are replaced by the formulae they abbreviate, then polynomial sized Frege proofs of PHP_{n} are obtained. Q.E.D. Main Theorem.

Although we have not analyzed the Frege proofs of PHP_{n} carefully enough to determine the degree of the polynomial bounding the size of the Frege proofs, it is clear that the degree is fairly small, e.g., there are Frege proofs of PHP_{n} of size $O\left(n^{20}\right)$.
§5. Connections to provability in bounded arithmetic. This section briefly discusses some connections between the existence of short Frege proofs of the propositional pigeonhole principle and of proofs of a relativized pigeonhole principle in the first order theories of bounded arithmetic. The situation described below is somewhat analogous to the relationship between constant depth, polynomial size circuits and the relativized polynomial hierarchy as discussed by Furst-Saxe-Sipser [3], Yao [12] and others.

Definition. The Σ_{k} - and Π_{k}-formulae are defined inductively as follows:
(1) A propositional variable is a Σ_{0}-formula and a Π_{0}-formula.
(2) If A is a Σ_{i}-formula (Π_{i}-formula) then $\neg A$ is a Π_{i}-formula (Σ_{i}-formula).
(3) If A_{1}, \ldots, A_{n} are Σ_{i}-formulae (Π_{i}-formulae) then any conjunction (disjunction) of them is a Π_{i+1}-formula (Σ_{i+1}-formula).
(4) If A_{1} is a Σ_{i}-formula and A_{2} is a Π_{i}-formula then $A_{1} \rightarrow A_{2}$ is a Σ_{i+1}-formula and $A_{2} \rightarrow A_{1}$ is a Σ_{i}-formula.

We say that the propositional pigeonhole principle has constant formula-depth, polynomial size Frege proofs iff there is a constant k such that for all n there is a Frege proof of PHP_{n} of size $\leq n^{k}+k$ in which each formula is a Σ_{k}-formula. The next proposition is due to Paris and Wilkie and is a slight strengthening of Theorem 26 of [5]. It is proved by the same proof as in [5], or alternatively, a constructive proof may be given by combining Paris and Wilkie's ideas with a strengthening of Theorem 4.10 of [1].

Definition. Let $I \Delta_{0}(f)$ be $I \Delta_{0}$ with a new unary function symbol f which may be used in induction formulae. Let $\operatorname{PHP}(f)$ be the sentence

$$
(\forall x)[(\forall y \leq x)(f(y)<x) \rightarrow(\exists y)(\exists z)(y \neq z \wedge f(y)=f(z))]
$$

Proposition 8 (Paris and Wilkie [5]). If $I \Delta_{0}(f) \vdash \operatorname{PHP}(f)$ then there are constant formula-depth, polynomial size Frege proofs of the propositional pigeonhole principle.

The next theorem states that if there is an additional uniformity condition on the Frege proofs of PHP_{n} then the converse of Proposition 8 holds.

Theorem 9. Suppose $I \Delta_{0}$ can define constant formula-depth, polynomial size Frege proofs of PHP_{n}; more precisely, suppose there is a Δ_{0}-function $G(n, x)$ of $I \Delta_{0}$ such that the graph of $G(n,-)$ codes a constant formula-depth, polynomial size Frege proof of PHP_{n} provably in $I \Delta_{0}$. Then $I \Delta_{0}(f) \vdash \operatorname{PHP}(f)$.

Also the same result holds for $I \Delta_{0}+\Omega_{1}$ if "polynomial size" is replaced by "size $O\left(2^{(\log n)^{k}}\right)$ for fixed k independent of n ".
$\operatorname{Proof}($ Sкetch $)$. Let $G(n,-)$ be as in the hypothesis. Working in $I \Delta_{0}(f)$, let n be an arbitrary integer. A truth predicate T_{k} can be defined for Σ_{k}-formulae by interpreting $p_{i, j}$ to be true iff $f(i)=j$. Furthermore, T_{k} is defined by a bounded formula and provably satisfies the usual inductive properties of a truth predicate. Now it can be shown that each axiom of the proof coded by $G(n,-)$ is true and each inference in $G(n,-)$ preserves truth. Since G is defined by a bounded formula, it follows by bounded induction that the final line of the proof is true, i.e., that $\operatorname{PHP}(f)$ is true.
Q.E.D. Theorem 9.

The hypothesis of Theorem 9 is a very reasonable assumption to put on constant formula depth, polynomial size Frege proofs; at least if the proofs are uniform enough to be definable in the log-time hierarchy. Most reasonable constructions of constant formula-depth, polynomial size proofs would make the hypothesis of Theorem 9 true. It follows that we should expect the relativized pigeonhole principle to be provable in bounded arithmetic iff there are constant formula depth, polynomial size Frege proofs of the propositional pigeonhole principle.
It seems probable that there are no constant formula depth, polynomial size Frege proofs of the propositional pigeonhole principle, and hence $\operatorname{PHP}(f)$ is not a theorem of $I \Delta_{0}$. Some partial results are known: the proof of Theorem 5.13 of [1] shows $S_{2}^{1}(f)$ does not prove $\operatorname{PHP}(f)$ and, similarly, Theorem 21 of Paris and Wilkie [5] shows that $I \exists_{1}(f)$ does not prove $\operatorname{PHP}(f)$.
Haken [4] has shown that for some constant c, every resolution proof of PHP_{n} has size at least c^{n}. Combining this with the Main Theorem 7 above shows that Frege proof systems have an exponential speedup over resolution, a fact which was originally proved by A. Urquhart.
Theorem 10. The propositional pigeonhole principle is a family of formulae PHP_{n} which have polynomial size Frege proofs but require exponential size resolution proofs.
It would be interesting to know whether depth k Frege proofs can p-simulate depth $k+1$ Frege proofs, e.g., does there exist a family of Σ_{k}-formulae which have constant formula depth, polynomial size Frege proofs but do not have polynomial size Frege proofs using only Σ_{k}-formulae?
Acknowledgements. I have benefited from discussions with A. Wilkie and especially P. Shor, who suggested the use of carry-save addition.

REFERENCES

[1] S. Buss, Bounded arithmetic, Ph.D. Thesis, Princeton University, Princeton, New Jersey, 1985.
[2] S. Cook and R. Reckhow, The relative efficiency of propositional proof systems, this Journal, vol. 44 (1979), pp. 36-50.
[3] M. Furst, J. Saxe and M. Sipser, Parity, circuits and the polynomial-time hierarchy, IEEE Symposium on Foundation of Computing, vol. 22 (1981), pp. 260-270.
[4] A. Haken, The intractability of resolution, Theoretical Computer Science, vol. 39 (1985), pp. 297-308.
[5] J. Paris and A. Wilkie, Counting problems in bounded arithmetic, Methods in Mathematical Logic (Proceedings, Caracas, 1983), Lecture Notes in Mathematics, vol. 1130, Springer-Verlag, Berlin, 1985, pp. 317-340.
[6] J. E. Savage, The complexity of computing, Wiley, New York, 1976.
[7] R. Statman, Complexity of derivations from quantifier-free Horn formulae, mechanical introduction of explicit definitions, and refinement of completeness theorems, Logic Colloquium '76 (R. Gandy and M. Hyland, editors), North-Holland, Amsterdam, 1977, pp. 505-517.
[8] G. S. Tseitin, On the complexity of derivation in propositional calculus, Studies in constructive mathematics and mathematical logic. II (A. O. Slisenko, editor), Zapiski Nauchnykh Seminarov LOMI, vol. 8 (1968), pp. 234-259; English translation, Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, vol. 8, Consultants Bureau, New York, 1970, pp. 115-125.
[9] A. Wilkie, Talk presented at Logic Colloquium '84, Manchester, 1984.
[10] A. Woods, Some problems in logic and number theory and their connections, Ph.D. Thesis, Manchester University, Manchester, 1981.
[11] A. Urquhart, Hard examples for resolution, Journal of the Association for Computing Machinery, vol. 34 (1987), pp. 209-219.
[12] A. YaO, Separating the polynomial-time hierarchy by oracles, IEEE Symposium on Foundations of Computing, vol. 26 (1985), pp. 1-10.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE
BERKELEY, CALIFORNIA 94720
Current address: Department of Mathematics, University of California, Berkeley, California 94720.

