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Abstract

Dealing with the NP-complete Dominating Set problem on graphs,
we demonstrate the power of data reduction by preprocessing from a
theoretical as well as a practical side. In particular, we prove that
Dominating Set restricted to planar graphs has a so-called problem
kernel of linear size, achieved by two simple and easy to implement
reduction rules. Moreover, having implemented our reduction rules,
first experiments indicate the impressive practical potential of these
rules. Thus, this work seems to open up a new and prospective way
how to cope with one of the most important problems in graph theory
and combinatorial optimization.

1 Introduction

Motivation. A core tool for practically solving NP-hard problems is data
reduction through preprocessing. Weihe [40, 41] gave a striking example
when dealing with the NP-complete Red/Blue Dominating Set problem
appearing in the context of the European railroad network. In a preprocess-
ing phase, he applied two simple data reduction rules again and again until
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no further application was possible. The impressive result of his empirical
study was that each of his real-world instances was broken into very small
pieces such that for each of these a simple brute-force approach was sufficient
to solve the computationally hard problems efficiently and optimally. In this
work, we present a new and stronger scenario for data reduction through
preprocessing, namely for the NP-complete Dominating Set problem, a
core problem in combinatorial optimization and graph theory. According to
a 1998 survey [27, Chapter 12], more than 200 research papers and more
than 30 PhD theses investigate the algorithmic complexity of domination
and related problems [38]. Moreover, domination problems occur in numer-
ous practical settings, ranging from strategic decisions such as locating radar
stations or emergency services through computational biology to voting sys-
tems (see [27, 28, 36] for a survey). Two recent examples for applications of
domination problems can be found in [29] (“power domination” in electric
networks) and in [39] (“connected domination” in wireless adhoc networks).
By way of contrast to the aforementioned example given by Weihe, however,
our preprocessing is, on the one hand, more involved to develop, and, on the
other hand, it does not only prove its strength through experimentation but,
in first place, by theoretically sound means. Thus, we come up with a prac-
tically promising as well as theoretically appealing result for computing the
domination number of a graph, one of the so far few positive news for this
important problem. To some extent our results also complement a recent
experimental analysis of heuristic algorithms for Dominating Set [37].

Problem definition and status. A k-dominating set D of an undirected
graph G is a set of k vertices of G such that each of the rest of the vertices has
at least one neighbor in D. The minimum k such that G has a k-dominating
set is called the domination number of G, denoted by γ(G). The Dominat-
ing Set problem is to decide, given a graph G = (V, E) and a positive
integer k, whether γ(G) ≤ k. Due to its NP-completeness and its practical
importance, Dominating Set has been subject to intensive studies that
were concerned with coping strategies to attack its intractability. Among
these coping strategies, we find approximation algorithms and (exact) fixed-
parameter algorithms. As to approximation results, it is known that Dom-
inating Set is polynomial-time approximable with factor 1 + log |V | since
the problem is a special case of the Minimum Set Cover problem [30].
On the negative side, however, it is known not to be approximable within
(1 − ǫ) ln |V | for any ǫ > 0 unless NP ⊆ DTIME(nlog log n) [20]. When re-
stricted to planar graphs, where it still remains NP-complete [26], however,
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a polynomial time approximation scheme (PTAS) is stated [10].1 There
are numerous approximation results for further special instances of Domi-
nating Set, cf. [9]. As to fixed-parameter results, the central question is
whether the problem is optimally solvable in f(k) · nO(1) time, where f(k)
may be an exponentially fast (or worse) growing function in the parameter k
only and n is the number of graph vertices. Unfortunately, also here the sit-
uation seems hopeless—the problem is known to be W[2]-complete [17, 18]
which implies fixed-parameter intractability unless very unlikely collapses
of parameterized complexity classes occur (see [18] for details). Again, re-
stricting the problem to planar graphs improves the situation. Then, Dom-

inating Set is known to be solvable in O(c
√

k · n) time for c ≤ 46
√

34 [3]2

and, alternatively, solvable in O(8k · n) time [4]. Recently, the upper bound
on the constant c was improved to 227 [31] and further to 215.13 [24]. As
to fixed-parameter complexity, it was open whether Dominating Set on
planar graphs possesses a so-called problem kernel of linear size, a question
we answer affirmatively here.

Results. We provide positive news on the algorithmic tractability of Dom-
inating Set through preprocessing. The heart of our results are two rela-
tively simple and easy to implement “reduction rules” for Dominating Set.
These rules are based on considering local structures within the graph. They
produce a reduced graph such that the original graph has a dominating set
of size at most k iff the reduced graph has a dominating set of size at most k′

for some k′ ≤ k. The point here is that the reduced graph, as a rule, is much
smaller than the original graph and, thus, k′ is significantly smaller than k
because the reduction process usually determines several vertices that are
part of an optimal dominating set. In this way, these two reduction rules
provide an efficient data reduction through polynomial-time preprocessing.
In the case of planar graphs, we actually can prove that the reduced graph
consists of at most 335k vertices (which is completely independent of the
size of the original graph). In fixed-parameter complexity terms, this means
that Dominating Set on planar graphs possesses a linear size problem ker-
nel. Note, however, that our main concern in analyzing the multiplicative
constant 335 was conceptual simplicity for which we deliberately sacrificed
the aim to further lower it by way of refined analysis (without changing

1In [10], only the conceptually much simpler Independent Set problem is described
in detail.

2Note that in the SWAT 2000 conference version of [3], an exponential base c = 36
√

34

is stated, caused by a misinterpretation of previous results. The correct worst-case upper

bound reads c = 46
√

34.
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the reduction rules). Finally, experimental studies underpin the big po-
tential of the presented reduction rules, leading to graph size reductions of
more than 90 percent when experimenting with random planar graphs and
so-called Internet graphs [2]. Hence, we conjecture that future algorithms
for Dominating Set, whether approximation, fixed-parameter, or purely
heuristic, should employ data reduction by preprocessing. The point here
is that a problem kernel as achieved by our data reduction rules can be the
starting point for any algorithmic strategy to apply. This observation is
further substantiated by the fact that data reduction by preprocessing plays
an eminently important role when hard combinatorial problems are solved
in practice.

Relation to previous work. Our data reduction still allows to solve the
problem exactly, not only approximately. It is, thus, always possible to
incorporate our reduction rules in any kind of approximation algorithm for
Dominating Set without deteriorating its approximation factor. In this
sense, Baker’s PTAS result3 for Dominating Set on planar graphs [10]
probably has less applicability than the result presented here. This is due to
the fact that her scenario including dynamic programming (which we also
used when applying our related approach based on tree decompositions [3])
seems to require much computational overhead (including high constant
factors in the running time). Our data reduction algorithm is conceptually
much simpler and, as a preprocessing method, seems to combine with any
kind of algorithm working afterwards on the then reduced graph.
Concerning the parameterized complexity of Dominating Set on planar
graphs, we have the following consequences of our result. First, on the
structural side, combining our linear problem kernel with the graph separa-

tor approach presented in [6] immediately results in an O(c
√

k · k + nO(1))
Dominating Set algorithm on planar graphs (for some constant c). Also,
the linear problem kernel directly proves the so-called “Layerwise Separa-
tion Property” [5] for Dominating Set on planar graphs, again implying an

O(c
√

k ·k+nO(1)) algorithm. Second, the linear problem kernel improves the
time O(8k ·n) search tree algorithm from [4] to an O(8kk+nO(1)) algorithm.
We are aware of only one further result that provides a provable data reduc-
tion by preprocessing in our sense, namely the Nemhauser-Trotter theorem

3There is an ongoing discussion and investigation of the practical usefulness of (most)
PTAS results [16, 22]. The problem with PTAS algorithms often is that they require
high-degree polynomial running time in order to achieve a reasonably good degree of
approximation. Actually, the third author, attending a DIMACS workshop on approx-
imation algorithms held in Princeton in February 2000, remembers one of the speakers
asking for any examples where a PTAS really has been applied in practice.
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for Vertex Cover [34, 11, 32]. Their polynomial-time preprocessing em-
ploys a maximum matching algorithm for bipartite graphs and provides a
reduced graph where at least half of the vertices have to be part of an opti-
mal vertex cover set (also see [12] for details and its implication of a size 2k
problem kernel). Note, however, that from an algorithmic and combinatorial
point of view, Vertex Cover seems to be a much less elusive problem4

than Dominating Set is.

Structure of the paper. We start with our two reduction rules based
on the neighborhood structure of a single vertex and a pair of vertices,
respectively. Here, we also analyze the worst-case time complexity of these
reduction rules for planar as well as for general graphs. Afterwards, in
the technically most demanding part, we prove that for planar graphs our
reduction rules always deliver a reduced graph of size O(γ(G)). Finally, we
discuss some experimental findings and give some conclusions and challenges
for future work.

2 The Reduction Rules

We present two reduction rules for Dominating Set. Both reduction rules
are based on the same principle: We explore local structures of the graph
and try to replace them by simpler structures. For the first reduction rule,
the local structure will be the neighborhood of a single vertex. For the
second reduction rule, we will deal with the union of the neighborhoods of
a pair of vertices.

2.1 The Neighborhood of a Single Vertex

Consider a vertex v ∈ V of the given graph G = (V, E). Here and in the
following for v ∈ V let N(v) := {u : {u, v} ∈ E } be the neighborhood of v.
We partition the vertices of N(v) of v into three different sets N1(v), N2(v),
and N3(v) depending on what neighborhood structure these vertices have.
More precisely, setting N [v] := N(v) ∪ {v}, we define

N1(v) := {u ∈ N(v) : N(u) \N [v] 6= ∅}, 5

N2(v) := {u ∈ N(v) \N1(v) : N(u) ∩N1(v) 6= ∅},

N3(v) := N(v) \ (N1(v) ∪N2(v)).

4For instance, Vertex Cover has a simple factor 2 approximation algorithm and it
has fixed-parameter algorithms of O(1.29k + kn) running time on general graphs [12, 35].
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Figure 1: The left-hand side shows the partitioning of the neighborhood of
a single vertex v. The right-hand side shows the result of applying Rule 1
to this particular (sub)graph.

An example which illustrates the partitioning of N(v) into the subsets N1(v),
N2(v), and N3(v) can be seen in the left-hand diagram of Fig. 1.
Note that, by definition of the three subsets, the vertices in N3(v) cannot be
dominated by vertices from N1(v). A good candidate for dominating N3(v)
is given by the choice of v. Observing that this indeed is always an optimal
choice lies the base for our first reduction rule.

Rule 1. If N3(v) 6= ∅ for some vertex v, then

• remove N2(v) and N3(v) from G and

• add a new vertex v′ with the edge {v, v′} to G.

We use the vertex v′ as a “gadget vertex” that enforces us to take v (or v′)
into an optimal dominating set in the reduced graph.

Example 1. Fig. 1 shows the neighborhood of a vertex v before and after
applying Rule 1 to it.

Lemma 1. Let G = (V, E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 1 to G. Then γ(G) = γ(G′).

Proof. Consider a vertex v ∈ V such that N3(v) 6= ∅. The vertices in N3(v)
can only be dominated by either v or by vertices in N2(v) ∪ N3(v). But,
clearly, N(w) ⊆ N(v) for every w ∈ N2(v) ∪ N3(v). This shows that an
optimal way to dominate N3(v) is given by taking v into the dominating
set. This is simulated by the “gadget vertex” v′ in G′ which enforces us to
take v (or v′) into an optimal dominating set. It is safe to remove N2(v) ∪

5For two sets X,Y , where Y is not necessarily a subset of X, we use the convention
that X \ Y := {x ∈ X : x /∈ Y }.
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N3(v) since N(N2(v) ∪ N3(v)) ⊆ N(v), i.e., since the vertices that could
be dominated by vertices from N2(v) ∪N3(v) are already dominated by v.
Hence, γ(G′) = γ(G).

Lemma 2. Rule 1 can be carried out in O(n) time for planar graphs and
in O(n3) time for general graphs.

Proof. We first discuss the planar case. To carry out Rule 1, for each vertex v
of the given planar graph G we have to determine the neighbor sets N1(v),
N2(v), and N3(v). By definition of these sets, one easily observes that
it is sufficient to consider the subgraph G that is induced by all vertices
that are connected to v by a path of length at most two. To do so, we
employ a “partial” depth-first search tree of depth two, rooted at v. More
precisely, this means that we explore all vertices as distance one from v (i.e.,
connected to v by an edge in G) and some vertices at distance two from G
(to be described in more detail in the following). We perform two phases.
In phase 1, constructing the search tree we determine the vertices from
N1(v). Each vertex of the first level (i.e., distance one from the root v) of
the search tree that has a neighbor at the second level of the search tree
belongs to N1(v). Observe that it is enough to stop the expansion of a
vertex from the first level as soon as its first neighbor in the second level is
encountered. Hence, denoting the degree of v by deg(v), phase 1 takes time
O(deg(v)) because there clearly are at most 2 ·deg(v) tree edges and at most
O(deg(v)) non-tree edges to be explored. The latter holds true since these
non-tree edges all belong to the subgraph of G induced by N [v]. Since this
graph is clearly planar and |N [v]| = deg(v) + 1, the claim follows.
In phase 2, it remains to determine the sets N2(v) and N3(v). To get N2(v),
one basically has to go through all vertices from the first level of the above
search tree that are not already marked as being in N1(v) but have at least
one neighbor in N1(v). All this can be done within the planar graph in-
duced by N [v], using the already marked N1(v)-vertices, in time O(deg(v)).
Finally, N3(v) simply consists of vertices from the first level that are neither
marked being in N1(v) nor marked being in N2(v). In summary, this shows
that for a vertex v the sets N1(v), N2(v), and N3(v) can be constructed in
time O(deg(v)).
Once having determined these three sets, the sizes of which all are bounded
by deg(v), it is clear that the possible removal of vertices from N2(v) and
N3(v) and the addition of a vertex and an edge as required by Rule 1 all
can be done in time O(deg(v)). Finally, it remains to analyze the overall
complexity of this procedure when going through all n vertices of G = (V, E).
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Figure 2: The left-hand side shows the partitioning of a neighbor-
hood N(v, w) of two vertices v and w. The right-hand side shows the result
of applying Rule 2, Case 2 to this particular (sub)graph.

But this is easy. The running time can be bounded by
∑

v∈V O(deg(v)).
Since G is planar, this sum is bounded by O(n), i.e., the whole reduction
takes linear time.
For general graphs, the method described above leads to a worst-case cubic
time implementation of Rule 1. Here, one ends up with the sum

∑

v∈V

O((deg(v))2) = O(n3).

Note that the size of the graph that is induced by the neighborhood N [v]
again is relevant for the time needed to determine the sets N1(v), N2(v),
and N3(v). For general graphs, this neighborhood may contain O((deg(v))2)
many edges.

2.2 The Neighborhood of a Pair of Vertices

Similar to Rule 1, we explore the neighborhood set N(v, w) := N(v)∪N(w)\
{v, w} of two vertices v, w ∈ V . Analogously, we now partition N(v, w) into
three disjoint subsets N1(v, w), N2(v, w), and N3(v, w). Setting N [v, w] :=
N [v] ∪N [w], we define

N1(v, w) := {u ∈ N(v, w) : N(u) \N [v, w] 6= ∅},

N2(v, w) := {u ∈ N(v, w) \N1(v, w) : N(u) ∩N1(v, w) 6= ∅},

N3(v, w) := N(v, w) \ (N1(v, w) ∪N2(v, w)).

The left-hand diagram of Fig. 2 shows an example which illustrates the
partitioning of N(v, w) into the subsets N1(v, w), N2(v, w), and N3(v, w).
Our second reduction rule—compared to Rule 1—is slightly more compli-
cated.
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Rule 2. Consider v, w ∈ V (v 6= w) and suppose that |N3(v, w)| > 1.
Suppose that N3(v, w) cannot be dominated by a single vertex from N2(v, w)∪
N3(v, w).

Case 1 If N3(v, w) can be dominated by a single vertex from {v, w}:

(1.1) If N3(v, w) ⊆ N(v) as well as N3(v, w) ⊆ N(w):

• remove N3(v, w) and N2(v, w) ∩N(v) ∩N(w) from G and

• add two new vertices z, z′ and edges {v, z}, {w, z}, {v, z′},
{w, z′} to G.

(1.2) If N3(v, w) ⊆ N(v), but not N3(v, w) ⊆ N(w):

• remove N3(v, w) and N2(v, w) ∩N(v) from G and

• add a new vertex v′ and the edge {v, v′} to G.

(1.3) If N3(v, w) ⊆ N(w), but not N3(v, w) ⊆ N(v):

• remove N3(v, w) and N2(v, w) ∩N(w) from G and

• add a new vertex w′ and the edge {w, w′} to G.

Case 2 If N3(v, w) cannot be dominated by a single vertex from {v, w}:

• remove N3(v, w) and N2(v, w) from G and

• add two new vertices v′, w′ and edges {v, v′}, {w, w′} to G.

Clearly, Cases (1.2) and (1.3) are symmetric to each other. Again, the
newly added vertices v′ and w′ of degree one act as gadgets that enforce us
to take v or w into an optimal dominating set. A special situation is given
in Case (1.1). Here, the gadget added to the graph G simulates that at least
one of the vertices v or w has to be taken into an optimal dominating set.

Example 2. Fig 2 shows an application of Rule 2, Case 2.

Lemma 3. Let G = (V, E) be a graph and let G′ = (V ′, E′) be the resulting
graph after having applied Rule 2 to G. Then γ(G) = γ(G′).

Proof. Similar to the proof of Lemma 1, we observe that vertices from
N3(v, w) can only be dominated by vertices from M := {v, w} ∪N2(v, w) ∪
N3(v, w). All cases in Rule 2 are based on the fact that N3(v, w) needs
to be dominated. All cases only apply if there is not a single vertex in
N2(v, w) ∪N3(v, w) which dominates N3(v, w).
We first of all discuss the correctness of Case (1.2) (and similarly obtain the
correctness of the symmetric Case (1.3)): If v dominates N3(v, w) (and w
does not) then it is optimal to take v into the dominating set—and at
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the same time still leave the option of taking vertex w—than to take any
combination of two vertices x, y from the set M \ {v}. It may be that we
still have to take w to get a minimum dominating set, but in any case v
and w dominate at least as many vertices as x and y. The “gadget edge”
{v, v′} simulates the effect of taking v. It is safe to remove R := (N2(v, w)∩
N(v))∪N3(v, w) since, by taking v into the dominating set, all vertices in R
are already dominated and since, as discussed above, it is always at least as
good to take v into a minimum dominating set than to take any other of
the vertices from M .
In the situation of Case (1.1), we can dominate N3(v, w) by both either v
or w. Since we cannot decide at this point which of these vertices should be
chosen to be in the dominating set, we use the gadget with vertices z and z′

which simulates a choice between v or w, as can be seen easily. In any case,
however, it is at least as good to take one of the vertices v and w (maybe
both) than to take any other two vertices from M . The argument for this
is similar to the one for Case (1.2). The removal of N3(v, w) ∪ (N2(v, w) ∩
N(v) ∩ N(w)) is safe by a similar argument as the one that justified the
removal of R in Case (1.2).
Finally, in Case 2, we clearly need at least two vertices to dominate N3(v, w).
Since N(v, w) ⊇ N(x, y) for all pairs x, y ∈M it is optimal to take v and w
into the dominating set, simulated by the gadgets {v, v′} and {w, w′}. As
in the previous cases the removal of N3(v, w) ∪N2(v, w) is safe since these
vertices are already dominated and since these vertices need not be used for
an optimal dominating set.

It is easy to see that applying the reduction rules to planar graphs always
results in a planar graph again. This is due to the fact that the removal
of vertices and edges does not affect planarity and the gadget vertices (and
edges) that are introduced by Rules 1 and 2 clearly can be drawn without
causing edge crossings. Here, only Case (1.1) of Rule 2 needs a little care:
Since N3(v, w) ⊆ N(v) as well as N3(v, w) ⊆ N(w), the removal of N3(v, w)
provides “space” for the (clearly planar) gadget drawn between v and w
without any edge crossings.

Lemma 4. Rule 2 can be carried out in time O(n2) for planar graphs and
in time O(n4) for general graphs.

Proof. To prove the time bounds for Rule 2, basically the same ideas as for
Rule 1 apply (cf. proof of Lemma 2). Instead of a depth two search tree, one
now has to argue on a search tree where the levels indicate the minimum
of the distances to vertex v or w. Hence, we associate the vertices v and w
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to the root of this search tree. The first level consists of all vertices that
lie in N(v, w) (i.e., at distance one from either of the vertices v or w).
Determining the subset N1(v, w) means to check whether some vertex on
the first level has a neighbor on the second level. We do the same kind of
construction as in Lemma 2. The running time again is determined by the
size of the subgraph induced by the vertices that correspond to the root
and the first level of this search tree, i.e., by G[N [v, w]] in this case. For
planar graphs, we have |G[N [v, w]]| = O (deg(v) + deg(w)). Hence, we get
∑

v,w∈V O (deg(v) + deg(w)) as an upper bound on the overall running time
in the case of planar graphs. Making use of the fact that

∑

v∈V deg(v) =
O(n) for planar graphs, this is upperbounded by

O





∑

v,w∈V

deg(v) +
∑

v,w∈V

deg(w)



 = O(n2).

In case of general graphs, we have |G[N [v, w]]| = O
(

(deg(v) + deg(w))2
)

,
which trivially yields the upper bound

∑

v,w∈V

O((deg(v) + deg(w))2) = O(n4)

for the overall running time.

We remark that the running times given in Lemmas 2 and 4 are pure worst-
case estimates and turn out to be much lower in our experimental studies [2].
In particular, for practical purposes it is important to see that Rule 2 can
only be applied for vertex pairs that are at distance at most three. The
algorithms implementing these rules appear to be much faster (see the Sec-
tion 4).

2.3 Reduced Graphs

We say that an application of a reduction rule leaves the graph unchanged
if the “new” graph after applying the rule is isomorphic to the old one.
Clearly, we are only interested in applications of the reduction rules that
change the graph:

Definition 1. Let G = (V, E) be a graph such that both the application of
Rule 1 and the application of Rule 2 leave the graph unchanged. Then we
say that G is reduced with respect to these rules.
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Observing that the (successful) application of any reduction rule always
“shrinks” the given graph implies that there can be only O(|E|) successful
applications of reduction rules. This leads to the following.

Theorem 1. A graph G can be transformed into a reduced graph G′ with
γ(G) = γ(G′) in O(n3) time in the planar case and in O(n6) time in the
general case.

Proof. We prove the general statement that for a graph with m edges there
can be at most O(m) successful applications of reduction rules. The decisive
claim we show is that after one application of Rule 1 or Rule 2 which changes
the graph the resulting graph has at most the same number of vertices but
at least one edge less than before the application of the rule.
Note that it is easy to verify that the total number of vertices never increases
by applying the reduction rules. Now we go through Rule 1 and the various
subcases of Rule 2, checking the validity of our claim. As to Rule 1, a change
only occurs if there is more than one vertex affected by the rule—this means
that more than one vertex and at least two edges are removed, whereas one
vertex and one edge are newly introduced by the gadget.
Cases (1.2) and (1.3) of Rule 2 trivially fulfill the claim since only one gadget
vertex and one gadget edge are introduced but at least two N3(v, w) vertices
together with at least two incident edges are deleted. The validity of Case 2
of Rule 2 also follows easily because clearly the rule never adds more than
it deletes—at least two vertices together with their edges are removed. If a
change takes place, however, more edges will be removed.
Finally, concerning Case (1.1) of Rule 2 we can observe that, although the
gadget introduces two more vertices and four more edges, at least the same
number of vertices and more than four edges are deleted. This is true because
if this case applies then at least two N3(v, w) vertices with edges to v as well
as w each must exist. These and at least one additional edge will be deleted
if a change takes place (otherwise, there were no change).
This concludes the proof of the claim and the theorem follows by Lemmas 2
and 4 noting that m = O(n) for planar graphs and m = O(n2) for general
graphs.

In the next section, we will make use of the following observations.

Remark 1. A graph G = (V, E) which is reduced with respect to reduction
Rules 1 and 2 has the following properties:

1. For all v ∈ V , the set N3(v) is always empty (these vertices are removed
by Rule 1) except for it may contain a single gadget vertex of degree
one.
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2. For all v, w ∈ V , there exists a single vertex in N2(v, w) ∪ N3(v, w)
which dominates all vertices N3(v, w) (in all other cases Rule 2 is
applied).

3 A Linear Problem Kernel for Planar Graphs

Here, we show that the reduction rules given in Section 2 yield a linear
size problem kernel for dominating set on planar graphs. Such a re-
sult is very unlikely to hold for general graphs, since dominating set is
W[2]-complete and the existence of a (linear) problem kernel implies fixed-
parameter tractability.

Theorem 2. For a planar graph G = (V, E) which is reduced with respect
to Rules 1 and 2, we get |V | ≤ 335 ·γ(G), i.e., the dominating set problem
on planar graphs admits a linear problem kernel.

The rest of this section is devoted to the proof of Theorem 2. The proof can
be split into two parts. In a first step, we try to find a so-called “maximal
region decomposition” of the vertices V of a reduced graph G. In a second
step, we show, on the one hand, that such a maximal region decomposition
must contain all but O(γ(G)) many vertices from V . On the other hand,
we prove that such a region decomposition uses at most O(γ(G)) regions,
each of which containing at most O(1) vertices. Combining the results then
yields |V | = O(γ(G)).
The notion of “region decompositions” heavily relies on the planarity of our
input graph and cannot be carried over to general graphs.

3.1 Finding a Maximal Region Decomposition

Suppose that we have a reduced planar graph G with a minimum dominating
set D. We know that, in particular, neither Rule 1 applies to a vertex v ∈ D
nor Rule 2 applies to a pair of vertices v, w ∈ D. We want to get our hands
on the number of vertices which lie in neighborhoods N(v) for v ∈ D, or
neighborhoods N(v, w) for v, w ∈ D. A first idea to prove that |V | = O(|D|)
would be to find (ℓ = O(|D|) many) neighborhoods N(v1, w1), . . . , N(vℓ, wℓ)
with vi, wi ∈ D such that all vertices in V lie in at least one such neigh-
borhood; and then use the fact that G is reduced in order to prove that
each N(vi, wi) has size O(1). Even if the graph G is reduced, however, the
neighborhoods N(v, w) of two vertices v, w ∈ D may contain many vertices:
the size of N(v, w) in a reduced graph basically depends on how big N1(v, w)
is.
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In order to circumvent these difficulties, we define the concept of a re-
gion R(v, w) for which we can guarantee that in a reduced graph it consists
of only a constant number of vertices.

Definition 2. Let G = (V, E) be a plane6 graph. A region R(v, w) between
two vertices v, w is a closed subset of the plane with the following properties:

1. the boundary of R(v, w) is formed by two simple paths P1 and P2 in V
which connect v and w, and the length of each path is at most three7,
and

2. all vertices which are strictly inside8 the region R(v, w) are from N(v, w).

For a region R = R(v, w), let V (R) denote the vertices belonging to R, i.e.,

V (R) := {u ∈ V | u sits inside or on the boundary of R}.

In the following, the boundary of a region R will be denoted by ∂R.

Definition 3. Let G = (V, E) be a plane graph and D ⊆ V . A D-region
decomposition of G is a set R of regions between pairs of vertices in D such
that

1. for R(v, w) ∈ R no vertex from D (except for v, w) lies in V (R(v, w))
and

2. for two regions R1, R2 ∈ R, it holds (R1 ∩R2) ⊆ (∂R1 ∪ ∂R2).

For a D-region decomposition R, we define V (R) :=
⋃

R∈R V (R). A D-
region decomposition R is called maximal if there is no region R /∈ R such
that R′ := R ∪ {R} is a D-region decomposition where V (R) is a strict
subset of V (R′).

For an example of a (maximal) D-region decomposition we refer to the left-
hand side diagram of Fig. 3.
We will show that, for a given graph G with dominating set D, we can always
find a maximal D-region decomposition with at most O(γ(G)) many regions.
For that purpose, we observe that a D-region decomposition induces a graph
in a very natural way.

6A plane graph is a particular planar embedding of a planar graph.
7The length of a path is the number of edges on it.
8By “strictly inside the region R(v, w)” we mean lying in the region, but not sitting on

the boundary of R(v, w).
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Figure 3: The left-hand side diagram shows an example of a possible D-
region decomposition R of some graph G, where D is the subset of vertices
in G that are drawn in black. The various regions are highlightened by
different patterns. The remaining white areas are not considered as regions.
The given D-region decomposition is maximal. The right-hand side shows
the induced graph GR (Definition 4).

Definition 4. The induced graph GR = (VR, ER) of a D-region decompo-
sition R of G is the graph with possible multiple edges which is defined by
VR := D and

ER := {{v, w} | there is a region R(v, w) ∈ R between v, w ∈ D}.

Note that, by Definition 3, the induced graph GR of a D-region decomposi-
tion is planar. For an example of an induced graph GR see Fig. 3.

Definition 5. A planar graph G = (V, E) with multiple edges is thin if there
exists a planar embedding such that no two multiedges are homotopic: This
means that if there are two edges e1, e2 between a pair of distinct vertices
v, w ∈ V , then there must be two further vertices u1, u2 ∈ V which sit inside
the two disjoint areas of the plane that are enclosed by e1, e2.

The induced graph GR in Fig. 3 is thin.

Lemma 5. For a thin planar graph G = (V, E) we have |E| ≤ 3|V | − 6.

Proof. The claim is true for planar graphs without multiple edges. We prove
the claim by an induction on the number ℓG of multiple edges in G. More
precisely, for a graph G = (V, E) with multiple edges (i.e., E is a multiset),
we let

ℓG :=
1

2





∑

v,w∈V

(

(
∑

{v,w}∈E

1)− 1
)
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For ℓG = 0, the claim is true, since a planar graph (without multiple edges)
has at most 3|V | − 6 edges. Now, suppose the claim is true for all graphs
which have at most ℓG multiple edges. Consider a planar graph G = (V, E)
with ℓG + 1 multiple edges. Choose a pair of vertices v, w ∈ V which is
connected by at least two edges e1, e2 ∈ E. Since G is thin, we may consider a
planar embedding, in which e1 and e2 are not homotopic. Let G1 = (V1, E1)
be the subgraph of G which consists of the vertices v, w, the edge e1 and
all vertices and edges that sit strictly inside the area A of the plane that is
enclosed by e1 and e2. Similarly, let G2 = (V2, E2) be the subgraph of G
which consists of the vertices v, w, the edge e2 and all vertices and edges
that sit strictly outside the area A. Hence, we have |E| = |E1| + |E2| and
|V | = |V1| + |V2| − 2. Since, by construction, ℓG1

, ℓG2
< ℓG, the induction

hypothesis yields

|E| = |E1|+ |E2|

≤ (3|V1| − 6) + (3|V2| − 6)

= 3|V | − 6.

Using the notion of thin graphs, we can formulate the main result of this
subsection.

Proposition 1. For a reduced plane graph G with dominating set D, there
exists a maximal D-region decomposition R such that GR is thin.

Proof. We give a constructive proof on how to find a maximal D-region
decomposition R of a plane graph G such that the induced graph GR is
thin. Consider the algorithm presented in Fig. 4. It is obvious that the
algorithm returns a D-region decomposition, since—by construction—we
made sure that regions are between vertices in D, that regions do not contain
vertices from D, and that regions do not intersect. Moreover, the D-region
decomposition obtained by the algorithm is maximal: If a vertex u does not
belong to a region, i.e., if u /∈ Vused, then the algorithm eventually checks,
whether there is a region Su such that R∪{Su} is a D-region decomposition.
It remains to show that the induced graph GR of the D-region decomposi-
tion R found by the algorithm is thin. We embed GR in the plane in such
a way that an edge belonging to a region R ∈ R is drawn inside the area
covered by R. To see that the graph is thin, we have to show that, for every
multiple edge e1, e2 (belonging to two regions R1, R2 ∈ R that were chosen
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region decomp(plane graph G = (V, E), vertex subset D ⊆ V )

// Returns a D-region decomposition R for G such that
// the induced graph GR is thin.

• Let Vused ← ∅; R ← ∅.

• For all u ∈ V do

– If ((u /∈ Vused) and (u ∈ V (R) for some region R = R(v, w) between
two vertices v, w ∈ D such that R∪{R} is a D-region decomposition))
then

∗ Consider the set Ru of all regions S with the following properties:a

1. S is a region between v and w.

2. S contains u.

3. no vertex from D \ {v, w} is in V (S).

4. S does not cross any region from R, i.e., (S ∩R) ⊆ (∂S ∪ ∂R)
for all R ∈ R.

∗ Choose a region Su ∈ Ru which is maximal in space.b

∗ R ← R∪ {Su}.

∗ Vused ← Vused ∪ V (Su).

• Return R.

aThese four properties ensure that R ∪ {S} is a D-region decomposition for every
S ∈ Ru.

bA region Su is maximal in space if S′ ⊇ Su for any S′ ∈ Ru implies S′ = Su.

Figure 4: Greedy-like construction of a maximal D-region decomposition.

at some point of the algorithm) between two vertices v, w ∈ D, there exist
two vertices u1, u2 ∈ D which lie inside the areas enclosed by e1, e2. Let A
be such an area. Suppose that there is no vertex u ∈ D in A. We distin-
guish two cases. Either there is also no vertex from V \ D in A or there
are other vertices V ′ from V \D inside A. In the first case, by joining the
regions R1 and R2 we obtain a bigger region which fulfills all the four condi-
tions checked by the algorithm in Fig. 4, a contradiction to the maximality
of R1 and R2. In the second case, since D is assumed to be a dominating
set, the vertices in V ′ need to be dominated by D. Since v, w are the only
vertices from D which are part of A, R1 or R2, the vertices in V ′ need to be
dominated by v, w, hence they belong to N(v, w). But then again by joining
the regions R1 and R2 we obtain a bigger region which again fulfills all the
four conditions of the algorithm in Fig. 4, a contradiction to the maximality
of R1 and R2.
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3.2 Region Decompositions and the Size of Reduced Planar

Graphs

Suppose that we are given a reduced plane graph G = (V, E) with a mini-
mum dominating set D. Then, by Proposition 1 and Lemma 5, we can find
a maximal D-region decomposition R of G with at most O(γ(G)) regions.
In order to see that |V | = O(γ(G)), it remains to show that

1. there are at most O(γ(G)) vertices which do not belong to any of the
regions in R, and that

2. every region of R contains at most O(1) vertices.

These issues are treated by the following two propositions.
We first of all state two technical lemmas, one which characterizes an im-
portant property of a maximal region decomposition and another one which
gives an upper bound on the size of a special type of a region.

Lemma 6. Let G be a reduced plane graph with a dominating set D and
let R be a maximal D-region decomposition. If u ∈ N1(v) for some ver-
tex v ∈ D then u ∈ V (R).

Proof. In the following, we say that an edge crosses a region R, if the edge
lies (possibly except for its endpoints) strictly inside R. Similarly we say
that a path crosses a region R if at least one edge of the path crosses R.
Let u ∈ N1(v) for some v ∈ D and assume that u /∈ V (R). By definition
of N1(v), there exists a vertex u′ ∈ N(u) with u′ /∈ N [v]. We distinguish
two cases. Either u′ ∈ D or u′ needs to be dominated by a vertex w ∈ D
with w 6= v. If u′ ∈ D, we consider the (degenerated) region consisting of
the path {v, u, u′}. Since R is assumed to be maximal, this path must cross
a region R ∈ R. But this implies that u ∈ V (R), a contradiction.
In the second case, we consider the (degenerated) region consisting of the
path 〈v, u, u′, w〉. Again, by maximality of R, this path must cross a re-
gion R = R(x, y) ∈ R between two vertices x, y ∈ D. Since, by assumption,
u /∈ V (R), neither the edge {v, u}, nor the edge {u, u′} can cross R. This
implies that the edge {u′, w} crosses R. From this we know that w lies on
the boundary of or inside R and, hence, w ∈ V (R). However, according to
the definition of a D-region decomposition, the only vertices from D that
are in V (R) are x, y. Hence, w.l.o.g., x = w. At the same time u′ must lie
on the boundary of R, otherwise u ∈ V (R). By definition of a region, there
exists path P of length at most three between w and y that goes through u′

and that is part of the boundary of R. Observe that u′ 6= y, since y ∈ D and
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Figure 5: Simple regions of Type 0, Type 1, Type 2. This figure illustrates
the largest possible simple regions in a reduced graph. Vertices marked with
horizontal lines are in N1(v, w), vertices marked with vertical lines belong
to N2(v, w), and white vertices are in N3(v, w).

we assume that u′ /∈ D. We claim, however, that u′ is a neighbor of y: To
see this, observe that, the edge {w, u′} cannot be part of P , since we already
know that this edge crosses R. As a consequence, the path P uses more than
one edge in order to reach u′ from w. On the other hand, since u′ 6= y, and
P has length at most three, we know that the path P (between w and y)
uses exactly two edges to reach u′ from w. This, however, implies that u′ is
a neighbor of y as claimed. But then, the (degenerated) region R′ consist-
ing of the path {v, u, u′, y} is a region between two vertices v and y in D,
which does not cross (it only touches R) any region in R. For the D-region
decomposition R′ := R ∪ {R′}, we have u ∈ V (R′) \ V (R), contradicting
the maximality of R.

We now investigate a special type of a region specified by the following
definition.

Definition 6. A region R(v, w) between two vertices v, w ∈ D is called sim-
ple if all vertices contained in R(v, w) except for v, w are common neighbors
of both v and w, i.e., if (V (R(v, w)) \ {v, w}) ⊆ N(v) ∩N(w).
Let v, u1, w, u2 be the vertices that sit on the boundary of the simple re-
gion R(v, w), when walking along the boundary in clockwise order. We
say that R(v, w) is a simple region of Type i (0 ≤ i ≤ 2) if i vertices
from {u1, u2} have a neighbor outside R(v, w).

Lemma 7. Every simple region R of Type i of a plane reduced graph con-
tains at most 5 + 2i vertices.

Proof. Let R = R(v, w) be a simple region of Type i between vertices v
and w. We will show that |V (R)| ≤ 5 + 2i. The worst-case simple regions
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are depicted in Fig. 5. Firstly, let us count the number of vertices in V (R)
which belong to N1(v, w)∪N2(v, w). Clearly, only vertices on the boundary
(except for v and w) can have a neighbor outside R. Thus, all vertices
in N1(v, w)∩V (R) lie on the boundary of R. By definition of a simple region
of Type i, we have |N1(v, w)∩V (R)| ≤ i. Moreover, it is easy to see that, by
planarity, every vertex in N1(v, w)∩V (R) can contribute at most one vertex
to N2(v, w) ∩ V (R). Hence, we get |(N1(v, w) ∪N2(v, w)) ∩ V (R)| ≤ 2i
Secondly, we determine the number of vertices in N3(v, w)∩V (R). Since G is
reduced, by Remark 1, we know that these vertices need to be dominated by
a single vertex in N2(v, w)∪N3(v, w). Moreover, since the region is simple,
all vertices in N3(v, w)∩V (R) are neighbors of both v and w. By planarity,
it follows that there can be at most 3 vertices in N3(v, w) ∩ V (R).
In summary, together with the vertices v, w ∈ V (R), we get |V (R)| ≤ 5 +
2i.

We use Lemmas 6 and 7 for the following two proofs.

Proposition 2. Let G = (V, E) be a plane reduced graph and let D be
a dominating set of G. If R is a maximal D-region decomposition then
|V \ V (R)| ≤ 2|D|+ 56|R|.

Proof. We claim that every vertex u ∈ V \ V (R) is either a vertex in D or
belongs to a set N2(v)∪N3(v) for some v ∈ D. To see this, suppose that u /∈
D. But since D is a dominating set, we know that u ∈ N(v) = N1(v) ∪
N2(v) ∪N3(v) for some vertex v ∈ D. Since R is assumed to be maximal,
by Lemma 6, we know that N1(v) ⊆ V (R). Thus, u ∈ N2(v) ∪N3(v).
For a vertex v ∈ D, let N∗

2 (v) = N2(v) \ V (R). The above observation
implies that V \ V (R) ⊆ D ∪ (

⋃

v∈D N3(v)) ∪ (
⋃

v∈D N∗
2 (v)).

We, firstly, upperbound the size of
⋃

v∈D N3(v). Since, by Remark 1, |N3(v)| ≤
1, we get |

⋃

v∈D N3(v)| ≤ |D|.
We now upperbound the size of N∗

2 (v) for a given vertex v ∈ D. To this
end, for a vertex v ∈ D, let N∗

1 (v) be the subset of N1(v) which sit on the
boundary of a region inR. It is clear that N∗

2 (v) ⊆ N(v)∩N(N∗
1 (v)). Hence,

we investigate the set N∗
1 (v). Suppose that R(v, w1), . . . , R(v, wℓ) are the

regions between v and some other vertices wi ∈ D, where ℓ = degGR(v) is
the degree of v in the induced region graph GR. Then, every region R(v, wi)
can contribute at most two vertices u1

i , u
2
i to N∗

1 (v), i.e., in the worst-case,

we have N∗
1 (v) =

⋃ℓ
i=1{u

1
i , u

2
i } with u1

i , u
2
i ∈ V (R(v, wi)), i.e., |N∗

1 (v)| ≤
2 degGR(v). We already observed that every vertex in N∗

2 (v) must be a
common neighbor of v and some vertex in N∗

1 (v). We claim that, moreover,
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the vertices in N∗
2 (v) can be grouped into various simple regions. More

precisely, we claim that there exists a set Sv of simple regions such that

1. every S ∈ Sv is a simple region between v and some vertex in N∗
1 (v),

2. N∗
2 (v) ⊆

⋃

S∈Sv
V (S), and

3. |Sv| ≤ 2 · |N∗
1 (v)|.

The idea for the construction of the set Sv is similar to the greedy-like con-
struction of a maximal region decomposition (see Fig. 4). Starting with Sv

as empty set, one iteratively adds a simple region S(v, x) between v and
some vertex x ∈ N∗

1 (v) to the set Sv in such a way that (1) Sv ∪ {S(v, x)}
contains more N∗

2 (v)-vertices than Sv, (2) S(v, x) does not cross any region
in Sv and (3) S(v, x) is maximal (in space) under all simple regions S be-
tween v and x that do not cross any region in Sv. The fact that we end up
with at most 2 · |N∗

1 (v)| many regions can be seen as follows. Consider the
induced graph GSv

, which has the set {v} ∪N∗
1 (v) as vertices and an edge

between v and a vertex u ∈ N∗
1 (v) if and only Sv contains a simple region

between v and u. In other words, GSv
is a star with possible multiple edges.

Since, by construction, all simple regions were chosen maximal in space, the
graph GSv

is thin. It is not hard to see that a thin star on n + 1 vertices
can have at most 2n edges. In particular, this shows that GSv

has at most
2 · |N∗

1 (v)| edges, i.e., |Sv| ≤ 2 · |N∗
1 (v)|.

Since, by Lemma 7, every simple region S(v, x) with x ∈ N∗
1 (v) contains

at most seven vertices—not counting the vertices v and x which clearly
cannot be in N∗

2 (v)—we conclude that |N∗
2 (v)| ≤ 7 · |Sv| ≤ 14 · |N∗

1 (v)| ≤ 28 ·
degGR(v). From the fact that V \V (R) ⊆ D∪(

⋃

v∈D N3(v))∪(
⋃

v∈D N∗
2 (v))

(see above) we then get

|V \V (R)| ≤ |D|+|D|+
∑

v∈D

|N∗
2 (v)| ≤ 2·|D|+28

∑

v∈D

degGR(v) ≤ 2·|D|+56·|R|.

We now investigate the maximal size of a region in a reduced graph. The
worst-case scenario for a region in a reduced graph is depicted in Fig. 6.

Proposition 3. A region R of a plane reduced graph contains at most
55 vertices, i.e., |V (R)| ≤ 55.

Proof. Let R = R(v, w) be a region between vertices v, w ∈ V . As in the
proof of Lemma 7, we count the number of vertices in V (R) ⊆ N [v, w] which
belong to N1(v, w), N2(v, w), and N3(v, w), separately.



Journal of the ACM, Vol. 51(3), pp. 363–384, 2004

3 A LINEAR PROBLEM KERNEL FOR PLANAR GRAPHS 22

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

����������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������
����������
����������

����������
����������
����������

����������
����������
����������

����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

Type 1:

Type 2:

Worst-case scenario for a region R(v, w): Simple regions S(x, y):

y

wd

u3 u4

u2

v

u1

xy

x

Figure 6: The left-hand diagram shows a worst-case scenario for a re-
gion R(v, w) between two vertices v and w in a reduced planar graph (cf.
the proof of Proposition 3). Such a region may contain up to four vertices
from N1(v, w), namely u1, u2, u3, and u4. The vertices from R(v, w) which
belong to the sets N2(v, w) and N3(v, w) can be grouped into so-called sim-
ple regions of Type 1 (marked with a line-pattern) or of Type 2 (marked
with a crossing-pattern); the structure of such simple regions S(x, y) is
given in the right-hand part of the diagram. In R(v, w) there might be
two simple regions S(d, v) and S(d, w) (of Type 2), containing vertices
from N3(v, w). And, we can have up to six simple regions of vertices
from N2(v, w): S(u1, v), S(v, u3), S(u4, w), S(w, u2), S(u2, v), and S(u4, v)
(among these, the latter two can be of Type 2 and the others are of Type 1).
See the proof of Proposition 3 for details.

We start with the number of vertices in N3(v, w)∩V (R). Since the graph is
assumed to be reduced, by Remark 1, we know that all vertices in N3(v, w)
need to be dominated by a single vertex from N2(v, w) ∪N3(v, w). Denote
by d the vertex which dominates all vertices in N3(v, w). Since all vertices
in N3(v, w) are also dominated by v or w, we may write N3(v, w) = S(d, v)∪
S(d, w) where S(d, v) ⊆ N(d) ∩ N(v) and S(d, w) ⊆ N(d) ∩ N(w). In this
way, S(d, v) and S(d, w) form simple regions between d and v, and d and w,
respectively. In Fig. 6 these simple regions S(d, v) and S(d, w) (of Type
2) are drawn with a crossing pattern. By Lemma 7 we know that S(d, v)
and S(d, w) both contain at most seven vertices each, not counting the
vertices d, v and d, w, respectively. Since d maybe from N3(v, w), we obtain
|N3(v, w) ∩ V (R)| ≤ 2 · 7 + 1 = 15.
It is clear that vertices in N1(v, w)∩V (R) need to be on the boundary of R,
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since, by definition of N1(v, w), they have a neighbor outside N(v, w). The
region R is enclosed by two paths P1 and P2 between v and w of length at
most three each. Hence, there can be at most four vertices in N1(v, w) ∩
V (R), where this worst-case holds if P1 and P2 are disjoint and have length
exactly three each. Consider Fig. 6, which shows a region enclosed by two
such paths. Suppose that the four vertices on the boundary besides v and w
are u1, u2, u3, and u4.
Finally, we count the number of vertices in N2(v, w)∩V (R). It is important
to note that, by definition of N2(v, w), every such vertex needs to have a
neighbor in N1(v, w) and at the same time needs to be a neighbor of ei-
ther v or w (or both). Hence, N2(v, w) =

⋃4
i=1(S(ui, v) ∪ S(ui, w)), where

S(ui, v) ⊆ N(ui)∩N(v) and S(ui, w) ⊆ N(ui)∩N(w). All the sets S(ui, v)
and S(ui, w), where 1 ≤ i ≤ 4, form simple regions inside R. Due to pla-
narity, however, there cannot exist all eight of these regions. In fact, in order
to avoid crossings, the worst-case scenario is depicted in Fig. 6 where six of
these simple regions exist (they are drawn with a line-pattern in the figure).9

Concerning the type of these simple regions, it is not hard to verify, that
in the worst-case there can be two among these six regions of Type 2, the
other four of them being of Type 1. In Fig. 6, the simple regions S(u2, v)
and S(u4, v) are of Type 2 (having two connections to vertices outside
the simple region), and the simple regions S(u1, v), S(u2, w), S(u3, v), and
S(u4, w) are of Type 1 (having only one connection to vertices outside the
region; a second connection to vertices outside the region is not possible
because of the edges {u1, v}, {u2, w}, {u3, v}, and {u4, w}). In summary,
the worst-case number of vertices in N2(v, w)∩ V (R) is given by four times
the number of vertices of a simple region of Type 1 and two times the
number of vertices of a simple region of Type 2; each time, of course, ex-
cluding vertices from {u1, u2, u3, u4, v, w}. By Lemma 7 this amounts to
|N2(v, w) ∩ V (R)| ≤ 4 · (3 + 2 · 1) + 2 · (3 + 2 · 2) = 34.10

The claim now follows from the fact that V (R) = {v, w}∪(V (R)∩N3(v, w))∪
(V (R)∩N1(v, w))∪(V (R)∩N2(v, w)), which yields |V (R)| = 2+15+4+34 =
55.

In summary, in order to prove Theorem 2 we first of all observe that, for a
graph G with minimum dominating set D, by Proposition 1 and Lemma 5,
we can find a D-region decomposition R of G with at most 3γ(G) regions,

9Observe that regions S(u1, w) and S(u3, w) would cross the regions S(u2, v)
and S(u4, v), respectively.

10Note that for the size of, e.g., a region S(ui, v) we do not have to count ui and v,
since they are not vertices in N2(v, w).
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i.e., |R| ≤ 3γ(G). By Proposition 3, we know that |V (R)| ≤
∑

R∈R |V (R)| ≤
55|R|. By Proposition 2, we have |V \ V (R)| ≤ 2|D|+ 56|R|. Hence, we get
|V | ≤ 2|D|+ 111|R| ≤ 335 γ(G).

4 Concluding Remarks

In this work, two lines of research meet. On the one hand, there is Dominat-
ing Set, one of the NP-complete core problems of combinatorial optimiza-
tion and graph theory. On the other hand, the second line of research is that
of algorithm engineering and, in particular, the power of data reduction by
efficient preprocessing. Presenting two simple and easy to implement reduc-
tion rules for Dominating Set, we proved that for planar graphs a linear
size problem kernel can be efficiently constructed. Our result complements
and partially improves previous results [3, 4, 5, 6, 24, 31] on the parame-
terized complexity of Dominating Set on planar graphs. We emphasize
that the proven bound on the problem kernel size is a pure worst-case upper
bound. In practice, we obtained much smaller problem kernels (see below).
An immediate open question is to further lower the worst-case upper bound
on the size of the problem kernel, improving the constant factor to values say
around 10. This would bring the problem kernel for Dominating Set on
planar graphs into “dimensions” as known for Vertex Cover, where it is of
“optimal” size 2k [12]. This could be done by either improving the analysis
given or (more importantly) further improving the given reduction rules or
both. Improving the rules might be done by further extending the concept
of neighborhood to more than two vertices. From a practical point of view,
however, one also has to take into account to keep the reduction rules as
simple as possible in order to avoid inefficiency due to increased overhead.
It might well be the case that additional, more complicated reduction rules
only improve the worst-case bounds, but are of little or no practical use due
to their computational overhead. A question that deserves further attention,
however, is to find out whether by the use of dynamic graph data structures
or other implementation tricks the worst-case time complexity of our rules
can be significantly improved.
It might be interesting to see whether similar reduction rules with a provable
guarantee on the size of the reduced instances can also be found for variations
of dominating set problem, such as total dominating set, or perfect
dominating set (see [38] for a description of such variants). The study
of preprocessing by reduction rules is valuable for various other problems
(see [23] for a recent survey).
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Finally, we mention that the techniques in this paper are of a topological
nature and might carry over to prove a similar result (including, however,
the genus into the linear size factor for the problem kernel) for dominating
set on graphs of bounded genus. Recently, there has been increased interest
in solving domination-like problems on somewhat more general graph classes
than planar ones—cf., e.g., [13, 14, 15, 19, 24, 25]. In particular, an open
question is whether a linear problem kernel can also be proven for other
graph classes such as, e.g., disk intersection graphs, for which the parame-
terized complexity of dominating set is not known (see [?]). Altogether,
we would like to emphasize that basically all the cited work on domination-
like problems on planar and related graphs seems to be of purely theoretical
nature with so far no impact in practical computing. By way of contrast,
our work delivers easy to implement reduction rules whose value has been
proven in experimental work [2].

Experimental studies. We briefly report on the efficiency of the given
reduction rules in some experiments with random planar graphs. More
experimental results in particular with respect to “Internet graphs” can
be found in [2]. The performance of the preprocessing was measured on a
set of combinatorial random planar graphs of various sizes. These graphs
have been generated with the standard function provided by the algorithm
library LEDA [33].11 More precisely, we created eight sample sets of 100
random planar graphs each, containing instances with 100, 500, 750, 1000,
1500, 2000, 3000, and 4000 vertices. The preprocessing seems, at least on
the given random sample sets, to be very effective. As a general rule of
thumb, we may say that, in all of the cases,

• more than 79% of the vertices and

• more than 88% of the edges

were removed from the graph. Moreover, the reduction rules determined a
very high percentage (for all cases approximately 89%) of the vertices of an
optimal dominating set. The overall running time for the reduction ranged
from less than one second (for small graph instances with 100 vertices) to
around 30 seconds (for larger graph instances with 4000 vertices).
We remark that, in our experiments, we used a slight modification of the
reduction rules: Formally, when Rule 1 or Rule 2 is applied and some vertex v

11For each instance with n vertices, first a “maximal planar graph” with 3n − 6 edges
is randomly generated, then a number m between n − 1 and 3n − 6 is randomly chosen
and all but m edges are removed from the graph. We remark that this method does not
generate graphs according to the uniform distribution (see [33] for details).
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is determined to belong to an optimal dominating, the reduction rules attach
a gadget vertex v′ of degree one to v. In our setting, we simply removed
the vertex v from the graph and “marked” its neighbors as being already
dominated. In this sense, we dealt with an annotated version of dominating
set, where the input instances are black-and-white graphs consisting of two
types of vertices: black vertices which still need to be dominated; and white
vertices which are assumed to be already dominated. A slight modification
makes Rule 1 and Rule 2 applicable to such instances as well.
Finally, we enriched our reduction rules by further heuristics. We addition-
ally used three (very simple) extra rules that were presented in the search
tree algorithm in [4]. These extra rules are concerned with the removal of
white vertices in such black-and-white graphs for the annotated version of
dominating set (for the details and their correctness see [4]): (1) delete a
white vertex of degree zero or one; (2) delete a white vertex of degree two if
its neighbors are at distance at most two from each other; (3) delete a white
vertex of degree three if the subgraph induced by its neighbors is connected.
Enriching our reduction rules with these extra rules led to a very powerful
data reduction on our set of random instances described above. We observed
that in this extended setting, the running times for the data reduction went
down to less than half a second (for graphs of 100 vertices) and less than
eight seconds (for graphs of 4000 vertices) in average. Most interestingly,
the combination of these rules removed, in average,

• more than 99.7% of the vertices and

• more than 99.8% of the edges

of the original graph. A similarly high percentage of the vertices that belong
to an optimal dominating set could be detected. A more thorough discussion
of the experiments with random planar graphs can be found in [1] and
experiments with “Internet graphs” (which are sparse but not planar) can
be found in [2].
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