
Polynomial splines over hierarchical T-meshes

Jiansong Deng *, Falai Chen, Xin Li, Changqi Hu, Weihua Tong, Zhouwang Yang, Yuyu Feng

Department of Mathematics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, PR China

a r t i c l e i n f o

Article history:

Received 17 October 2006

Received in revised form 3 February 2008

Accepted 17 March 2008

Available online 8 April 2008

Keywords:

T-mesh

T-splines

NURBS

Local refinement

Surface fitting

Shape simplification

a b s t r a c t

In this paper, we introduce a new type of splines—polynomial splines over hierarchical

T-meshes (called PHT-splines) to model geometric objects. PHT-splines are a generalization

of B-splines over hierarchical T-meshes. We present the detailed construction process of

spline basis functions over T-meshes which have the same important properties as

B-splines do, such as nonnegativity, local support and partition of unity. As two fundamen-

tal operations, cross insertion and cross removal of PHT-splines are discussed. With the

new splines, surface models can be constructed efficiently and adaptively to fit open or

closed mesh models, where only linear systems of equations with a few unknowns are

involved. With this approach, a NURBS surface can be efficiently simplified into a PHT-

spline which dramatically reduces the superfluous control points of the NURBS surface.

Furthermore, PHT-splines allow for several important types of geometry processing in a

natural and efficient manner, such as conversion of a PHT-spline into an assembly of ten-

sor-product spline patches, and shape simplification of PHT-splines over a coarser T-mesh.

PHT-splines not only inherit many good properties of Sederberg’s T-splines such as adap-

tivity and locality, but also extend T-splines in several aspects except that they are only C1

continuous. For example, PHT-splines are polynomial instead of rational; cross insertion/

removal of PHT-splines is local and simple.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

A serious weakness with NURBS models is that they

contain a large number of superfluous control points.

T-splines [21] overcome this weakness by allowing T-junc-

tions in the control meshes, and thus provide adaptiveness

and flexibility in modeling geometric objects. In this paper,

we introduce a new type of splines—polynomial splines

over hierarchical T-meshes, called PHT-splines. A PHT-

spline is a piecewise bicubic polynomial over a hierarchical

T-mesh. The basis functions of PHT-splines have the same

important properties as B-splines do, such as nonnegativi-

ty, local support and partition of unity. Thus PHT-splines

are a generalization of B-splines over hierarchical

T-meshes.

With the new splines, surface models can be con-

structed very efficiently and adaptively to fit open or

closed meshes (with genus zero), where only linear sys-

tems of equations with a few unknowns are involved.

Fig. 1 illustrates an example where the female head mesh

has 19,231 points and 38,388 triangular faces. Provided

the mesh parameterization is given, which is not time-con-

suming with an up-to-date parameterization algorithm, a

PHT-spline surface can be constructed to fit the mesh mod-

el in about two seconds with an ordinary personal com-

puter. Further examples in Section 5 show that the

complexity of our surface fitting algorithm is almost linear

with respect to the mesh size.

The surface fitting algorithm can be easily adapted to

approximate a NURBS model with a PHT-spline. Thus con-

version from NURBS models to PHT-splines is very effec-

tive. As a comparison, it is reported by Zheng that fitting

a z-map model of about 10,000 points with T-splines takes

about 30 min [24].
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Fig. 2 is another example which compares the NURBS

model of an ear (from http://www.b3dscann.com/sam-

ples.htm) and the fitting results of the ear model with

PHT-splines. Fig. 2a shows a part of the NURBS model

which has wrinkles, gaps and self-intersections, while

Fig. 2b is a part of the PHT-spline model which looks much

smoother and fairer than the original NURBS model.

The local refinement of PHT-splines is another impor-

tant operation in PHT-spline theory. Due to the nature of

hierarchical T-meshes, the local refinement of PHT-splines

can be achieved by cross insertion, i.e., dividing a cell into

four subcells with a cross. The inverse process is called

cross removal. Many geometry processing algorithms such

as surface fitting, conversion between NURBS and PHT-

splines, conversion of PHT-splines to tensor-product (TP

for short) splines, shape simplification, etc. all heavily de-

pend on cross insertion/removal operation. We will pres-

ent a local and simple cross insertion/removal algorithm

and apply it in several geometry processing algorithms.

1.1. Related work

In geometric modeling, the representation of surfaces is

a fundamental research topic. Computer graphics and

computer aided design communities prefer parametric

surfaces, especially TP B-spline surfaces. However, TP B-

spline surfaces suffer from the weakness that the control

points must lie topologically in a rectangular grid. Thus lo-

cal refinement with a TP B-spline surface is difficult. To

solve this problem, [7] invented hierarchical B-splines by

introducing two concepts: local refinement using an effi-

cient representation and multi-resolution editing. Other

related work on hierarchical B-splines includes CHARMS

[11], multilevel B-splines [15,16], TP splines with knot seg-

ments [22]. An innovation along this direction is the inven-

tion of T-splines by Sederberg [21]. A T-spline is a point-

based spline defined over a T-mesh. For every vertex, a ba-

sis function is defined. Each of the basis functions comes

from some TP spline space. T-splines support many valu-

able operations within a consistent framework, and most

importantly, they can eliminate most superfluous control

points in NURBS representations and they permit local

refinement. However, the local refinement of T-splines de-

pends on the structure of the T-mesh. In the worst case, the

algorithm would extend all partial rows of control points

to cross the entire surface [20]. The reason leading to this

problem is that the spline function over each cell of the

T-mesh is not a polynomial, but a piecewise function. On

the other hand, since the basis functions do not form a par-

tition of unity, T-splines are rational, which leads to com-

plicated computations in subsequent geometry

operations. Sederberg [20] put forward the problem on

how to construct polynomial T-splines.

1.2. Overview

The main contribution of this paper is the invention of a

new type of splines—polynomial splines over hierarchical

T-meshes (called PHT-splines) in geometric modeling.

PHT-splines not only inherit the main properties of

T-splines such as adaptivity, but also exhibit several

advantages over T-splines. For example, unlike T-splines,

PHT-splines are polynomial instead of rational; The local

refinement algorithm of PHT-splines is local and simple.

The conversion between NURBS and PHT-splines is very

fast, while conversion between NURBS and T-splines is a

Fig. 1. Fitting a mesh model (courtesy of Open3DProject) with polynomial splines over a hierarchical T-mesh. The curves on the surfaces from b to f are the

images of the hierarchical T-mesh.

Fig. 2. Comparison of fitting results (si, self-intersection; gp, gap; wr, wrinkle). (a) The original NURBS model. (b) The PHT-spline fitting model. The part in

the red frame in (b) corresponds to (a).
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bottleneck of T-splines in practical applications. Compared

with T-splines and hierarchical B-splines, PHT-splines are

only C1 continuous. However, PHT splines have a set of ba-

sis functions, which is a necessity in some theoretical anal-

ysis and applications, while hierarchical B-splines have a

redundant set of ‘basis functions’. On the other hand, hier-

archical B-splines require a very special hierarchical T-

mesh structure due to their refinement scheme, while

PHT-splines work over arbitrary hierarchical T-meshes.

The remainder of the paper is organized as follows. In

Section 2, we introduce polynomial spline spaces over T-

meshes and the dimension formula proved in [2]. Section

3 describes in detail the construction of the basis functions

of a spline space over a hierarchical T-mesh. The properties

of the basis functions are discussed and PHT-spline sur-

faces are introduced. Section 4 presents two important

operations—cross insertion and removal in PHT-spline the-

ory. In Section 5, we propose a surface fitting scheme to fit

open and closed meshes of genus-zero with PHT-splines. In

Section 6, some geometry processing algorithms such as

shape conversion and shape simplification are discussed.

Section 7 concludes the paper with a summary and some

future work.

2. Polynomial splines over T-meshes

In this section, we briefly review the definition of T-

meshes, and then introduce polynomial spline spaces over

T-meshes. The dimension formula of the spline space is

given.

2.1. T-meshes

Given a rectangular domain, a T-mesh is a partition of

the domain and it is basically a rectangular grid that allows

T-junctions [2,21]. It is assumed that the end points of each

grid line in the T-mesh must be on two other grid lines, and

each cell or facet in the grid must be a rectangle. Fig. 3

shows an example of a T-mesh. A grid point in a T-mesh

is also called a vertex of the T-mesh. If a vertex is on the

boundary of the domain, then is called a boundary vertex.

Otherwise, it is called an interior vertex. For example, bi,

i ¼ 1; . . . ;10, in Fig. 3 are boundary vertices, while all the

other vertices vi, i ¼ 1; . . . ;5, are interior vertices. Interior

vertices have two types. One is crossing, for example, v2

in Fig. 3; and the other is T-junctional, for example, v1 in

Fig. 3. They are called crossing vertices and T-vertices,

respectively. The line segment connecting two adjacent

vertices on a grid line is called an edge of the T-mesh.

2.2. Hierarchical T-meshes

Instead of considering general T-meshes, we restrict our

attention to hierarchical T-meshes in the paper, since such

meshes do not lose the main property—adaptivity of gen-

eral T-meshes.

A hierarchical T-mesh is a special type of T-mesh which

has a natural level structure. It is defined in a recursive

fashion. One generally starts from a TP mesh (level 0).

From level k to level kþ 1, one subdivide a cell at level k

into four subcells which are cells at level kþ 1. For simplic-

ity, we subdivide each cell by connecting the middle points

of the opposite edges with two straight lines. Fig. 4 illus-

trates the process of generating a hierarchical T-mesh.

Hierarchical T-meshes have appeared in many research

disciplines in computer science, computational mathemat-

ics, and so on. For example, adaptive finite elements [25,

Chapter 15] and hierarchical B-splines [7] are defined over

hierarchical T-meshes.

2.3. Spline spaces over T-meshes

Given a T-mesh T, F denotes all the cells in T and X

the region occupied by all the cells in T. Define

Sðm;n; a; b;TÞ :¼ fsðx; yÞ 2 Ca;bðXÞjsðx; yÞj/

2 Pmn for any / 2 Fg;

where Pmn is the space of all the polynomials of bi-degree

ðm;nÞ, and Ca;bðXÞ is the space consisting of all the bivariate

functions which are continuous in X with order a along x

direction and with order b along y direction. It follows that

Sðm;n; a; b;TÞ is a linear space. It is called the spline space

over the given T-mesh T.

For a given T-mesh T, it is easy to see that T-splines (in

non-rational form) and hierarchial B-splines form a proper

subset of the spline spaceSð3;3;2;2;T0Þ in general, where

T
0 is a new T-mesh obtained by inserting some edges into

T. In this sense, the splines over a T-mesh are a generaliza-

tion of T-splines and hierarchical B-splines. This general-

ization makes full use of the current domain partition

and provides more flexibility in geometric modeling than

T-splines and hierarchical B-splines in practice.

Theorem 4.2 in [2] provides a dimension formula for the

spline space Sðm;n; a; b;TÞ for mP 2aþ 1 and

nP 2bþ 1. Specifically, we have

dimSð3;3;1;1;TÞ ¼ 4ðVb þ VþÞ; ð1Þ

where Vb and Vþ represent the number of boundary verti-

ces and interior crossing vertices, respectively. The current

paper focuses on the spline spaceSð3;3;1;1;TÞ for a hier-

archical T-mesh T, though the results are also valid over

general spline spaces Sð2aþ 1;2bþ 1; a; b;TÞ for a, bP 1.

The dimension formula gives us a hint on how to con-

struct basis functions for the spline space, i.e., each bound-

ary vertex or interior crossing vertex associates with four

basis functions. This observation will be further explored

in the construction of the basis functions in the nextFig. 3. An example of a T-mesh.
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section. Hence later on if a vertex is a boundary vertex or

an interior crossing vertex, we call it a basis vertex.

3. Basis functions of PHT-splines

In this section, we construct a set of basis functions over

hierarchical T-meshes which have the same important

properties as B-splines do, such as nonnegativity, local

support and partition of unity. The basis functions directly

lead to the construction of polynomial splines over hierar-

chical T-meshes.

Before constructing the basis functions, we point out

some basic facts. Let t0; t0 ¼ t1; t1 < t2; t2 < . . . <

tp�2; tp�2 < tp�1; tp�1 ¼ tp; tp be the knot vector of a C1 con-

tinuous cubic spline, where every interior knot is with

multiplicity two. For any interior knot ti, only two B-spline

basis functions have support ½ti�1; tiþ1�. These two basis

functions are associated with knot vectors ðti�1; ti�1;

ti; ti; tiþ1Þ and ðti�1; ti; ti; tiþ1; tiþ1Þ, respectively. Except for

the two basis functions, all the other B-spline basis func-

tions and their derivatives vanish at ti. Generalize this fact

to C1 continuous bicubic TP B-splines, for any interior knot

vertex ðsi; tjÞ, where si and tj are the knots in two directions

respectively, only four B-spline basis functions have sup-

port ½si�1; siþ1� � ½ti�1; tiþ1�. We say these four basis func-

tions are associated with the vertex ðsi; tjÞ. The function

values, the first order partial derivatives and the mixed

derivatives of all the other B-spline basis functions vanish

at ðsi; tjÞ.

The basic strategy to construct the basis functions for

the spline space Sð3;3;1;1;TÞ is level by level. Denote

the T-mesh at level k by Tk. For level 0, the standard TP

B-spline basis functions are taken to be the basis functions

over the initial TP mesh T0, where every basis vertex is

associated with four basis functions according to the anal-

ysis in the beginning of the subsection. Obviously, these

basis functions have the properties such as nonnegativity,

local support and partition of unity. Now suppose the basis

functions fb
k
j ðu; vÞg, j ¼ 1; . . . ; dk at level k have been con-

structed, and these basis functions has the same proper-

ties. Then the basis functions at level kþ 1 consist of two

parts. The first part comes from the modification of the ba-

sis functions at level k. The second part comes from the ba-

sis functions associated with the new basis vertices at level

kþ 1. The basis functions generated at level kþ 1 have the

same properties as the previous level.

Now we describe the details of constructing the basis

functions at level kþ 1. For brevity, a basis function is rep-

resented by specifying its 16 Bézier ordinates in every cell

within the support of the basis function.

3.1. Modification of the basis functions at level k

Suppose, among all the cells at level k, the cells hki ,

i ¼ 1; . . . ;Ck, are subdivided. For each j, if the basis function

b
k
j ðu; vÞ does not vanish in some cells of fhki g, then subdi-

vide b
k
j ðu; vÞ into these cells at level kþ 1 according to for-

mula (14.15) in [4]. See Fig. 5a and b for an example. It

Fig. 4. A hierarchical T-mesh.

Fig. 5. Modification of a basis function. (a) A function f ðs; tÞ is defined with the given Bézier ordinates. (b) f ðs; tÞ is subdivided into four subcells. The square

shaped vertices are new basis vertices. (c) The Bézier ordinates around the new basis vertices are reset to zero. Though f ðs; tÞ is changed, it still lies in

Sð3;3;1;1;Tkþ1Þ.
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should be noted that the function b
k
j ðu; vÞ has not changed,

but is now defined over the mesh Tkþ1.

From Tk to Tkþ1, some new basis vertices appear. De-

note them as nkþ1
i , i ¼ 1; . . . ;Vkþ1. In each cell at level

kþ 1, the 16 Bézier ordinates are divided into four parts.

Each part is associated with a cell corner vertex as shown

in Fig. 6. Then all the basis functions fb
k
j ðu; vÞg at level k

are modified to f�bk
j ðu; vÞg in the following fashion: for each

j, reset all the associated Bézier ordinates with the new ba-

sis vertices to zero. See Fig. 5c for an example, where there

are three new vertices.

One can show that f�bk
j ðu; vÞg are in Sð3;3;1;1;Tkþ1Þ.

For example, as shown in Fig. 7, Column (a) presents the

same parts of Tk and Tkþ1, respectively. Here, from Tk to

Tkþ1, a cross is inserted into a cell in the selected part. Col-

umns (b) shows the shapes of a basis function associated

with the crossing vertex ð1;1Þ before and after the modifi-

cation, respectively.

3.2. Adding new basis functions at level kþ 1

For each new basis vertex ðsi; tiÞ, its neighboring cells

must lie in a position as shown in Fig. 8. Then the four basis

functions associated with ðsi; tiÞ are defined to be

M3
ikðsÞN

3
ilðtÞ, k; l ¼ 1;2, where M3

i1ðsÞ, M3
i2ðsÞ, N3

i1ðtÞ, and

N3
i2ðtÞ are the cubic B-spline basis functions associated with

the knot vectors ðsi�1, si�1, si, si, siþ1Þ, ðsi�1, si, si, siþ1, siþ1Þ,

ðti�1, ti�1, ti, ti, tiþ1Þ and ðti�1, ti, ti, tiþ1, tiþ1Þ, respectively.

If ðsi; tiÞ is a boundary vertex, then either si�1 ¼ si, or

siþ1 ¼ si, or ti�1 ¼ ti or tiþ1 ¼ ti.

These four basis functions are in Sð3;3;1;1;Tkþ1Þ and

they have the same support ½si�1; siþ1� � ½ti�1; tiþ1�. Denote

all the basis functions associated with the new basis verti-

ces as f~bkþ1
j ðu; vÞg

4Vkþ1

j¼1 .

From the previous construction process, it follows that

f~bkþ1
j ðu; vÞg

4Vkþ1

j¼1 and f�bk
j ðu; vÞg

dk
j¼1 are linearly independent.

Since dkþ1 ¼ dk þ 4Vkþ1 according to the dimension for-

mula (1), these functions form a basis for the spline space

Sð3;3;1;1;Tkþ1Þ, and are denoted as fb
kþ1
j ðu; vÞg

dkþ1

j¼1 .

3.3. Properties of the basis functions

The basis functions constructed in the last subsection

have the following properties:

� Nonnegativity: This follows from the fact that each basis

function has nonnegative Bézier ordinates.

� Partition of unity: Define

s1ðu; vÞ ¼
X

4Vkþ1

j¼1

~bkþ1
j ðu; vÞ; s2ðu; vÞ ¼

X

dk

j¼1

�bk
j ðu; vÞ:

Check the Bézier ordinates of s1ðu; vÞ and s2ðu; vÞ in every

cell. For s1ðu; vÞ, the Bézier ordinates associated with the

new basis vertices are one, and all the others are zero;

for s2ðu; vÞ, the Bézier ordinates associated with the new

basis vertices are zero, and all the others are one. Hence

it follows that s1ðu; vÞ þ s2ðu; vÞ � 1.

� Local support. From the construction of the basis func-

tions, the support for each basis function is inside a rect-

angle, and its size decreases level by level. In fact, the

rectangular support for each basis function has the fol-

lowing properties: (1) It is bounded by edges in the

mesh. (2) Suppose the basis vertex associating with

the basis function is v. If v is an interior vertex, then it

lies in the interior of the rectangle. Otherwise it lies on

the boundary of the rectangle. (3) The rectangle has

the minimal size among all the rectangles with the pre-

vious two properties.

Next we study another important property of the basis

functions. For any basis function bðu; vÞ, we define a

geometric information (the function value, the first order

Fig. 6. The Bézier ordinates are associated with the four corner vertices.

Fig. 7. Modification of a basis function. Fig. 8. A new basis vertex and its neighboring cells.
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partial derivatives and the mixed partial derivative) opera-

tor by

Lbðu; vÞ ¼ ðbðu; vÞ; buðu; vÞ; bvðu; vÞ; buvðu; vÞÞ: ð2Þ

It follows thatLð�Þ is a linear operator and satisfies the fol-

lowing properties:

� For any basis function bðu; vÞ and any basis vertex

ðu0; v0Þ in T, Lbðu0; v0Þ ¼ 0 holds for all the basis func-

tions, except for the four basis functions associated with

the basis vertex ðu0; v0Þ.

� For a basis vertex ðu0; v0Þwhich appears in the hierarchi-

cal T-mesh since level k0, Lb
k
j ðu0; v0Þ remains

unchanged for any kP k0. Here b
k
j ðu; vÞ is a basis func-

tion constructed at level k.

This is true since the Bézier ordinate modification happens

only around the new basis vertices. These observations are

important for the surface fitting algorithm developed in

Section 5.

3.4. PHT-spline surfaces

Let T be a hierarchical T-mesh, and fbjðu; vÞg,

j ¼ 1; . . . ; d be the basis functions constructed in Section

3. Then the polynomial spline surface over T (called

PHT-spline surface) is defined by

Sðu; vÞ ¼
X

d

j¼1

Cjbjðu; vÞ; ðu; vÞ 2 ½0;1� � ½0;1�; ð3Þ

where Cj are control points. PHT-spline surfaces have sim-

ilar properties with B-spline surfaces such as convex-hull

property, affine invariant, local support, etc.

To efficiently manipulate and evaluate a PHT-spline

surface, one should maintain the Bézier representation of

the PHT-spline surface in every cell, since the basis func-

tions are represented in Bézier forms in every cell. The

geometry processing algorithms in later sections rely on

such representation.

In the following we discuss how to determine the con-

trol points of a PHT-spline surface according to its geomet-

ric information at the basis vertices. Since the operator

Lð�Þ in Eq. (2) is linear, for any fixed basis vertex ðu0; v0Þ

with which four basis functions with indices j1; j2; j3; j4
are associated, one has

LSðu0; v0Þ ¼
X

d

j¼1

CjLbjðu0; v0Þ ¼
X

4

i¼1

CjiLbji ðu0; v0Þ ¼ C � b;

where C ¼ ðCj1 ;Cj2 ;Cj3 ;Cj4 Þ is a 3� 4 matrix, b ¼ ðLbj1 ðu0;

v0Þ;Lbj2 ðu0; v0Þ;Lbj3 ðu0; v0Þ;Lbj4 ðu0; v0ÞÞ is a 4� 4 matrix,

and LSðu0; v0Þ is the geometric information of Sðu; vÞ at

ðu0; v0Þ.

Next we show how to obtain the matrix b, and we use

the computation of Lbj1 ðu0; v0Þ as an illustration. 9, the

four neighboring cells around the basis vertex are with size

3Du1 � 3Dv1, 3Du2 � 3Dv1, 3Du1 � 3Dv2, and 3Du2 � 3Dv2,

respectively, and the black dots denotes the Bézier ordi-

nates. The basis function bj1 ðu; vÞ has knots

ðu0 � 3Du1;u0 � 3Du1;u0;u0;u0 þ 3Du2Þ � ðv0 � 3Dv1; v0�

3Dv1; v0; v0; v0 þ 3Dv2Þ. Hence the geometric information of

bj1 ðu; vÞ at ðu0; v0Þ can be easily calculated, which is the first

column in the matrix b:

b ¼

ð1� kÞð1� lÞ �að1� lÞ �bð1� kÞ ab

kð1� lÞ að1� lÞ �bk �ab

ð1� kÞl �al bð1� kÞ �ab

kl al bk ab

0

B

B

B

@

1

C

C

C

A

;

where

a ¼
1

Du1 þ Du2
; b ¼

1

Dv1 þ Dv2
; k ¼ aDu1; l ¼ bDv1:

The other three columns of b correspond to the geometric

information of the other three basis functions.

The matrix b is invertible and one has

C ¼ LSðu0; v0Þ � b
�1
: ð4Þ

The above formula reflects the relationship between the

control points and the geometric information at the basis

vertices of a spline surface over a (hierarchical) T-mesh.

An efficient surface fitting scheme will be proposed in Sec-

tion 5 based on Eq. (4).

4. Cross insertion and removal

Knot insertion and removal operations play an impor-

tant role in curve and surface modeling with standard

B-splines. For PHT-splines, cross insertion and removal

operations play the same role as knot insertion and

removal with B-splines. Many geometry processing algo-

rithms such as surface fitting, NURBS simplification (Sec-

tion 5), conversion to TP surfaces, and shape

simplification (Section 6) all heavily depend on these two

operations.

4.1. Cross insertion

Suppose we are given a PHT-spline surface Sðu; vÞ over a

hierarchical T-mesh T as defined in (3), and a cell h from

T is subdivided into four subcells by inserting a cross. De-

note the new T-mesh after subdivision by fT. We want to

find the representation of Sðu; vÞ over the new T-mesh fT.

Suppose the level of the cell h in T is k1, and the max-

imal level of the adjacent cells of h is k2. If k1 P k2 � 1, then

the old control points Cj are unchanged, and for each new

basis vertex in fT, the associated basis functions can be

constructed as described in Section 3, and the correspond-

ing control points are determined according to Eq. (4).

If k1 < k2 � 1, the process is a bit more complicated. We

need to remove temporarily the cells adjacent to h whose

Fig. 9. The measurement of the T-mesh T around a new basis vertex

ðu0; v0Þ.
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levels are larger than k1 þ 1, and then perform cross inser-

tion for h. After this process, we perform cross insertion

algorithm to recover those removed cells level by level.

It should be noted that all the operations take place in h

and its adjacent cells, hence the operation is local. Further-

more, k1 P k2 � 1 is the most common case in geometry

processing applications.

4.2. Cross removal

Cross removal is the inverse operation of cross inser-

tion. For simplicity, we require that the mesh after cross re-

moval is still a hierarchical T-mesh. Like knot removal,

cross removal can be achieved only approximately in

general.

Let Sðu; vÞ be a PHT-spline surface over a hierarchical T-

mesh T, and fT be the mesh after removing a cross from

T. Let h be the cell in fT from which the cross is removed.

Our idea is to find a PHT-spline surface eSðu; vÞ defined over
fT such that Sðu; vÞ and eSðu; vÞ share the same geometric

information at the basis vertices of fT. This requirement

guarantees that eSðu; vÞ � Sðu; vÞ whenever Sðu; vÞ is ob-

tained from eSðu; vÞ by inserting the cross in h.

The basic approach is as follows. First, eliminate those

terms in Sðu; vÞ whose corresponding basis functions are

associated with the basis vertices in T but not in fT to ob-

tain Sðu; vÞ. Second, modify the basis function biðu; vÞ in

each term of Sðu; vÞ to ~biðu; vÞ while keeping the corre-

sponding control points unchanged. The requirement is

that f~biðu; vÞg form a basis for the spline space

Sð3;3;1;1;fTÞ, and that biðu; vÞ and ~biðu; vÞ share the same

geometric information at the basis vertices of fT. Over the

cell h as shown in Fig. 10, the Bézier representation of
~biðu; vÞ can be easily obtained from the 16 black Bézier

ordinates which come from biðu; vÞ. In the adjacent cells

of h, the modification is similar. Note that only those basis

functions need to be modified which do not vanish over h

or its adjacent cells.

5. Surface fitting

Surface fitting is an investigated problem which has

been addressed by many papers. The reader is referred to

[1,9] for surveys. In this paper, we are going to present a

very efficient scheme to fit a mesh model with a PHT-

spline. The scheme shares the similar adaptive strategy

with those in hierarchical B-splines, multilevel B-splines,

and so on [8,16]. It directly leads to an efficient method

to convert a NURBS surface into a PHT-spline, and a NURBS

model into a few PHT-spline patches which are C1 contin-

uous globally. It should be noted that if one tries to solve

the fitting problem by the least-squares method, a system

of linear equations of huge size would be involved.

5.1. Fitting open meshes

Suppose we are given an open mesh model with verti-

ces Pi, i ¼ 1;2; . . . ;N in 3D space, and their corresponding

parameter values ðsi; tiÞ, i ¼ 1;2; . . . ;N obtained from some

parameterization of the mesh (The reader is referred to

[5,6] for a survey on mesh parameterization). The parame-

ter domain is assumed to be ½0;1� � ½0;1�.

According to Eq. (4), in order to construct a PHT-spline

to fit the given mesh, one only has to estimate LSðu; vÞ at

every basis vertex. This can be done in the following two

steps. First, compute LSðsi; tiÞ. To do so, we find a set of

points in the neighborhood NðPiÞ of Pi, and then fit the

set of points with a quadratic surface patch. The required

information can be obtained by evaluating the surface

patch at ðsi; tiÞ. Next, the geometric information LSðu; vÞ

at every basis vertex can be calculated by a simple linear

interpolation to LSðsi; tiÞ, i ¼ 1;2; . . . ;N.

The surface fitting scheme repeats the following two

steps until the fitting error in each cell is less than some

tolerance e:

1. Keep unchanged the control points associating with the

old basis functions, and compute the control points for

the new basis functions (in the beginning, every basis

function is new) according to Eq. (4);

2. Determine the cells whose fitting errors are greater

than e, and then subdivide these cells into subcells to

form a new mesh, and construct basis functions for

the new mesh.

Here the fitting error over a cell h is defined to be

max
ðu;vÞ2h

kPðu; vÞ � Sðu; vÞk;

where Pðu; vÞ is the (piecewise linear) parametric equation

of the mesh model. In practice, the fitting error is calcu-

lated as the maximum of kPðui; viÞ � Sðui; viÞk for some

sample points ðui; viÞ in h.

Three examples are provided to illustrate the above sur-

face fitting scheme in Figs. 1 and 11. In all these examples,

the initial T-meshes are the square ½0;1� � ½0;1�, and the

parameterizations are obtained with the discrete harmonic

mappings proposed by [3]. The tolerance of the fitting error

is e ¼ 0:1%, which refers to the size of the bounding box of

the corresponding model. Table 1 shows the computa-

tional time for the three examples, where CP stands for

control points. The computation is performed on a PC with

Pentium 4 CPU, 3.20 GHz and 1.0 GB RAM. From the exam-

ples, we can conclude that the computational complexity is

almost linear in the mesh size.

5.2. Fitting closed meshes

Many geometric models are described by closed meshes

of genus-zero. For such models, the unit sphere is the mostFig. 10. Cross removal.
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natural parameterization domain. In this section, we pro-

pose a method to fit a closed mesh model with a family

of PHT-splines which are pieced together with C1 continu-

ity. The method relies on the spherical parameterization of

closed meshes. The reader is referred to [10,12,19] for

some references on this topic.

The basic idea is as follows. Find an inscribed cube for

the sphere of the parameterization domain, and project

the six faces of the cube onto the sphere by the central pro-

jection from the center of the sphere. The sphere is divided

into six parts corresponding to the six faces, and corre-

spondingly the mesh model is divided into six parts by

the spherical parameterization. This induces a planar

parameterization for each part of the mesh model. Fitting

each part of the mesh by a PHT-spline results in a surface

model for the closed mesh.

To guarantee the smoothness between two adjacent

PHT-splines, one should ensure that the two corresponding

T-mesh domains share the same boundary vertices along

their common edges when subdividing cells in the fitting

process, and that the geometric information at boundary

basis vertices is the average information of the two parts

along the common edges. In particular, the G1 geometric

continuity conditions in [17] are used to maintain the

smoothness around the corner. In this fashion, the final

PHT-spline surface is C1 continuity except at the corners,

where G1 smoothness is obtained.

Fig. 12 illustrates two examples for fitting closedmeshes

with PHT-splines, and Table 2 shows the execution time.

Again the computational complexity is linear in the mesh

size.

5.3. NURBS approximation

The surface fitting scheme provided in the previous

subsections can be easily adapted to approximate a NURBS

surface with a PHT-spline surface. Since the local geomet-

ric information can be directly obtained from the NURBS

surface, the algorithm is much faster. Fig. 13 demonstrates

an example. The conversion process takes 0.875 s from a to

b/c, and 0.125 s from a to d/e.

6. Geometry processing

PHT-splines allow for many types of geometry process-

ing. For example, in the same approach as in [21], two or

more PHT-splines can be stitched together. The surface fit-

ting scheme for closed meshes in Section 5.2 provides an-

other approach for merging two PHT-spline surfaces. On

the other hand, similar to [7], the local details can be added

Fig. 11. Two examples of fitting open meshes.

Table 1

Computation time for fitting open meshes

Mesh # Points # Levels # CP Time (s)

Female head 19,231 10 4432 2.31

Igea artifact 44,992 9 17,744 10.73

Gargoyle 91,279 17 35,764 33.23 Fig. 12. Two examples of fitting closed meshes (Courtesy of Berding 3D

Scanning (http://www.b3dscann.com/samples.htm)).
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onto the shape of the PHT-spline surfaces by mesh

refinements.

In this section, more types of geometry processing on

PHT-splines will be explored briefly. They include conver-

sion of a PHT-spline to an assembly of TP B-splines and

shape simplification.

6.1. Conversion of PHT-splines to TP-splines

Given a PHT-spline defined over a hierarchical T-mesh,

the PHT-spline can be easily converted into a family of TP

B-spline patches. This conversion makes it easy for PHT-

splines to be conveniently imported into the current sur-

face modeling system.

Given a nonnegative integer r and a hierarchical T-

mesh T, one can organize the cells in T into an assembly

of rectangles such that the level differences of the cells in

each rectangle are not greater than r. This organization is

usually not unique, but any solution leads to a conversion

of the PHT-spline surface in the following fashion: in each

rectangle, perform some cross insertions such that the T-

mesh in the rectangle becomes a TP mesh, and then form

a TP B-spline surface over the rectangle from the Bézier

representation of the PHT-spline surface in each cell. See

Fig. 14 for an example.

Fig. 15 shows the conversion results of the PHT-spline

surface from Fig. 1g. Here the control nets of the TP B-

spline patches are displayed in brown, and the patch

boundaries are in light blue. It takes 1.44, 0.33 and 0.14 s

to generate the results in Fig. 15a, b and c, respectively.

6.2. Shape simplification

Shape simplification of a PHT-spline surface over a T-

mesh T is to find a coarser mesh fT (obtained from T

by removing some crosses) of T such that the difference

between the original PHT-spline surface and the new

PHT-spline surface defined over fT is smaller than some gi-

ven tolerance, and the two surfaces share the same geo-

metric information at the same basis vertices. The result

of shape simplification can be applied in level-of-detail

operation in computer graphics.

Given a PHT-spline surface Sðu; vÞ over a hierarchical T-

mesh T with level k0 and a tolerance �, the procedure of

shape simplification can be described as follows:

� Set k ¼ k0 � 1 and �Sðu; vÞ ¼ Sðu; vÞ.

� For each cell h in T at level k which has a cross inside h

(and each subcell of h does not have a cross inside itself),

perform cross removal operation for �Sðu; vÞ. Denote the

PHT-spline surface after cross removal by ~Sðu; vÞ, and

the mesh after cross removal by fT. If

kSðu; vÞ � ~Sðu; vÞk < � over h and its adjacent cells, then

replace �Sðu; vÞ by ~Sðu; vÞ, and T by fT.

� Set k ¼ k� 1. If kP 0, go to the previous step.

To speed up computation, we use the Bézier representa-

tions for the PHT-spline surfaces. The Bézier representation

for ~Sðu; vÞ over fT can be easily obtained from the Bézier

representation of Sðu; vÞ by the smoothness conditions.

The difference between Sðu; vÞ and ~Sðu; vÞ can be measured

by the control points of the two surfaces. Fig. 16 shows the

surface simplification result of the female head model,

where the original mesh has 1528 cells. The simplification

operation can be accomplished in real-time.

7. Conclusions and future work

The paper presents the theoretical foundation for PHT-

splines—polynomial splines over hierarchical T-meshes.

The construction of basis functions is simple and straight-

Table 2

Computation time for fitting closed meshes

Mesh # Points # Levels #CP Time (s)

Santa claus 46,048 11 23,552 8.52

Gargoyle 100,002 11 50,652 23.22

Ear 1,407,202 9 58,876 304.25

Fig. 13. NURBS approximation. (a) The original NURBS surface with 8835 control points. (b and c) A PHT-spline approximation with 4404 control points

e ¼ 0:35%. (e and f) A PHT-spline approximation with 468 control points e ¼ 1:1%.

Fig. 14. Examples of hierarchical T-mesh segmentation.
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forward to implement. The cross insertion and removal

operations are discussed as well. With PHT-splines, an effi-

cient and adaptive surface fitting scheme are presented.

Several geometry processing algorithms are studied, such

as conversion of a PHT-spline surface into a family of

NURBS patches, and shape simplification of PHT-splines.

The approach can be applied to building up the theoretical

foundation for the spline spaces Sðm;n; a; b;TÞ, where T

is a hierarchical T-mesh, mP 2aþ 1 and nP 2bþ 1.

PHT-splines inherit many important properties of T-

splines such as adaptivity and locality. They also exhibit

several advantages over T-splines. For example, unlike T-

splines, PHT-splines are polynomial instead of rational.

Thus geometric computation with PHT-splines is simpler

and less costly. The local refinement algorithm of PHT-

splines is local and simple while the complexity of knot

insertion with T-splines may be uncertain. Finally, conver-

sion between NURBS and PHT-splines is very fast, while

conversion between NURBS and T-splines is a bottleneck

of T-splines in practical applications.

One main drawback of our new splines is that they

are only C1 continuous. However, having a set of basis

functions should be helpful for theoretic analysis and

many other applications. For example, in fitting scat-

tered data points with implicit splines [13,14,23], a set

of basis functions are a necessity. Thus the implicit form

of our new splines (i.e., the zero level-set of PHT-

splines) can be applied in adaptive curve/surface fitting

of scattered data. We will explore this possibility in fu-

ture papers.

As a comparison, hierarchical B-splines do not provide a

set of basis functions and they work with a redundant set

of generators. Furthermore, hierarchical B-splines require

a very special hierarchical T-mesh structure due to their

refinement scheme. They form a proper subspace of C2

continuous bicubic spline space over a T-mesh.

It is a challenge problem to obtain the dimension for-

mula for the spline space Sð3;3;2;2;TÞ, since it may in-

volve more complicated topological quantities. Please

refer to [18] for some initial progress in this direction.

There are still many interesting research problems

about PHT-splines for further research. For example,

� How to compute the dimensions for spline spaces over

general T-meshes? And how to construct the basis func-

tions for the spline spaces? These are in general very dif-

ficult problems. Currently, we are working on the spline

spaces Sð2;2;1;1;TÞ and Sð3;3;2;2;TÞ.

� Is there a more efficient cross insertion algorithm when-

ever k1 < k2 � 1?

Fig. 15. Conversion of PHT-spline surfaces to TP-spline surfaces.

Fig. 16. Shape simplification.
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� How to fit a model with complicated topology with PHT-

splines?

There are problems worthy of further study.
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