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Abstract. We propose two simple upper bounds for the joint spectral radius of sets of nonneg-
ative matrices. These bounds, the joint column radius and the joint row radius, can be computed
in polynomial time as solutions of convex optimization problems. We show that these bounds are
within a factor 1/n of the exact value, where n is the size of the matrices. Moreover, for sets of
matrices with independent column uncertainties or with independent row uncertainties, the corre-
sponding bounds coincide with the joint spectral radius. In these cases, the joint spectral radius is
also given by the largest spectral radius of the matrices in the set. As a by-product of these results,
we propose a polynomial-time technique for solving Boolean optimization problems related to the
spectral radius. We also describe economics and engineering applications of our results.
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1. Introduction. A discrete-time switching linear system generates trajectories
of points

xk+1 = Ak xk, x0 ∈ Rn,(1.1)

with the matrices Ak taken in some uncertainty set M ⊂ Rn×n. The worst-case
growth rate of these trajectories can be characterized by a joint spectral radius. The
joint spectral radius (JSR) of the set of matrices M is the smallest value ρ ≥ 0 such
that for every trajectory there is some constant C for which

‖xk‖ ≤ C ρk

for all k. This optimal ρ provides valuable information about the switching linear
system. In particular, the trajectories of the switching system all converge to the
origin if and only if ρ < 1. In [22] the JSR of M is defined in the following equivalent
form:

ρ(M) = lim sup
k→∞

max{‖A‖1/k : A is a product of length k of matrices in M}.(1.2)

During the last decade, the JSR has proved useful in a number of application con-
texts, including wavelets [9, 11], capacity of codes [6, 17], switched and hybrid sys-
tems [14, 23], sensor networks [10, 16], combinatorics on words [8, 15], autoregressive
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866 VINCENT D. BLONDEL AND YURII NESTEROV

models, Markov chains, etc. Unfortunately, the JSR of a set of matrices is notoriously
difficult to compute and to approximate. In fact, even for the case of two matrices of
dimension 47×47 that have nonnegative rational entries, the problem of checking the
inequality ρ ≤ 1 is algorithmically undecidable (see [5, 7]), and it is still unknown if
the problem ρ < 1 is algorithmically decidable. Today, the list of matrix sets M that
have polynomial-time computable JSR is desperately small: the list includes the case
where M contains only triangular matrices of identical orientation and the case of a
symmetric set A ∈ M =⇒ AT ∈ M. In this last case the JSR is given by the largest
singular value of the matrices in the set [20].

In recent years most research efforts have concentrated on finding reasonable
approximations for the JSR (see, e.g., [3, 4, 19, 21, 25]). But all these approximations
suffer from an intrinsic limitation since it is known that the problem of computing the
JSR of two matrices with binaries entries is NP-hard and that, unless P = NP, there
is no approximation algorithm that is polynomial with respect to the accuracy [24]. In
all known approximation schemes, even for sets with only two matrices, the complexity
of the computations grows exponentially with respect to the required accuracy.

In this paper, we propose two upper bounds for the JSR of arbitrary sets of
nonnegative matrices, which are both within a factor 1/n of the exact value. These
bounds, the joint column radius (JCR) and the joint row radius (JRR), can be com-
puted in polynomial time as solutions to convex optimization problems.

We also consider the special case for which the set of matrices M has independent
column, or row, uncertainties. In terms of the switching systems (1.1) the row inde-
pendent uncertainty situation corresponds to systems for which at every iteration all
entries of the state vector xk are updated, and the ith entry is updated by choosing
one of the elements in {qTxt : q ∈ Qi}. In particular, this includes the situation of
asynchronous linear systems for which at every iteration only some of the state entries
are updated according to a linear transformation and the others are kept unchanged.

It appears that in this special case, the JRR coincides with the JSR and with the
largest spectral radius of the matrices in the set. As a by-product of this result, we are
able to solve in polynomial time some Boolean optimization problems related to the
spectral radius. Another interesting consequence of our results is the quasi-convexity
of the spectral radius of a matrix with nonnegative matrices in each column when all
other columns are fixed.

This paper is organized as follows. In the next section, we define the JCR (resp.,
JRR). We show that this value is the solution of a convex optimization problem, and
we establish an upper and a lower bound for its quality as an approximation to the
JSR. Then, in section 3, we show that for sets of matrices that have independent
column (or row) uncertainty sets, the JCR (resp., JRR) coincides with the JSR.
Moreover, it appears that in the uncertainty set there is always a critical matrix
whose spectral radius coincides with the JSR.

In the last section, we discuss several applications of our results.
Notation. The entries of a (column) vector x ∈ Rn are denoted by x =

(x(1), . . . , x(n))T . For x and y in Rn we denote by 〈x, y〉 their inner product:

〈x, y〉 =
n∑

i=1

x(i)y(i) = xT y.

The set of square matrices is denoted by Mn, and the set of square matrices with
nonnegative entries is denoted by M+

n . For a vector x ∈ Rn, we denote by D(x) ∈Mn

the diagonal matrix with the vector x as its diagonal, and by ex ∈ Rn we denote the
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vector with coordinates ex(i)
. Further, 1 denotes the vector of all ones, 0 denotes

the vector of all zeros, and ei denotes the ith coordinate vector in Rn. Finally, Δn

denotes the standard simplex in Rn, and |M| the cardinality of the set M.

2. Joint column (row) radius. Let ρ(A) be the spectral radius of the matrixA,
i.e., the largest magnitude of its eigenvalues. According to the Perron–Frobenius
theorem, an irreducible1 nonnegative matrix A ∈M+

n has a unique eigenvector u (up
to scalar multiplication) such that

ATu = ρ(A)u,

and all components of the vector u are then positive. Let the column decomposition
of A be given by A = (a1, . . . , an). It is well known (see, e.g., [13]) that the spectral
radius of a nonnegative matrix admits the following representation:

ρ(A) = inf
u>0

max
1≤i≤n

〈ai,u〉
u(i) .(2.1)

Changing the variables u = ex, we obtain

ρ(A) = inf
x∈Rn

[
φA(x) def= max

1≤i≤n
〈ai, e

x〉 · e−x(i)
]
.(2.2)

Note that the objective function φA(x) in this problem is convex. If A is irreducible,
then the problem (2.2) has a unique solution ray spanned by direction 1 ∈ Rn. We
denote by x(A) the point of the optimal ray satisfying the equation

〈1, x(A)〉 = 0,

and we denote u(A) def= ex(A) > 0. Note that ATu(A) = ρ(A) · u(A).
Representation (2.1) explains the role of the spectral radius in estimating the rate

of growth/decrease of the powers of positive matrices. Indeed, for an arbitrary point
x0 ∈ Rn

+ define the sequence

xk = Akx0, k ≥ 1.

Then

〈u(A), xk+1〉 = 〈u(A), Axk〉 = 〈ATu(A), xk〉

= 〈D−1(u(A))ATu(A), D(u(A))xk〉

(2.1)

≤ 〈ρ(A) · 1, D(u(A))xk〉 = ρ(A) · 〈u(A), xk〉.

(2.3)

It is interesting to note that exactly the same reasoning can be used in the analysis
of switching systems.

1A matrix A is reducible if there is a permutation matrix P for which

PAP T =

(
F 0
G H

)
.

The matrix is irreducible if no such permutation exists.
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Consider a compact set M of nonnegative matrices. We define the joint column
radius (JCR) of M as follows:

σ(M) = inf
x∈Rn

max
A∈M

φA(x).(2.4)

In this expression, the functions φA(x) are convex in x and so the function
maxA∈M φA(x) is also convex. Since the JCR is a solution of the convex minimization
problem (2.4), it can be computed in polynomial time by standard convex optimiza-
tion algorithms.

We can provide another interesting interpretation of the JCR. Denote M̂ =
Conv (M) and consider the following optimization problem:

max
A∈M̂

ρ(A).(2.5)

The inequality

max
A∈M̂

ρ(A) ≤ ρ(M)(2.6)

was proved as Proposition 15 in [4] for a finite collection M. By the Carathéodory
theorem this inequality can be easily extended to arbitrary convex uncertainty sets.

Note that

max
A∈M̂

ρ(A)
(2.2)
= max

A∈M̂
inf

x∈Rn
φA(x) ≤ inf

x∈Rn
max
A∈M̂

φA(x)

= inf
x∈Rn

max
A∈M

φA(x) = σ(M).

Thus, we can treat σ(M) as a value of the usual Lagrangian relaxation of the non-
convex optimization problem (2.5). Note that

max
A∈M

ρ(A) ≤ max
A∈M̂

ρ(A) ≤ σ(M).

In section 3 we will discuss nontrivial situations when these inequalities can be re-
placed by equalities.

A quantity similar to the JCR can be introduced for the set of transposed matrices,

MT def= {AT : A ∈ M}.
Namely, we can define the joint row radius (JRR) of the set M as follows:

σT (M) = σ(MT ).(2.7)

Since ρ(M) = ρ(MT ), the above discussion also applies to the JRR. However, in
general we have σT (M) 
= σ(M). In the remaining parts of the paper we will work
mainly with the JCR, without mentioning that all our results can also be applied to
the JRR.

Let us now prove that the JCR provides good upper and lower bounds for the
JSR. First of all, we need to prove two technical lemmas.

Lemma 1. Consider the following perturbation of the uncertainty set M:

Mε
def= {A+ ε11T , A ∈ M}, ε ≥ 0.

Then limε↓0 σ(Mε) = σ(M).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

JOINT SPECTRAL RADIUS FOR NONNEGATIVE MATRICES 869

Proof. Indeed,

σ(M) ≤ σ(Mε) = inf
u>0

max
A∈M

max
1≤i≤n

[
1
u(i)

· 〈ai + ε1, u〉
]

≤ inf
〈1,u〉=1,

u>0

max
A∈M

max
1≤i≤n

[
1
u(i)

· 〈ai, u〉 +
ε

u(i)

]

≤ inf
〈1,u〉=1,

u>0

[ ξM(u) + εF (u)] def= τ(ε),

where ξM(u) = maxA∈M max1≤i≤n

[
1

u(i) · 〈ai, u〉
]
, and F (u) = max1≤i≤n

1
u(i) is a

penalty function for the positive orthant. Since F (u) is below bounded on its feasible
set, by Theorem 1.3.2 in [18] we have2

lim
ε↓0

τ(ε) = inf
〈1,u〉=1,

u>0

ξM(u) = σ(M).

Lemma 2. Let the elements of all matrices in M be positive. Then there exists a
matrix A∗ = (A1e1, . . . , Anen) formed by some matrices Ai ∈ M̂, i = 1, . . . , n, such
that

ρ(A∗) = σ(M).(2.8)

Proof. Definition (2.4) of JCR can be written in the following form:

σ(M) = inf
x∈Rn

max
A∈M

max
1≤i≤n

[
e−x(i)〈Aei, e

x〉
]

= inf
x∈Rn

max
1≤i≤n

[
ψi(x)

def= max
A∈M

(
e−x(i)〈Aei, e

x〉
)]
.

(2.9)

Under conditions of the lemma, the infimum of the upper level minimization problem
is attained at some point x∗ ∈ Rn. Therefore, there exists a vector of optimal dual
multipliers λ∗ ∈ Δn such that

0 =
n∑

i=1

λ
(i)
∗ g∗i , gi ∈ ∂ψi(x∗),

∂ψi(x∗) =
{
g = ∇

(
e−x(i)〈Aei, e

x〉
)
, Ai ∈ M̂ : 〈Aei, e

x∗〉 = ex(i)
∗ ψi(x∗)

}
.

Moreover, there exist matrices A∗
i ∈ M̂ such that

x∗ = arg min
x∈Rn

max
1≤i≤n

[
e−x(i)〈A∗

i ei, e
x〉
]
.

Hence, in view of (2.2), ex∗ is an eigenvector of the matrix A∗ = (A∗
1e1, . . . , A

∗
nen),

and ρ(A∗) = σ(M).

2In this theorem, the optimization problems are written in a min-form. However, all arguments
work for the inf-form also.
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We can now prove our main result.
Theorem 1. Let M be a compact set of nonnegative matrices. Then

1
p
· σ(M) ≤ ρ(M) ≤ σ(M),(2.10)

where p = min{n, |M|}.
Proof. Let us fix an arbitrary ε > 0. Then, by Lemma 2 there exist a matrix

Aε
∗ = (Aε

1e1, . . . , A
ε
nen), Aε

i ∈ M̂ε, i = 1, . . . , n,

which ensures equality ρ(Aε∗) = σ(Mε). Denote by m the number of different matrices
in the representation of Aε

∗:

{Aε
i}n

i=1 = {Bε
j}m

j=1.

Then, 1
mA

ε∗ ≤ Bε
def= 1

m

∑m
j=1 B

ε
j ∈ M̂ε. Hence,

1
m
σ(M) ≤ 1

m
σ(Mε)

(2.8)
=

1
m
ρ(Aε

∗) ≤ ρ(Bε)
(2.6)

≤ ρ(Mε).

Note that m ≤ p. Since the JSR is a continuous function of the elements of the
compact set M (see [1] and an alternative proof in [12]), we obtain the first inequality
in (2.10).

In order to prove the second inequality, assume that M contains an irreducible
matrix A0. Then the minimizer x(A0) of function φA0(x) at the hyperplane L def=
{x ∈ Rn : 〈1, x〉 = 0} is unique. Therefore, the corresponding restrictions of the
level sets of this function are bounded. Hence, the objective function of problem (2.4)
also has bounded restrictions of its level sets. Consequently, there exists at least one
optimal solution x(M) of problem (2.4) belonging to the hyperplane L. Note that all
components of u(M) def= ex(M) are positive. Therefore,

ATu(M) ≤ σ(M) · u(M), A ∈ M.(2.11)

Define now the vector norm

‖x‖ =
n∑

i=1

u(i)(M) · |x(i)|.

Then, for any x ∈ Rn and any A ∈ M, we have

‖Ax‖ ≤ ‖A |x| ‖ = 〈u(M), A|x|〉
(2.11)

≤ σ(M) · ‖x‖.

This means that ρ(M) ≤ σ(M).
If M does not contain an irreducible matrix, we can consider the sets Mε with

ε > 0. By the above reasoning, we have justified that

ρ(M) ≤ ρ(Mε) ≤ σ(Mε).

It remains to apply Lemma 1.
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Let us now look at two examples.
Example 1. Consider M = {A1, . . . , An}, where the matrix Ai = 1 · eT

i . Note
that

Ai · Aj = Aj

for any i, j = 1, . . . , n. Therefore, ρ(M) = ρ(Ai) = 1. On the other hand,

σ(M) = inf
u>0

max
1≤i≤n

max
1≤j≤n

1
u(j)

〈Aiej , u〉

= inf
u>0

max
1≤j≤n

1
u(j)

〈1, u〉 (2.1)
= ρ(1 · 1T ) = n.

Hence, the lower bound in inequality (2.10) cannot be improved. It is interesting that
in this example the bound provided by σT (M) is exact:

1 = ρ(M)
(2.10)

≤ σT (M)

(2.7)
= inf

u>0
max

1≤i≤n
max

1≤j≤n

1
u(j)

〈AT
i ej, u〉

= inf
u>0

max
1≤i≤n

max
1≤j≤n

u(i)

u(j)
≤ 1.

In dimension 2 the JCR can be characterized in a very transparent way.
Example 2. Let M be a finite set of nonnegative two-by-two matrices:

M = {Ak = (ak, bk), k = 1, . . . ,m}.
Then

σ(M) = inf
x∈R2

max
1≤k≤m

φAk
(x) = inf

u>0
max

1≤k≤m
max

{ 〈ak, u〉
u(1)

,
〈bk, u〉
u(2)

}

= inf
u>0

max
{

max
1≤k≤m

〈ak, u〉
u(1)

, max
1≤k≤m

〈bk, u〉
u(2)

}
,

(
τ

def=
u(2)

u(1)

)
= min

τ>0
max

{
max

1≤k≤m

(
a
(1)
k + a

(2)
k · τ), max

1≤k≤m

(
b
(1)
k · 1

τ
+ b

(2)
k

)}
.

Thus, the value of σ(M) is easy to find after an appropriate sorting of the coefficients.
Note that this solution is a nontrivial function of the initial data.

It is interesting that sometimes, for a richer set of variants in the switching system,
it is possible to ensure that the JCR and the JSR coincide. We give a nontrivial
example of such a situation in the next section.

3. Sets with independent column uncertainty. Combining the result of
Lemma 2 with the upper bound (2.10), and the observation (2.6), we can see that
the inclusion A∗ ∈ M̂ guarantees that the JSR and the JCR coincide. The simplest
way to ensure this inclusion is to assume that the set M has independent column
uncertainties:

M = {(a1, . . . , an) : ai ∈ Qi, i = 1, . . . , n},(3.1)

where all sets Qi ⊂ Rn, i = 1, . . . , n, are closed and bounded.
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Theorem 2. For a set M satisfying condition (3.1), we have

max
A∈M̂

ρ(A) = ρ(M) = σ(M).(3.2)

If the solution of problem (2.4) exists, then σ(M) = ρ(A∗) for some extreme point A∗
of the set M. Therefore,

max
A∈M

ρ(A) = ρ(M) = σ(M) = ρ(A∗).(3.3)

Proof. Let us fix some ε > 0. Under assumption (3.1), the matrix Aε
∗ in (2.8)

belongs to the set M̂ε. Therefore,

ρ(Mε)
(2.10)

≤ σ(Mε)
(2.8)
= ρ(Aε∗)

(2.6)

≤ ρ(Mε).

It remains to use the continuity arguments.
Thus, we have proved that

max
A∈M̂ε

ρ(A) = ρ(Mε) = σ(Mε) = ρ(Aε
∗).

Let us show that it is always possible to choose Aε∗ as an extreme point of the set Mε.
For this, let us look more carefully at the structure of the optimality condition for
problem (2.9) written for the set Mε. Denote Q̂ε

i
def= Conv (Qε

i), i = 1, . . . , n. Then
the KKT conditions are as follows:

0 =
n∑

i=1

λ
(i)
∗ g∗i , λ∗ ∈ Δn,

g∗i ∈ ∂ψi(x∗) =
{
g = ∇(e−x(i)〈a, ex〉) : a ∈ B∗

i (x∗)
}
,

B∗
i (x∗) = Arg max

a∈Q̂ε
i

〈a, ex∗〉, i = 1, . . . , n.

(3.4)

It is clear that each B∗
i (x∗) contains at least one extreme point from Qε

i .
Let us show first that λ∗ > 0. Note that g∗i can be represented as

g∗i = e−x(i)
∗ D(a∗i ) · ex∗ − e−x(i)

∗ · 〈a∗i , ex∗〉 · ei

with certain a∗i ∈ Q̂ε
i . Therefore,

0 = D

(
n∑

i=1

λ
(i)
∗ e−x(i)

∗ a∗i

)
· ex∗ −

(
n∑

i=1

λ
(i)
∗ e−x(i)

∗ · ei · (a∗i )T

)
ex∗ .

Denote A∗ = (a∗1, . . . , a
∗
n) ∈ M̂ε and Â∗ = D(ex∗)A∗D(e−x∗). Then, the above

first-order optimality conditions can be written as follows:

0 =
(
D(ex∗)A∗D(e−x∗)D(λ∗) −D(λ∗)D(e−x∗)AT

∗D(ex∗)
) · 1

= (Â∗D(λ∗) −D(λ∗)ÂT∗ ) · 1.
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Since A∗ > 0, all elements of the matrix Â∗ are also positive. Therefore, the above
equation is possible only with λ∗ > 0.

Let us fix an arbitrary number k, 1 ≤ k ≤ n. Without loss of generality, assume
that k = 1. Let us fix all g∗i ∈ ∂ψi(x∗), i = 2, . . . , n. It is convenient to represent
them in matrix form:

(g∗2 , . . . , g
∗
n) def= G = −

(
bT

C

)
,

where G ∈ Rn×(n−1) and C ∈ R(n−1)×(n−1). Note that each gi ∈ ∂ψi(x∗) can be
represented as follows:

gi =
n∑

j=1

a(j)ex(j)
∗ −x(i)

∗ (ej − ei), a ∈ B∗
i (x∗) ⊂ intRn

+.

Note that 〈1, gi〉 = 0, and g
(j)
i > 0 for j 
= i with g

(i)
i < 0. Therefore, matrix C is

strictly diagonally dominant and has negative off-diagonal entries. Hence, the matrix
C−1 exists and all its elements are positive. Therefore, the (overdetermined) linear
system

g1 = Gλ

has a positive solution for any g1 ∈ ∂ψ1(x∗) (the first equation of this system is a
linear consequence of the others). This implies that in the optimality conditions (3.4)
we can choose g∗1 using an arbitrary a1 ∈ B∗

1(x∗). In particular, we can choose it as
an extreme point of Qε

1.
This reasoning can be repeated for the remaining indices k = 2, . . . , n. Then, we

end up with an extreme point Aε∗ ∈ Mε. Note that the latter set is obtained from M
by adding the same ε to all entries of the matrices. Hence, when ε goes to zero, the
shape of Qε

1 remains unchanged. Therefore, in view of the continuity of the function
ρ(A), any limit point of extreme points Aε∗ is an extreme point of the set M.

Besides its direct applications, Theorem 2 has an interesting algebraic conse-
quence.

Corollary 1. Consider the function ρ(a1, . . . , an) with ai ∈ Rn
+, i = 1, . . . , n.

Then this function is quasi-convex in each ai when all other columns are fixed.
Proof. Let us fix arbitrary positive vectors x, y, a2, . . . , an. Define the uncertainty

set

M = {A(α) = (αx+ (1 − α)y, a2, . . . , an), α ∈ [0, 1]}.

Then, by Theorem 2, ρ(M) = max{ρ(A(0)), ρ(A(1))}. If the above vectors are non-
negative, we can justify the result by continuity arguments.

Let us note that independent row (or column) uncertain sets arise in a very natural
way. One such situation is in the context of asynchronous linear systems.

Example 3. Let A be a given nonnegative matrix, and consider the row indepen-
dent uncertainty set

A = {M : the ith row of M is given by the ith row of A or by the ith row of I}.

Thus, the switched linear system xk+1 = Ak xk with Mk ∈ A corresponds to asyn-
chronous updates of the state entries. We claim that ρ(A) = max{1, ρ(A)}.
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This result easily follows from our construction. Indeed,

ρ(A) ≤ min
x≤0

max
i

max
{

1,
1
xi

〈ai, x〉
}

= min
x≤0

max
{

1,max
i

1
xi

〈ai, x〉
}

= max
{

1,min
x≤0

max
i

1
xi

〈ai, x〉
}

= max{1, ρ(A)}.

4. Applications. Let us now consider two applications of our results.

4.1. Leontief model with uncertain data. In the input-output static Leontief
model, we have n industries with production levels

p(i) ≥ 0, i = 1, . . . , n.

In order to produce one unit of the product of industry i, we need to spend A(i,j) units
of the product of industry j. Thus, the structure of production dependencies is given
by the nonnegative consumption matrix A ∈ M+

n . Further, given the demand vector
d ∈ Rn

+, we can find the necessary level of production as a solution to the system of
linear equations:

p = Ap+ d.(4.1)

The economics is called productive if (4.1) has a nonnegative solution for any demand
vector d. The standard condition for that is, of course,

ρ(A) < 1.(4.2)

Clearly, the smaller ρ(A) is, the more flexible is the economics, and the smaller
is the production level that is necessary for satisfying the current demand pattern.
However, in practice the spectral radius ρ(A) is difficult to estimate. Indeed, from the
statistics of the previous years, we can get only sets of different consumption matrices

M = {A1, . . . , Ak}.

Hence, the JSR ρ(M) is a good and robust measure of economic flexibility. However,
in general this value is difficult to compute even for small dimensions.

Now we have an alternative way to address this problem. Indeed, for each indus-
try i, using the data of the previous years, we can get examples of the distribution
patterns.3 Denoting the convex hull of these vectors by Qi, we can form the un-
certainty set by (3.1). In this case, by Theorem 2, ρ(M) = σ(M), and it can be
efficiently computed.

4.2. Optimal growth of a linear system. In some applications we need to
find a matrix from a certain set, which has maximal spectral radius. If the number of
matrices in the set is large, or infinite, such a problem looks completely intractable.

3Alternatively, we can use statistics on the consumption patterns, which corresponds to the
uncertain rows of matrix A.
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However, it appears that in the case of independent column (or row) uncertainties we
can solve the problem by applying Theorem 2. For example, the Boolean problem

max
x∈{0,1}n

ρ(AD(x) +BD(1− x)),

where the coefficients of matrices A and B are nonnegative, can be solved by convex
programming techniques. Note that for each column we can consider several variants.
A typical application of this type is the design of a network structure with several
independent variants of connections for each node. Multiplication of an input vector
by such a matrix represents the output of the system. In this case, the best design
corresponds to the matrix with the largest possible spectral radius.
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