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Polynomial Time Inference of Extended Regular Pattern Languages

Takeshi Shinohara

Computer Center, Kyushu Unlver51ty 91,
Fukuoka. 812 Japan '

ABSTRACT
A pattern is a string of constant eymbols and variable symbols.
The language of a pettern p is the set of all strings obtained by
substituting any non-empty constant string for each variable symbol
in p. A regular pattern has at most omne occurrence of each variable
symboll The class'of'pattern langﬁages was introduced and discussed
by Angluin[Z]. In the previous paper [Shinohara, 9] we have studied
polynomlal time inference from positive data about the class of 7
' regular pattern 1anguages. R
In thls paper we con51der this problem in case of extended
.regular pattern languages which are sets of all 'strings obtalned
by substituting any {possibly empty) constant string instead of
non-eﬁpty string. Our inference procedure uses MINL calculationm,
introduced by Aﬁgluin {21, which finds a minimal language contaiming
a given finite set of strings. The relation between MINL calculation
for the class of extended regular pattern languages and the 1ongest'

common subsequence problem is also discussed.

: . B R .

There have been known two kinds of inferences, deductive
inference and inductive inference. Many stﬁdies on deductive
inference cover a wide raﬁge from theoretical problems to practicél
problems. Although some theories of inductive inference have been
developed. few of them have reached practical applications to '
computer softwares. This study presents an approach to practical

appllcatlons of inductive inference and give its theoretical basis.

P
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Inductive inference of languages, we consider in this paper,
is called "polynomial time inference from positive data." The direct
mqtivation of this research is to develop a data entry system with
learning function, proposed by Arikawal4]. The system.must infer
or learn the structure of input data from the user. The information,
the system can use, is only the input data. Hence we should consider
inference from positive data. The éompufational éoﬁplexity problem
is another important point in discusging suchrpractical problems as
the learning data entry system. Polynomial time inference is an
inference carried out by a machine which makes every guess in

polynomiél time.

It has been considered of little interest to study inference
" from positive data, since Gold[5] proved a strong theorem which
assefts»that any class of languages over an aiphabet is mot
inferrable froﬁupoéitive data if it contains all finite languages
and at least onerinfinite_language. Hence, for example, the class
of reg#lar sets is not inferfable from positive data. Recently
Angluinf[2,3] gave new.life fo the study of inferenée by.cha;acterizing
the class of . languages infe:raﬁle from positive data and presenting
interesting classes. The class of pattern languages is one of her
classes. ’ ' T |

A pattern is a string of Eonstagt symbols andrﬁariable symbols,
and the language of‘a pattern p is the set of all strings_obtained /
bj substituﬁing aﬁy ﬁgnrgmpzx constant string for each variable
symbol in p. :Shinohara[9] has shown that two suBclésses of pattern
1anguéges. named regular ﬁattérn,languages ané non-cross pattern
languages, are polynomial time inferrable from positive data. ﬁ
A regular pattern is a pattern in which each variable symbol occurs

at most once.

In this paper we first point out some problems of our previous
version of inference method and them we give a solution to them by
considering polynomial time inferrability of exﬁended regular pattein
languages. Our extensiocn is to allow the substitutions to erase
some variable symbols. For example, the extended language of a
pattern 0xl can contéin stfing "01" while the language byrAngluin

can not. The erasing variables requires a new discussion.
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The inference, we deal with here, is carried out by using MINL
calculation introduced by Angluin[2]. Hence our main attention is
paid to the time complexity of MINL calculation for the class of
extended regular pattern languages. MINL for extended regular pattern
languages finds a regular pattern which represents a minimal extended
regular pattern language containing a given non-empty finite set of
strings. We also refer to the relation between MINL caléulation for
extended regular pattern languages and the longest common subsequence
problem. Ve propose an algorithm which calculates MINL for extended
regular pattern languages in polynomial time. By using this fact,
the class of extended regular pattern languages is shown to be

polynomial time inferrable from positive data.

2. Preliminari

We begin with a brief review of our previous results.

2.1. Patterns and Their Languages

Let & be a finite set of symbols containing at least two
_symbols and let X = {X;, X9, .. } be a countable set of symbols

dféjoiﬁt from I. Elements in T are called constants and elements

" in X are called yariables. A ph;;gxn is any string over T U X.

The set (L u X)* of all patterms is demoted by P.

We say that a pattern p is regular if each variable in p
occurs exactly once in p.

Let £ be a non-erasing homomorphism from P to P. If f£(a) = a
for any constant a, then f is called a substitution. If £ is a
substitution, f(x) is in X, and £(x) = £(y) implies x = y for.any
variables x and y, then f is called a repaming of wvariables. We
use a nmotationm [a;/vys ... » ap/vy] for the substitution which maps
each variable symbol v; to a; and every other symbol to itself. We

i
define two binary relations on P as follows:

1) p='q iff p
2) ps'q iff p

f(q) for some renaming of variables f,

f(q) for some substitution f.

The language of a pattern p, demoted by L(p), is the set
{weszx | ws'"pl. These syntactic relations =' and £' are

characterized by the following lemma,

-3-
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Lemma 1. [Angluin, 2]

1) For all patterns p and q, p = q iff L(p) = L(q).
2) For all péttefns p and q, if p <' g then L{p) = L(q),
but the converse is not true in general. .
3) If p and q are patterms such that lpl = Iql,
then p €' g iff L(p) € L(q). | ’

2 1 ial

- Inference machine is an effective procedure which requires
inputs from time to time and produces outputs from time to time.
Let s = sy, sé,;.. be an~arbitrary infinite sequence, and let
g = 813 8grave be a sequence of outputs produced by an inference
machine M when inputs im s are successively given to M on request.
Then we say that M on input s converges to 0 iff g is a finite
sequence ending with go or all but finitely many elements of g
are equal to gg. 7 ‘ ‘ »

Let L = Lj» Loye.s be an‘indéxeq fémily'bf recursive
languages, and let s = S51s Sgsese be an arbitrary enumeration of
some 1anguage,1i. Then we say that z machine M jnfers I from
positive data if M on input & converges to an index j with Lj =Lj.
We say that a family L is inferrable from positive data if there

exists a machine which infers [ -from positive data.

Ihggxgm_l.‘[Angluin, 2] If a class L = Ly» Lz...,‘satisfies
the following condition, then I is inferrable from positive data.
andi:ign: For any non-empty finite set S of strings, the

set { L | s €L, L = L; for some index i} has finite cardinality.

Lemma 2. [Angluin, 2] The class of pattern languages satisfies

Condition of Theorem 1.

Hereafter we omit the phrase "from positive data", hence
for example "inference" means "inference from positive data.”
An inference by a machine M is copsistent iff a language Lgi
contains all inputs given so far whemever M produces output g;.
An inference is conservative i1ff an output g; from M is never

changed unless L__ fails to contain some of the inputs. Thesé

. &i .
two properties natural and valuable in inference problem. It is,

4=
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however, known that inferrability does not always mean consistency
and comservativeness [Angluin, 2]. ' _

A class L is polynomial time inferrable iff there exists an
inference machine M which infers I consistently and conservatively,
and requests a new input in polynomial time (with.respect to the
length of the inpﬁts read so far) after the last input has been
received.

- MINL calculation for a class L = Ly, Lgsese 1s defined by
Angluin [2] as follows:

MINL(S) = "Given non-empty finite set 8 of strings, find an

index i such that S ¢ L; and for no index j, S £ Lj g Li'" .
The following theorem shows the importance of MINL calculation.

~ Theorem 2. [Angluin, 2] 1If a class L = Lys Lpses. satisfies
Condition of Theorem 1 and MINL for L is computable, then the

procedure Q below infers L consistently and conservatively.

procedure Qs
' gl iz "none” § S :
for each input 8; do
S :=Su {si} :
J..ﬁsieLgir.hen
Bi+l T Bi

g ;

else
begin
gi+] = MINL(S) ;
output g..q
end
end
end
Corpllary 1. If a class [ = Lis Lgses. satisfies Condition of
Theorem 1, and the membership decision and MINL calculation for [
are computable in polynomial time, then the class L is polynomial

time inferrable {from positive data).
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Angluin [2] showed that the membership decision of pattern
languages is NP-complete and £-MINL calculation, a special case of

MINL for pattern languages, is NP-hard.

£-MINL(S) = "Given non-empty finite set S of strings, find a
pattern of maximum possible length which represents a minimal

pattern language containing S."
The following summarize the results of our previous study.

Lemma 3. For any regular pattern p and any string w, whether
w € L{p) is decidable in O(lpl+iw]) time.

Theorem 3. The following procedure computes £-MINL(S) for
regular pattern languages in 0(n?n) time, where m = max{|wl; w € S},
n = card(8), and w = aj...a; (a; € I) is one of the shortest strings

in S.

pl := xl.’.xk ;
for i :=1 to k do
begin

(1}
T O

if s

In

L(q) them Pj4) *
else pj4

Ieturn Pi4]
end

Theorem 4. The classes of regular patterm languages is

polynomial time inferrable (from positive data).

3. Some Problems on f-MINL Calculation for Regular Pattern Languages
There are some difficulties in the f£-MINL calculation when the

polynomial time inference of regular pattern languages is applied to

practical use. The main reasoms are in

1) restriction on the length of pattern, and

2) prohibition against substituting empty string for any variable.

We present some examples to explain these problems.

-H=~
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Example 1. Let S be the set {ABCdeFGh, ABCiFGjk}. Then every
answer of £-MINL is eight symbols long because the length of the
shortest words in S is eight. Let p be any pattern of the form
plFsz. where p; and p, are amny regular patterns. Assume S c L(p).
Then, clearly, ABCi ¢ L(pl) and h € L(pz). therefore

Ipt = Ipgl + IFGl + Ipyl £ 4+ 2+ 1 =7 <8.

Hence the string "FG" does not appear in any amswer of £-MINL(S).
However the pattern q = ABCx;FGx, is a possible answer of MINL(S).
Thus MINL(S) may have an answer which contains more constant

~ symbols than any answer of L-MINL(S). .

Example 2. Let § = {aBcdf, GHcdBiii}. Then both patterns
P; = x1Bx,x3x; and

Py = xlxzcdx3

~ are correct answer of {-MINL(S). Our {-MINL algorithm of .
Theorem 2 returns P for S. If we change the order of substitutions

in the algorithm, we can get P, as the answer of £-MINL(S).

Example 3. Let S = {ABC, AC}. Then MINL(%) does not have
any answer containing both symbols'Arand'C because we can not

substitute empty string for any variable.

To solve these problems, we extend the definition of pattern

languages to allow erasing substitutions.

4, FExtension of Pattern Languages

We givé new‘definitions_of pattern‘languéges to allow ‘
substitutions to erasé variables and we show some their properfies. -
The definitions of patterns and regular patterns are the same ones
as in Section 2, ,

A substitution is any (possibly erasing) homomorphism from
P to P which maps éach constant symbol to itself. A special
substitution which maps each variable to émpty string is denoted
by ¢. For example, if T = {0, 1, 2} and X = {X, yseee }» then .

¢(0x1y2) = 012. We define two binary relations £' and =' as follows:
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1) p <* q iff p = f£(q) for some substitutionm f,
2) p=tq iff p <s' q and q £' p.

The language of a pattern p, denoted by L(p), is the set
{wex¥ | ws'p}. Hereafter we use the term "pattern languages"

in the sense just defined above.

Broposition 1.
1) p.s' q ==> L(p) € L(q)
2) p =t q ==> L(p) = L{q)

We say that a pattern 3 is in gangniggl form iff )

=' q ==> |p] < lq! for any pattern q, and

> >

p contains exactly k variables X1s Xgseees X for some integer k
and the leftmost occurrence of x; is to the left of the leftmost

" occurrence of Xi41 for i =1, .. k-1.

Theorem 5. There exists a unique canonical pattern P

equivalent (=') to p for any regular pattern p.

n
1n

v € z* (i=l,.v.5n~1)). Then p = ﬁoxlwlxz...wn_lxnwn is in canomical

form and ﬁ =' p. Any pattern equivalent to p is of the form

Proof. Let p = woxll...xlilw1x21...w 1%y Xy Yy (Wops W € =,

r.wovlwlvé... Vp_1VnVp (v; € X*). Therefore the uniqueness of such

canonical pattern is obvious. , 0

Lgmmg_&. If 6 is a canonical regular pattern, then
181 < 2c(P)} + 1.

Theorem 6. The class of (extended) regular pattern languages
satisfies Condition of Theorem 1l and it is inferrable from positive

data L

Proof. Let S & ¥ be any non-empty finite set of strings and
let w be one of the shortest strings in S. Assume S € L(ﬁ), where
P is any canomical regular pattern. Then |wl 2 fe($)| because
w € L(§). By Lemma &, 191 < 2{c(P)) + 1 < 2}w} + 1. Therefore

the number of such patterns ﬁ is finite, : 0



Theorem 7. For any regular pattern p and any string w,

whether w € L(p) is decided in O([pl+]lwl) time.

Proof. We can construct a deterministic finite automaton
recognizing L(p) in 0(lp!) time by using the method of pattern
matching machines [Aho, et al., 13. 0

5. MINL calculation for Regular Patterp Languages

To show polynomial time inferrability of regular pattern _
languages, we need discussions on MINL calculation., In this section
we also refer to the relation between MINL .calculation and the
longest common subsequence (LCS for short) problem.

First we give some definitions on subsequences:

1) For any strings w = aj...a, (a; € I) and s; e =5,

s £w(orw2s) iff s = ail...a- (1 Sij< ... <1mSk).

We say that s is a subsequence of w (or v is a supersequence of s)
if s £w (or w2s)

2) The set of common subsequences to a set S of strings is
cs(s) = {s e | s <w for any string w € S }.

3) The set of maximal common subsequences to S is
MCS(S) = { s e CS5(S) | s =s8' or s £ s' for any s' € CS(S) }.

4) The set of the lngggsz'gnmmgn subsequences to § is

1cs(s) = { s e ¢cs(8) | Is] 2 |s']| for any s' € CS(S) }.
1) w e L{p) ==> w 2 c{p)

2) L(p) € L{q) ==> <(p) 2 c(q)

3) L(p) = L(q) ==> c(p) = clq)

4) s c L(p) ==> c(p) e C¢8(S)

We need three notations in the discussions below:

‘1) For any string w = aj...a, and any integers i and j,

]

w<izi> = {ai...a- (if 1 <i<js |wl)
£ (otherwise), and

w<i> = ai (i ='1..cclwl)~
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2) For any éymbol a and any integer i,
al = {e (if i £ 0)
aal™l (otherwise).
3) For any variables Visesessvy € X and any constant strings
W sesasWy € ¥, [wy/v{sesesw /vy ] denotes the substitution which:

maps each variable v; to w; and every other variable to itself.

Theorem 8. Let p and q be any regular patterns and card(I) 2 3,
Then L(p) € L(q) implies p ' q.

Proof. Ve may assume, without loss of generality, that p and ¢
are canonical regular patterms. We- also assume card(I) 2 3,
L(p) = L(q), but p #£' q. Let q = WpXjWj..sW, X W » Where wy, W € *,
and w; € * (i=l,...,n-1). Since c{p) is a supersequence of c(q)

and p £' q, there exist integers i, j, and k such that

0<i<n, 15 j<ks |pl, and
p<l:j> p<j+l:k-1> p<k:|p|>, where

p
clp<l:j>) € L(Woxl"'xi-lwi-l)’

c(p<lzjt>) ¢ Llwgxj...x; yw;_ ;) for any integer j' < j,
p<j+ltk-1> # rw;r' for any patterns r and r',
c(p<k:lpl>) € L{w; 1% 4 9...xw ), and

clp<k':lpl>) £ L(w;;1%X;490++%,%,) for amy integer k' > k.

Let pj = p<l:j>, py = p<j+lik-1>, and py = p<k:(pl>.

Then L(p,) € L(xiwixi+1) because L(p) € L(q) and c(p;)p,cipz) <' p.
Let a be any comstant symbol except w;<1> and w;<|w;[> and let

Vis ess » v be all variables in py. Then
lws | |

we | , .
pla * /Viseensa : /vg) € L{py) - L{x;w;x;,1). This contradicts

The following lemma says that the condition card(Z) 2 3 is
necessary in Theorem 8.

Lgmgg_i. When card(Z) = 2, there exist regular patterns p and g
such that L(p) € L(q)., p €' q» and q £' p.

Proof. Let & = {0,1}, p = %,01%,0%5, and q = x,;0x,10x5.
Then, clearly, p £' g, q £' p, but L(p) = L(q). 0

~10-
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Hereafter we assume that the constants alphabet I contains at

least three symbols.

Theorem 9. For any maximal common subsequence s € MCS{S),
there exists an answer p of MINL(S) for regular pattern languages

such that c(p) = s.

Proof. Let s = aj...a; € MCS(S). Then the pattern qy+1 defined

as follows is an answer of MINL(S):

94 H {xlal...akxk+l (i=0)

We must show that L(qy4;) is a minimal regular pattern language
containing S. Assume that there exists a regular pattern q' such
that § € L(q") ¢ L(qy4;). Then c(q") 2 c(qpyy) = s. Since s is a
maximal common subsequence to S, c{q') = c(qy,y) = s. By Theorem 8,

q' ' gy, and q' 2 qk+i; There exists a substitution f which maps
qy+1 to q'. The substitution f maps at least one variable to empty
string because q' #' q;,;. Let j be an integer such :hét‘xj appears
in qpy4pe f(xj) = €, and f(xj') = x5 for any integer j' < j. Then

' <t q. ,[e/x:]. Th c g: 1[E/x- . = q. JT€/x%.].
q qJ_lf /xJ] Therefore § ¢ qJ_l[ /xJE and,qJ qJ_I{,/xJ]
Hence the variable x; can not appear im qy.;. This contradicts the
selection of I ‘ 0

Here we should note that we can get an answer of MINL(S) im
0(nZn) time from any maximal common sequence to a set S of strings,

where m = max{|lw|l; w € S} and n = card(s).

We may prefer the longest common subsequences to the maximal
common subsequence. However the problem to find one of the longest
common subsequences to a seft of strings is known to be NP-complete
[Maier, 8]. Therefore finding an amswer of MINL(S) containing
constants as many as possible does not seem to be dore in polynomial
time. To find an answer of MINL(S) for regular pattern languages,
is it necessary to select one of the maximal common subsequences to S?

The following theorem asserts that it is not the case.

-11~
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Theorem 10. There exists an answer p of MINL(S) for regular

pattern languages such that c(p) £ MCS(S) for some set S.of strings.

Proof. Let S = {01020, 0212}. Then 02 ¢ MCS(S) because
012 € ¢S(S). However the pattern p = x,02x, represents a minimal

regular pattern language containing S. : |

In the proof of Theorem 10, the pattern q = 0x;lx,2x4 is a
possible answer of MINL(S) and c(q) = 012 € LCS(S). In some cases
q is not always better answer of MINL(S) than p-Because the pattern
P contains a longer comstant string "02" than q. Finally, from
this obsevation, we-get 2 MINL,algoritﬁm by using a method to find
 common strings in leﬁgth decreasing order. The correctness is easily
shown by Theorem 8 and the computing time is O(m4n), where

n = max{|wl; v € S} and n = card(S).
In our MINL algorithm we use some notations for simplicity:

-~ Let O = Wiseees Wy be a sequence of strings. The mnotation L(O)
denotes the regular patterm language L(XIWIXZ"'wnxn+l)’ lo| denotes
the pumber of strings in O, and [|O] denotes the sum of lengths of

strings in O.

_12..
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Procedure MINL(S);

(* Input S: non-empty finite set of strings *)
(* Output p: a pattern representing a minimal

(extended) regular patternm language containing S *)

begin
s := one of the shortest strings in S ;
o := E; (* sequence of common strings *)
n = |s] (* length of candidate string *)

while n > 0 do begin
for i :=1tolsl -n#*1do
more: . for j := 0 ro lo} do
if 8§ € L{o<ltj>,a<iti+n-1>,0<j+l:]c]|>)
then begin

O := O<l:j>,a<i:i+n-1>,0<j+l:|o]>) ;

£0 Lo more
end ;
n := min(ls|-Joll, n-1)
end 3
p 3= x10'<1>x2...70'<|0|>xloi+1 H
if s s,L(p[E/xl]) thep p := ple/x(] ;-
if § € L(ple/x|g)41]) then p := ple/x|5 4] 3

returnp p ;

Theorem 11. The class of_(extended) regular pattern languages

is polynomial time inferrable (from positive data).

We have diécussed'polynomial time inference for the class of
the extended regular pattern languages and we have seen that MINL
calculation for thelclass plays an important role in inference from
positive data. We have also discussed the relation between the MINL
calculation and the longest common subsequence problem. |

It should be noticed that our MINL algorithm for the extended
regular pattern languages is consistent to the NP-completemess of the
LCS problem. The MINL algorithm finds common strings to a set in
length decreasing order. It should also be noticed that our method

in the algorithm is natural. 13 g
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Since our evaluation of the time complexity is not so acute,
the exponent of the maximum length of strings might be reduced.
The MINL algorithm is originally designed for the learning data
entry system, and it should have other practical applications.

A little modification may be needed for some problems.
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