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Abstract 

We study conditions guaranteeing polynomial time com
putability of queries in temporal deductive databases. We 
show that if for a given set of temporal rules, the period 
of its least models is bounded from the above by a poly
nomial in the database size, then also the time to process 
yes-no queries (as well as to compute finite representations 
of all query answers) can be polynomially bounded. We 
present a bottom-up query processing algorithm BT that 
is guaranteed to terminate in polynomial time if the peri
ods are polynomially bounded. Polynomial periodicity is 
our most general criterion, however it can not be directly 
applied. Therefore, we exhibit two weaker criteria, defining 
inflationary and !-periodic sets of temporal rules. We show 
that it can be decided whether a set of temporal rules is in
flationary. !-periodicity is undecidable (as we show), but it 
can be closely approximated by a syntactic notion of multi
separability. 

1 Introduction 

In [7), we proposed temporal deductive databases 
(TDDs) as a tool for storing and retrieving information 
about infinite temporal phenomena. A temporal deduc
tive database (TDD) consists of a finite set of temporal 
rules and a finite temporal database. 

TDDs are an extension of DATALOG [14). Function 
symbols are used in TDDs in a limited way: there is 
one unary function symbol +1, written in postfix, and 
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terms built with this symbol can appear only in one 
distinguished argument of all predicates. TDDs have 
two desirable properties, not shared by arbitrary logic 
programs [16,11]: 

1. it is decidable whether a given atom is implied by 
a TDD [7] (yes-no query processing). 

2. all query answers (possibly infinitely many) can be 
finitely represented using relational specifications 
[6) (all-answers query processing). 

However, due to computational complexity consider
ations, TDDs are impractical in their full general
ity. Yes-no query processing is PSPACE-data-complete 
[12,7,5]. Relational specifications can also be computed 
in PSPACE [5] and their size may be exponential in the 
size of the database (6]. 

In this paper, we make a step towards making TDDs 
feasible. We seek tractability: restrictions on temporal 
rules that will guarantee a polynomial upper bound on 
yes-no and all-answers query processing. Most of the 
restrictions that we present here are semantic and ex
press properties of least (Herbrand) models of sets of 
temporal rules. Others are syntactic and prescribe the 
form of sets of temporal rules. 

Least models of TDDs have a repetitive, periodic struc
ture [7]. We show that if for a given set of temporal 
rules, the period of its least models is bounded from the 
above by a polynomial in the database size, then also 
the time to process yes-no queries (as well as to compute 
relational specifications) can be polynomially bounded. 
We present a bottom-up query processing algorithm BT 
that is guaranteed to terminate in polynomial time if the 
periods are polynomially bounded. Polynomial period
icity is our most general criterion, however it can not be 
directly applied. Therefore, we exhibit two weaker crite
ria, defining inflationary and !-periodic sets of temporal 
rules. 

Intuitively, an inflationary set of temporal rules ex-



presses an infinite phenomenon with the following prop
erty: if a fact P(tO,a) is true, then also P(t,a) is true 
for all t>tO. We show that it can be decided whether a 
set of temporal rules is inflationary. 

A set of rules is !-periodic if there is a common, 
database-independent period for all its least models. 
This property is undecidable (as we show). It can, how
ever, be approximated by a syntactic notion of multi
separability which prohibits mutual recursion and re
stricts the syntax of recursive rules. This approximation 
is quite close, because for every !-periodic set of rules 
Z, there is a multi-separable set of rules Z1 such that 
for all databases D, the least model of Z 1\ D is equal 
to the least model of Z1 1\ D1. The database D1 differs 
very little from D and can be obtained from it. Multi
separable sets of rules are more general than separable 
sets of rules discussed in a different context in (7]. 

Least models of inflationary and I-periodic sets of tem
poral rules have polynomially-bounded periods, thus in 
both cases the yes-no query processing algorithm BT is 
guaranteed to terminate in polynomial time. 

The paper is organized as follows. We provide two ex
amples of tractable TDDs in section 2. In section 3, we 
define basic notions. We also summarize known com
plexity results in this area. In section 4, we explain 
our notion of tractability and we prove that polynomial 
periodicity implies tractability. We study inflationary 
temporal rules in section 5 and I-periodic temporal rules 
in section 6. We review related work in section 7 and 
conclude with an analysis of possible extensions of this 
work in section 8. 

2 Examples 

We give here two examples of tractable TDDs. The 
set of rules in the first is !-periodic, in the second -
inflationary. 

Example: A travel agent has obtained the following 
specification from an airline: "flights to ski resorts are 
scheduled every seventh day during off-season, every 
second day during the winter and every day during win
ter holidays" . This can be specified using temporal rules 
as follows: 

plane(T+7 ,X) :- plane(T ,X), 
resort(X), offseason(T). 

plane(T+2,X) :- plane(T ,X), 
resort(X), winter(T). 

plane(T+1,X) :- plane(T,X), 
resort(X), holiday(T). 

offseason(T+365) :- offseason(T). 
winter(T+365) :- winter(T). 
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holiday(T+365) :- holiday(T). 

The temporal database may look as follows1: 

plane(01/01/90). 
offseason(03/21/90). 

offseason(12/19/90). 
winter(12/20/89). 

winter(03/20/90). 
holiday(12/25/89). 
holiday(01/01/90). 

Now to verify whether a plane leaves to Hunter 
on a given day tO, it has to be checked whether 
plane(tO,' 'Hunter'') is implied by the rules and the 
database. We might also ask about all days when a 
plane leaves to Hunter and this query has infinitely 
many answers. 

The set of rules in this example is multi-separable (but 
not separable), and consequently !-periodic. But it is 
not inflationary: take a database with nonempty plane 
relation but empty offseason, winter and holiday re
lations. 0 

Example: Consider the following set of rules: 

path(I{,X,X) :- node(X), null(l{). 
path(1{+1 ,X ,Z) ·- edge(X, Y), path(l{, Y, Z). 
path(l{+ 1, X, Y) :- path(l{, X, Y). 

This set of rules is inflationary, because of the third 
rule. If the predicates node and edge represent nodes 
and edges of a directed graph, the predicate path has 
no tuples in the database and the predicate null has 
only one tuple null(O) in the database, the meaning 
of path(l{, X, Y) is "there is a path of length at most 1{ 
between the nodes X and Y". 

The above set of rules is not !-periodic, because the 
length of a path in an arbitrary graph can not be 
bounded from above. 0 

3 Basic notions 

We assume here that the reader is familiar with the 
syntax and the semantics of logic programs: [16],[11, 
Chapter 1 and 2]. 

1The actual dates that appear in the database are re
ally abbreviations for terms of the form ( ... ((0+1)+1) ... +1). 
We can imagine that those abbreviations are expanded when 
the database is being input. Similarly, we could pro
vide an abbreviation for intervals and represent vinter and 
offseason as single tuples vinter(<12/20/89,03/20/90>) and 
offseason( <03/21/90,12/19/90>). 



3.1 Syntax 

In this section, we define the class of temporal deductive 
databases: our postulated extension of DATALOG. 

Language. We assume that the language contains in
finitely many variable, function and predicate symbols. 
As usual, we call 0-ary function symbols constants. 
Variables and constants are ( disjointly) partitioned into 
temporal and non-temporal ones. We assume that there 
is exactly one temporal constant 0. A predicate symbol 
is either temporal or non-temporal. 

Terms. A non-temporal term is either a non-temporal 
constant (a standard database constant) or a non
temporal variable. A temporal term is defined induc
tively: 

1. the temporal constant 0 is a temporal term. 

2. a temporal variable is a temporal term. 

3. if v is a temporal term, then v+1 is a temporal 
term. 

4. there are no other temporal terms. 

Term which do not contain any variables are called 
ground. The only ground non-temporal terms are con
stants, while ground temporal terms may be arbitrarily 
deep. A non-ground temporal term contains exactly one 
variable and this variable is temporal. All the temporal 
and non-temporal terms are distinct. 

Temporal terms will appear in bold font. We will write 
k instead of ( · · · ((0 +1) + 1) · · · +1) and t+k instead 

k time$ 
of ( · .. ((t +1) + 1) · · · +1). The integer k corresponds 

k time$ 
to the temporal term k in a natural way. 

Formulas. If P is a temporal predicate symbol and R is 
a non-temporal predicate symbol, v is a temporal term 
and x is a vector of non-temporal terms of appropriate 
arity, then P( v ,x) is a temporal atom and R( x) is a non
temporal atom. The term v is the temporal argument 
and the elements of x are the non-temporal arguments 
of P(v,x). 

A temporal database is a finite set of tuples: ground 
atoms which can be temporal or non-temporal. Tempo
ral Horn rules are defined in the standard way, except 
that they have to be built from the atoms defined above. 
All variables are universally quantified. A temporal de
ductive database (TDD) is a finite set of temporal rules 
and a temporal database. A temporal query is a first 
order formula without equality built from temporal and 
non-temporal atoms, standard logical connectives and 
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quantifiers 2 . We will write Q( x1, ... , Xk) to denote the 
query Q with free variables x 1 , ... , Xk· 

A temporal rule r is semi-normal if r contains at most 
one temporal variable and if this variable appears in r, it 
has to appear as the temporal argument of some literal. 
A temporal rule r is normal if it is semi-normal and 
non-ground temporal terms in r are of depth at most 1. 

For every set of temporal rules, there is a set of equiv
alent semi-normal rules and another set of equivalent 
normal rules. Both are obtained through the introduc
tion of additional predicates and rules, as shown in [5]. 
Thus, we will assume that the rules are normal through
out this paper, except in section 6 where assuming only 
semi-normality is more convenient. We will also assume 
that rules do not contain any ground terms. 

3.2 Semantics 

By an interpretation we mean a Herbrand interpretation 
of a formula, i.e. an interpretation which is a subset of 
its Herbrand base, and by a model- a Herbrand model. 
Both the Herbrand universe and the Herbrand base of 
a temporal formula are infinite. By the results of [16], 
every temporal deductive database Z 1\ D (where Z is 
a set of rules and D is a database) has a least (Her
brand) model denoted by M z AD. This model is also 
the least fixpoint LFP(Z, D) of a mapping Tz/I.D from 
interpretations to interpretations: 

Tz"n(I) ={A: A= A0 8, 8 is a ground substitution, 
Ao : -At, ... , Ak E Z, At8 E I, ... , Ak(} E I} U D. 

We have: 

LF P(Z, D)= U~=l T~"n(0). 

In the following definitions, assume that M is a set 3 

of temporal and non-temporal tuples and to and t1 are 
ground temporal terms. 

Define the snapshot M(to) of M as: 

M(to)={A: (3P)(3x)(A = P(to, x) and A EM)}. 

M(to) may be thought of as the result of the selection 
Ust=to(M). Additionally, M(tO) is always finite, be
cause non-temporal arguments can assume only finitely 
many values. 

Define the segment M(to ... tl) of M as: 

2 We assume that both existential and universal quantifiers 
come in two different sorts: one quantifying over ground temporal 
terms and the other- over non-temporal constants. 

3 M does not have to be finite. However, it has to contain only 
finitely many constant and function symbols. Every Herbrand 
model of a temporal deductive database has this property. 



M(to ... tl)=Uto~t~n M(t). 

Define the non-temporal part Mnt of M as the set of all 
the non-temporal tuples in M. 

Define the state M[to] of M as: 

M[to]={B: (3P)(3x)(B = P(x) and P(tO, x) EM)}. 

M[to] may be thought of as a result of "projecting out" 
the temporal arguments in the predicates in M(to). 
Therefore, it is a finite, function-free database. Every 
M has only finitely many different states. Moreover, if 
for every t we know M[t], we can reconstruct the entire 
set M. 

A model M of a temporal deductive database Z 1\ D 
(such that c is the max. depth of a temporal term in 
the database D) is periodic with period (k- c,p) if: 

('It~ k)(M[t]=M[t+p]). 

This definition assumes that the rules are normal. If 
they are only semi-normal, the equality of single states 
has to be replaced by the equality of g subsequent states 
(where g is the max. depth of a non-ground temporal 
term in Z). 

Theorem 3.1 {7} The least model Muv is periodic 
with a period (b,p) such that b+p is at most exponential 
in the size of the database D. 

3.3 Query processing 

We adopt the view that TDDs define (possibly infinite) 
structures in which queries are evaluated. 

Let Z be a set of temporal rules and D a temporal 
database. A substitution B to the open variables of a 
temporal query Q is an answer to Q if QO is ground and 
MZI\D I= QO. Query evaluation finds all answers to a 
given query. When Q is closed, query evaluation returns 
"yes" if MZt .. D I= Q, "no"- otherwise. We assume that 
negative queries are evaluated using the Closed World 
Assumption. 

In temporal deductive databases, the least model MzAD 
may be infinite and consequently there may be infinitely 
many different answers to a query. To handle this prob
lem, we introduced in [6] the notion of a relational 
specification: a finite structure equivalent to the infinite 
least model. Here we present it in a slightly different 
formulation. 

A relational specification SzAD of L = MzAD is a triple 
(T, B, W) where T is a finite set of ground temporal 
terms, B is a temporal database (by definition finite) 
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and W is a finite set of ground rewrite rules whose both 
sides are temporal terms. We will call the terms in 
T representative and B - the primary database. We 

will write t~to to indicate that the ground term t can 
be rewritten to tO using the rules in W and no more 
rewritings are applicable (tO is a canonical form oft). 

A relational specification S z AD = (T, B, W) of L 
MzAD satisfies the following conditions: 

1. B=Uter L(t)ULnt· 

2. for every ground temporal term t, there is a term 

tOE T such that t~to and L[t]=L[to]. The term 
tO is called a representative oft. 

The last condition suggests how to evaluate a ground 
atomic query in S z AD: rewrite the query atom using W 
until no more rewrite rules apply. If the rewritten atom 
is in B, answer "yes", otherwise answer "no". Similarly, 
an open query may be simply computed on the primary 
database B 4 . There will be finitely many answer substi
tutions, each representing possibly infinitely many orig
inal answer substitutions. The correspondence between 
those two types of substitutions are captured by the 
rewrite rules, so the rewrite rules themselves should be 
a part of the query answer. 

The notion of a relational specification is applicable 
to functional deductive databases - a generalization of 
TDDs. Relational specifications are well-defined only 
if rules are range-restricted: every variable in the head 
has to appear also in the body. A similar requirement 
has been postulated for DATALOG [14]. In the rest 
of this paper, we will assume that the rules are range
restricted. 

In [6,5], we showed a procedure to compute a relational 
specification SzAD = (T, B, W). In the following, we 
will refer to the specification computed by this proce
dure as the relational specification S z AD. This specifi
cation has the property that W is a terminating rewrite 
system and every ground temporal term has a single 
representative in T. 

In the case of TDDs, the relational specification has a 
particularly simple form: the set W contains exactly 
one rewrite rule: 

where (b,p) is a period of MzAD and c is the max. 
depth of a temporal term in the database D. The pro
cedure presented in [6] computes a minimal period (b,p) 
of MuD which has the following property: 

4 This method is appropriate only if it leaves the query answer 
unchanged. We show that this is indeed the case for temporal 
queries. 



where t is the max. depth of a representative term in 
SZt,D· 

Example: Take the following set of rules Z consisting of 
one rule: 

even(T+2) :- even(T). 

and the following database: 

even(O). 

The relational specification (T, B, W) of M Zt,D 1s as 
follows: 

T={O, 1}. 
B={ even(O)}. 
W={2-+0}. 

We use the specification to answer queries. For exam
ple, the query even(4) will be first rewritten as even(2) 
and then as even(O). The tuple even(O) is in the pri
mary database B, thus the answer to the original query 
is "yes". 

On the other hand, the query even(3) will be rewritten 
as even(1) and no further. But the tuple even(1) is 
not in B, thus the answer is "no". 

An answer to an open query even(X) consists of the 
substitution X=O and the rewrite rule 2--+0. This an
swer represents infinitely many answer substitutions: 

X=O, X=2, X=4 ... 

0 

The construction of the relational specification makes 
explicit the period of a TDD. 

We will say that a query Q(x1, ... , xk) is invariant with 
respect to relational specifications iffor every set oftem
poral rules Z and every temporal database D: 

(Vx1, ... , xk) 
(Mz"D f= Q(x1, ... , Xk) iff B I= Q(r(x1 ), ... , r(xk))). 

where Sz"D = (T,B, W) is the relational specification 
of MzAD and: 

r(xi) = x; if x; is non-temporal. 

r(x;) = xo such that x; ~ xo, if x; is temporal. 

It should be clear that for a representative term y, 
r(y) = y. 
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Proposition 3.1 Every temporal query zs invariant 
w. r. t. relational specifications. 

Proof: See Appendix. 0 

Therefore, any temporal query Q can be answered by 
first computing S z AD = (T, B, W) and then evaluating 
Q over B using W to rewrite ground temporal terms 
in the query. In the definition of query evaluation over 
B, the quantifiers binding temporal variables are inter
preted as ranging over the set of representative terms. 

3.4 Computational complexity 

The graph Gr(Z, Q) of a set of temporal rules Z and a 
temporal query Q is defined as: 

Gr(Z, Q) = {(d, D) : Mz"D f= Q(d)}. 

where d is a vector of ground terms of appropriate ar
ity and D is a temporal database. The complexity of 
Gr{ Z, Q) will be called the data complexity [4,17) of Z 
and Q. We will be interested in the complexity of de
termining the membership in Gr(Z,Q) (yes-no query 
processing) and the complexity of computing the rela
tional specification of MzAD (all-answers query process
ing). Because all temporal queries are invariant w.r.t. 
relational specifications, all the answers to any temporal 
query can be obtained from S z AD. 

Theorem 3.2 [12, 7) For a set of temporal rules Z and 
a ground atomic query Q, yes-no query processing is 
PSPA CE-data-complete. 

Theorem 3.3 {5} For a set of temporal rules Z, com
puting the relational specification SzAD of MzAD is 
PSPACE-data-complete. There is a set of temporal 
rules Z for which the size of Sz"D is exponential in 
the size of D. 

The exponential size specification mentioned in the 
above theorem consists of exponentially many represen
tative terms, an exponentially sized primary database 
and a single rule whose left side is an exponential ground 
temporal term. Clearly, the non-temporal part of Mz"D 
(which is also a part of S z AD) is always at most poly
nomial in size. 

4 Tractability 

The above results state that obtaining a yes-no answer 
to a ground atomic temporal query in TDDs can not be 



done in polynomial time unless P=PSPACE. The same 
is true of computing relational specifications. These 
facts motivate our interest in classes of temporal rules 
for which queries may be processed in polynomial time. 

We say that a set of temporal rules Z is tractable if for 
every temporal database D, the relational specification 
SzAD can be' computed in time polynomial in the size 
of D. The size of the database D is considered here to 
be max(n, c) where n is the number of tuples in D and 
c the maximum depth of a temporal term in D. This is 
equivalent to the assumption that temporal terms in D 
are encoded in unary. 

We argue that our notion of tractability is quite ro
bust. The polynomially-sized relational specification 
SzAD, once computed, can be used to answer queries. 
If a query is invariant w.r.t. Sz,.D and is computable 
in polynomial time on finite structures, then it is also 
computable in polynomial time on the possibly infinite 
MzAD (provided, of course, that the size of SzAD is 
polynomial in the size of D). We know that tempo
ral queries, although quite general, satisfy both criteria: 
invariance and polynomial time computability on finite 
structures, and consequently are polynomial time com
putable. 

There are other candidate criteria of tractability which 
differ from ours by considering smaller classes of queries. 
For example, one can take only ground atomic queries. 
But then a gap appears: more general yes-no queries, 
e.g. existentially quantified, can no longer be com
puted in polynomial time unless P=PSPACE (see the 
PSPACE lower bound example in [7]). A similar gap ex
ists as well between queries using only existential quanti
fiers and queries using also universal quantifiers, c.f. an 
example presented in [9] 5 . Moreover, polynomial time 
computability of ground atomic queries does not guar
antee polynomial time computability of all the answers 
to queries. The relational specification SzAD of all an
swers may be exponentially-sized, while ground atomic 
queries to Z AD are polynomial time computable [5]. 

We are going to prove now our most general result, a 
complete semantic characterization of tractable sets of 
temporal rules. Subsequently, we are going to use this 
result to infer the tractability of various classes of tem
poral rules. 

Theorem 4.1 Let Z be a set of temporal rules and D 
a temporal database. The size of the relational specifica
tion SzAD is polynomial in the size of D iff SzAD can 
be computed in time polynomial in the size of D. 

Proof: The right-to-left direction is trivial but the left-
5 The example in this paper uses Skolem functions, but in this 

context the difference is immaterial. 

384 

to-right is not. 

We will show first that ground atomic queries to the 
TDD Z AD can be computed in time polynomial in 
max(n, c, h) where n is the number of tuples in D, cis 
the max. depth of a temporal term in D and h is the 
depth of the temporal term in the ground atomic query 
Q. We have that 

MzAD f= Q iff Z AD A -.Q is unsatisfiable. 

Define 

m = max(c, h)+ range(Z A D). 

where range(Z A D) is the number of different states in 
MzAD· If the size of SzAD is a polynomial in max(n, c), 
so is range(Z A D). Therefore, m is a polynomial in 
max(n, c, h). 

The algorithm shown in Figure 1 determines whether 
Z ADA-.Q. It works in time polynomial in max(n, m). 
Its correctness can be justified in the same way as 
the correctness of a bottom-up algorithm in [7,5]. Es
sentially, the algorithm constructs a ground hyper
resolution refutation of Z A D A -.Q. 

L':=D 
repeat 

L:=L'(O ... m) 
L':=Tz,.D(L) 

until L(O ... m)=L'(O ... m) and Lnt=L' nt 
answer:=£ f= Q 

Figure 1: Algorithm BT 

The size of representative terms is also polynomial in 
the size of D, thus the algorithm from [6], computing 
SzAD, runs in polynomial time as well. D 

For temporal rules, the size of S z AD is polynomially 
bounded iff there exists a polynomial period of M z AD. 
Therefore, we will refer to the tractability criterion from 
Theorem 4.1 as polynomial periodicity. 

Currently, we don't know whether polynomial periodic
ity is decidable. The weaker criterion: "polynomial time 
computability of ground atomic temporal queries" can 
be easily shown to be as hard as determining whether 
P=PSPACE. In the following, we will show several 
classes of temporal rules that have polynomial periods. 

5 Inflationary rules 

A predicate P is derived by a set of rules Z if it appears 
in the head of some rule in Z. 



A set of temporal rules Z is inflationary if for all tempo
ral databases D, all ground temporal terms t, all vectors 
of non-temporal constants x of appropriate arity and all 
temporal predicates P derived by Z: 

MzAD I= P(t, x) => MzAD I= P(t + 1, x). 

This notion is inspired by the inflationary semantics for 
negation [10,2]. The graph example from the introduc
tion is inflationary. However, if we dropped the restric
tion to derived predicates in the above definition, that 
example would no longer be considered inflationary. 

Theorem 5.1 Every inflationary set Z of temporal 
rules is polynomially periodic and thus tractable. 

Proof: Take a temporal database D. Assume n is the 
number of tuples in D and c is the max.depth of a tem
poral term in D. The size of every state of L = MzAD 
is bounded by a polynomial P1 ( n) which is independent 
of c. Consider the states: 

L[c+1],L[c+2], ... ,L[c+s+1]. 

where s = P1(n) + 1. Only derived predicates may ap
pear in any of those states, because c is the max.depth 
of a temporal term in D. In the above sequence, there 
must be a pair of identical subsequent states L[tl] and 
L[t1+1], because the length of a sequence of differing 
states 

L[c+ 1]CL[c+2]CL[c+3]C ... 

is at most s + 1. If L[tl]=L[t1+1], then also 
L[tl]=L[t1+2] etc. Therefore, (P1(n)+l, 1) is a period 
of L and Theorem 4.1 can be applied. 0 

Theorem 5.2 It is decidable whether a domain
independent set of temporal rules Z is inflationary. 

Proof: We show that Z is inflationary iff for all derived 
predicates Pi that appear in it: 

~(1, a) E MzAD;· 

where Di = {Pi(O, a)} and a is a vector of appropri
ate length consisting of pairwise-different non-temporal 
constants. 

The necessity of the above condition is obvious. We 
show that it is also sufficient, i.e. that from 

Pi(1, a) ELi= MzAD; 
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it follows that Z is inflationary. Assume a stands for a 
vector of I elements a 1 , ... , a1, b for a vector of l elements 
b1, ... ,bt and 

Pi(u,b) E L = Mzw. 

We are going to show that 

Pi(u + 1,b) E L. 

Define a mapping G between ground, temporal or non
temporal, terms: 

G(ai) = bi for i = 1, ... , /. 
G(O) = u. 
G(s + 1) = G(s)+1 

for all ground temporal terms s. 

The mapping G can be generalized to vectors of terms 
in an obvious way. 

Define another mapping H between ground atoms: 

H(P(s, x)) = P(G(s), G(x)) for a temporal atom. 
H(R(x)) = P(G(x)) for a non-temporal atom. 

We are going to show that for all ground atoms A: 

A E Li => H(A) E L. 

If this is true, we can take A= Pi(1, a) and subsequently 
obtain 

H(A) = Pi(G(1),G(a)) = Pi(u+ 1,b) E L. 

Because A E Li = LF P(Z, Di), we have that A E 
Ttv (0) for some j. We prove now the thesis by the 
induction on j. If j = 1, A has to be the only database 
tuple Pi(O, a). By the original assumption 

H(A) = Pi(u,b) E L. 

Assume that the thesis is true for some j and take an 
'+1 atom A E TkAD;(0). If it belongs to Di, we reason as 

above. Otherwise, there must be a rule 

r: Ao :-At, ... , Ak E Z 

and a ground substitution () such that 

and A0 () = A. From the inductive assumption, for all 
Ap, p = 1, ... , k: 



We show another substitution T such that for all Ap, 
p=O, ... ,k: 

Consequently, from 

it follows that AoT = H(A 0 B) E L. 

We specify now the substitution T and prove that it sat
isfies the required condition. For the temporal variable 
T: 

TT = G(TB). 

and similarly for every non-temporal variable y: 

yT = G(yB). 

Notice that y(} has to be one of the a; that appear in 
D;, by the range-restrictedness of rules. Also, T(} is a 
ground temporal term and G is defined for every such 
term. Thus T is well defined. 

Consider Ap = P(T, x) where T is the temporal vari
able. Now: 

H(ApB) = H(P(TB,xB)) = P(G(TB),G(xB)) = 
= P(TT, xT) =ApT. 

If Ap is a non-temporal atom, the argument is similar. 
IfAp=P(T+l,x): 

D 
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H(ApB) = H(P(TB+ l,xB)) = P(G(TB+l),G(xB)) = 
= P(G(TB)+l,G(xB)) = P(TT+ l,xT) =ApT. 

I-periodicity 

A set of temporal rules Z is !-periodic if there is a pair 
of integers ( b0 , p0 ) which is a period of M z AD for every 
temporal database D. We will call iz = (bo,po) an !
period of Z. 

Clearly, an 1-period of Z does not have to be (and 
usually isn't) a minimal period of MzAD for a given 
database D. 

Theorem 6.1 Every !-periodic set Z of temporal rules 
is polynomially periodic and thus tractable. 

However, !-periodicity is not an effective notion. 
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Theorem 6.2 Testing !-periodicity is undecidable. 

Proof: By reduction from boundedness detection shown 
undecidable in [8). A set of function-free rules S is 
strongly k-bounded iffor every function-free database D, 
LF P(S, D) = r;AD(0), 

Take any set of function-free rules S. Create a set of 
temporal rules S' in the following way. 

For every rule rule r E S create a temporal rule r' E S' 
which counts the iterations of r. For example, if r is: 

a(X,Z) :- p(X,Y), a(Y,Z). 

then r' is: 

a(T+l,X,Z) :- p(T,X,Y), a(T,Y,Z). 

For every predicate create a copying rule. E.g. 

a(T+l,X,Y) :- a(T,X,Y). 

Finally, transform every function-free database to a 
temporal database by extending every tuple with a tem
poral argument equal to 0. E.g. 

a(O,b,c). 

It is easy to see that S is strongly k-bounded iff S' is 
!-periodic (with the 1-period equal to (k, 1)). 

D 

We define now syntactically the class of multi-separable 
rules guaranteed to be !-periodic. A temporal rule r is 
time-only if it is recursive and non-temporal arguments 
in all the occurrences of the recursive predicate are iden
tical. A time-only rule is reduced if every non-temporal 
argument that appears in in its body appears also in its 
head. 

Example: The following rule is time-only and reduced: 

D 

near(T+l,X,Y) :- near(T,X,Y), 
idle(T ,X), idle(T, Y). 

A temporal rule r is data-only if it is recursive and the 
temporal argument in all the temporal literals is identi
cal. 

Example: The following rule is data-only: 

happy(T ,X) ·- happy(T, Y), friend(X, Y). 

D 



A set of rules is multi-separable if it is mutual-recursion 
free and all the rules defining a recursive predicate are 
either time-only or data-only. 

Our main result here is Theorem 6.5 which states 
that multi-separable rules are !-periodic and therefore 
tractable. Without loss of generality, we may assume 
that time-only rules in a multi-separable set of tem
poral rules are reduced. The reduced form may be ob
tained through the introduction of additional predicates 
and additional non-recursive rules. This transformation 
preserves multi-separability. We assume here that the 
rules are semi-normal, because the normalization [6) in
troduces mutual recursion. Therefore, a multi-separable 
set of rules may become non-multi-separable after the 
normalization. However, the periodicity of a least model 
is the same for normal and semi-normal rules if for semi
normal rules it is redefined as suggested in section 3. 

The following two theorems show that !-periodic and 
time-only rules are very closely related. 

Theorem 6.3 Every set of reduced time-only rules Z 
is !-periodic. 

Proof: The basic idea is as follows: there is only a finite, 
constant number of pairs (b1,pt), ... , (bk,Pk) such that 
for every database D, one of the above pairs is a pe
riod of M z AD. This fact is true when Z is reduced 
time-only, even though the number of non-temporal 
constants that may appear in a database D is un
bounded and the temporal terms in D can be arbitrar
ily large. The pair (maxi=l, ... ,k(b;), fli=l, ... ,k p;) is an 
1-period of Z. We show now how to obtain the periods 
(bl,Pl), ... , (bk>Pk)· 

Initially, assume that all the predicates in Z are tempo
ral and have exactly two arguments. Define the follow
ing equivalence relation x ~L y between non-temporal 
constants x and y where L = LF P( Z, D): 

x ~L y iff (VP)(Vs)(P(s,x) E L:: P(s,y) E L). 

Additionally, assume now that the only temporal term 
in the database D is 0. Then there is a very simple 
sufficient condition for x ~L y, namely: 

(VP)(P(O,x) ED:: P(O,y) ED)=> x ~L y. 

This condition may be justified by noticing that 
P(s, x) E L is derived solely on the basis of tuples with 
the second argument equal to x. 

On the basis of the database D, we construct a skele
ton database D' in the following way. For every equiv
alence class of ~L, we choose one delegate constant. 
The database D' is formed by removing from D tuples 
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containing non-delegate constants. We will say that a 
non-delegate constant is eliminated by the correspond
ing delegate constant. Denote L' = LF P(Z, D'). No
tice that in view of the preceding paragraph, L' may be 
equivalently constructed by removing tuples with non
delegate constants from L. We show that the periods of 
L and L' are identical. More precisely: 

(Vtl)(Vt2)(L[tl)=L[t2) iff L'[tl]=L'(t2]). 

Assume L[tl]=L[t2]. Take P(tl, z) E L'. Clearly, 
P(tl, z) E L and consequently P(t2, z) E L. Now be
cause z is a delegate, also P(t2,z) E L'. 

Assume L'[tl]=L'[t2). Take P(tl, z) E L. If z is a 
delegate, then P(tl,z) E L'. Consequently, P(t2,z) E 
L' and P(t2, z) E L. Otherwise, assume that z has 
been eliminated by x. Clearly, P(tl,x) E L' and as 
above P(t2, x) E L. Thus also P(t2, z) E L. 

Therefore, in the construction of the 1-period of Z, we 
have to consider only the periods of LF P(Z, D) where 
D is a skeleton database. 

Take a truth assignment T to literals P(O, x) for some 
constant x and all predicates P in Z. In any skeleton 
database D', there can be at most one (delegate) con
stant y such that: 

(VP)(T(P(O, x)) =true:: P(O, y) ED'). 

If s is the number of predicates in Z, then there are 2' 
such truth assignments and consequently 22' skeleton 
databases with possibly different periods. To obtain 
an !-period of Z, those periods are computed by the 
algorithm constructing relational specifications [6] and 
combined as suggested at the beginning of the proof. 

We sketch now how to relax the initial assumptions. If 
the database D contains temporal terms different from 
0, but the set of rules Z is normal, skeleton databases 
may be constructed as above. This is partly due to the 
fact that a period of LF P(Z, D) is defined relative to 
the biggest temporal term in D. If Z is semi-normal, 
skeleton databases will contain tuples with the temporal 
argument greater than 0 but less than g (where g is 
the max. depth of a non-ground temporal term in Z). 
If non-temporal predicates are allowed in Z, skeleton 
databases will contain non-temporal tuples. Finally, if 
the arity of predicates is not restricted, the relation ~L 
should be defined between vectors of constants. D 

Theorem 6.4 For every !-periodic set of temporal 
rules Z, there is a mutual-recursion-free set of reduced 
time-only rules zl such that for every temporal database 
D, there is a temporal database D 1 satisfying the follow
ing conditions: 



• biggest temporal terms in D and D1 differ by a 
database-independent constant. 

Proof: If the 1-period of Z is (b,p), then for every pred
icate P in Z, put in Zt the following rule: 

P(T+p,x) :- P(T,x). 

Let L = MzAD and c be the biggest temporal term in 
D. Put in Dt all such tuples P(t,x)E L where t~ c+h. 
0 

Theorem 6.5 Every multi-separable set Z of temporal 
rules is /-periodic. 

Proo[- Because Z is mutual-recursion-free, we can as
sign a different level number to every predicate. The 
proof is by induction on the level number. 0 

7 Related work 

Recently, there has been a considerable interest in tem
poral logic programming [1,3,7], i.e. Horn rules capa
ble of modelling infinite temporal phenomena. The ap
proach in [1] and [3], is to pick a subset of Linear Tempo
ral Logic which can be treated as a programming lan
guage. Usually, this means that the subset has well
defined operational semantics. The subset studied in 
those papers consists of Horn clauses with appropri
ately restricted occurrences of modal temporal opera
tors. The semantics is patterned after the well-known 
semantics of standard logic programs [16]. 

We have been pursuing a different approach. Instead of 
extending the language of logic programs, we restricted 
it by designating one argument in predicates as tempo
ral, i.e. containing terms built from 0 and the unary 
function symbol +1. Clearly, such a language inherits 
the declarative and operational semantics of [16]. More
over, it captures the same class of infinite temporal phe
nomena as the modal language of [3]. Having database 
applications in mind, we further restricted this language 
by disallowing function symbols in non-temporal argu
ments obtaining temporal deductive databases: a tem
poral extension of DATALOG. 

In [7], we suggested a different, database-independent, 
approach to finite representation of infinite query an
swers based on the notion of infinite objects. However, it 
was applicable only to separable temporal rules, defined 
similarly to multi-separable rules in this paper, except 
for an additional requirement that recursive time-only 
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rules have at most one temporal literal in the body. 
Even for separable rules, the approach of [7] produced 
exponential-size representations of query answers. 

In [6], we studied a generalization of TDDs where more 
than one function sumbol is allowed. Unfortunately, 
for this class of rules the proof of Theorem 4.1 does 
not go through and no tractable subclasses have been 
identified. 

8 Further work 

This work raises a lot of interesting questions. 

We have studied two tractable classes of temporal rules: 
inflationary and !-periodic rules. Both classes are useful 
and practical: inflationary sets of rules can be effectively 
recognized and !-periodic sets of rules are very closely 
approximated by syntactically defined multi-separable 
rules. Other useful tractable classes should exist as well. 

How hard is the verification of polynomial periodicity -
our criterion of tractability? Can this criterion be for
mulated without a reference to relational specifications? 
Is there a class of queries whose polynomial time com
putability will capture the same notion? 

Intuitively, we would like all queries which are "easy" 
(PTIME-computable) on finite structures, be also 
PTIME-computable in tractable TDDs. However, in 
this paper we establish only that this correspondence 
holds for queries which are invariant w.r.t. relational 
specifications. There are very simple queries which are 
not invariant. 

Example: Consider the equality of temporal terms: 

E(s, t) = s = t. 

Take the following TDD Z AD: 

p(T+1) ·- p(T). 
p(O). 

The relational specification S z AD = (T, B, W): 

T = {0}. 
B = {p(O)}. 
w = {1=>0}. 

Take Yo = 0 and Y1 = 1. We have that 

r(yo) = r(yt) = 0. 

Therefore: 

B I= E(r(yo), r(yt)). 



but: 

0 

Such queries can not be evaluated by constructing the 
relational specification first. The notion of query eval
uation becomes problematic, because the structure in 
which the query is to be evaluated, namely MzAD, may 
be infinite. Alternatively, query evaluation may be de
fined syntactically, for example along the lines of Re
iter's syntactic reconstruction of the Closed World As
sumption [13]. But in the presence of function symbols, 
Reiter's construction leads to infinite formulas. 

The next step after identifying tractable temporal rules 
is to study the methods of optimizing their evaluation. 
In particular, various methods of rule rewriting devised 
for DATALOG (15] might be applicable to temporal 
rules as well. 
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A Appendix 

We prove Proposition 3.1 in several steps. First, it 
immediately follows from the definition that any atomic 
open query is invariant w.r.t. relational specifications. 
Assume now that S z AD = (T, B, W) is the relational 
specification and the mapping r is defined as in Section 
3. Quantifiers binding temporal variables in the query 
are interpreted as ranging over representative terms. 

Lemma A.l If the query Q(y, z1 , ... , zk) is invariant 
w.r.t. relational specifications, then so is the query 

Proof' We have to prove that 

Mz~~.v ~ P(zt, ... , Zk) iff B I= P(r(zt), ... , r(zk)). 

The left-hand side of this equivalence is equivalent to 

Mzw ~ 3y Q(y, z1, ... , zk)· 

which is in turn equivalent to 

for some y0 . From the original assumption, this is equiv
alent to 

B ~ Q(r(yo), r(zt), ... , r(zk)). 

which in turn implies 

B ~ 3y Q(y, r(zt), ... , r(zk)). 

because r(y0 ) is a representative term. The last condi
tion is equivalent to 

B ~ P(r(zt), ... , r(zk)). 

Now assume: 

B ~ 3y Q(y, r(zt), ... , r(zk)). 

and let Yo be such y. We have r(yo) = Yo, because Yo 
is either a representative term or a non-temporal term. 
Therefore: 

B ~ Q(r(yo), r(zt), ... , r(zk)). 

From the original assumption, it follows that 
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and 

D 

Lemma A.2 If the query Q(y, z1 , ... , Zk) is invariant 
w.r.t. relational specifications, then so is the query 

Proof' We have to prove that 

The left-hand side of this equivalence is equivalent to 

We are going to verify that the above condition implies 

B I= Vy Q(y, r(zt), ... , r(zk)). 

Take any y0 within the scope of the above universal 
quantifier. We have r(y0 ) = y0 , because either Yo is a 
representative term or it is a non-temporal term. There
fore: 

B I= Q(yo,r(zt), ... ,r(zk)). 

follows from the original assumption and the fact that 

for any term Yo. 

Now assume that 

B I= Vy Q(y, r(zt), ... , r(zk)). 

Take any term y0 . We have that 

B I= Q(r(yo), r(zt), ... , r(zk)). 

because either r(y0 ) is a representative term or Yo is a 
non-temporal term and y0 = r(y0). In both cases, the 
above fact follows directly from the previous one. Now 
from the original assumption, we can infer that 

Mz~~.v ~ Q(yo, z1, ... , zk)· 

Because y0 was arbitrary, also: 



0 

Lemma A.3 If the query Q(z1, ... , zk) is invariant 
w. r. t. relational specifications, so is its negation: 

Proof: Clearly: 

The left-hand side of this equivalence is equivalent to: 

because we assume that negative queries are evaluated 
under the Closed World Assumption. The equivalence 
of the right-hand side to: 

follows from the fact that for all ground terms 
a1, ... ,ak, the query -.P(r(al), ... ,r(ak)) is correctly 
evaluated under the CWA applied just to B. Notice 
that we never evaluate in B atoms containing ground 
temporal terms which are not representative. 0 

Lemma A.4 If Ql(Yl, ... , Yk. z1, ... , Zm) 

and Q2(x1, ... ,Xn,Z1, ... ,zm) are invariant w.r.t. re
lational specifications, so are: 

(Q11\ Q2)(y1, · · ·, Yk, X!,···, Xn, Z1, · · ·, Zm) 

:: Ql(Yl, · · ·, Yk, Z1, · ·., Zm) 1\ Q2(x1, ·. ·, Xn, Zl, ... , Zm)· 

(Ql V Q2)(y1, ... , Yk. X1, ... , Xn, Z1, ... , Zm) 

=: Ql(Yl, ... , Yk, Z1, ... , Zm) V Q2(x1, ... , Xn, Z1, ... , Zm)· 

Proof: Straightforward. 0 

All the above lemmas taken together imply Proposition 
3.1. 
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