
Polynomial Time Query Processing in Temporal Deductive Databases

Jan Chomicki
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599

chomicki@cs. unc.edu

Abstract

We study conditions guaranteeing polynomial time com
putability of queries in temporal deductive databases. We
show that if for a given set of temporal rules, the period
of its least models is bounded from the above by a poly
nomial in the database size, then also the time to process
yes-no queries (as well as to compute finite representations
of all query answers) can be polynomially bounded. We
present a bottom-up query processing algorithm BT that
is guaranteed to terminate in polynomial time if the peri
ods are polynomially bounded. Polynomial periodicity is
our most general criterion, however it can not be directly
applied. Therefore, we exhibit two weaker criteria, defining
inflationary and !-periodic sets of temporal rules. We show
that it can be decided whether a set of temporal rules is in
flationary. !-periodicity is undecidable (as we show), but it
can be closely approximated by a syntactic notion of multi
separability.

1 Introduction

In [7), we proposed temporal deductive databases
(TDDs) as a tool for storing and retrieving information
about infinite temporal phenomena. A temporal deduc
tive database (TDD) consists of a finite set of temporal
rules and a finite temporal database.

TDDs are an extension of DATALOG [14). Function
symbols are used in TDDs in a limited way: there is
one unary function symbol +1, written in postfix, and

Pennission to copy without fee all or pan of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by pennission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific pennission.

© 1990 ACM 089791-352-3/90/0004/0379 $1.50 379

terms built with this symbol can appear only in one
distinguished argument of all predicates. TDDs have
two desirable properties, not shared by arbitrary logic
programs [16,11]:

1. it is decidable whether a given atom is implied by
a TDD [7] (yes-no query processing).

2. all query answers (possibly infinitely many) can be
finitely represented using relational specifications
[6) (all-answers query processing).

However, due to computational complexity consider
ations, TDDs are impractical in their full general
ity. Yes-no query processing is PSPACE-data-complete
[12,7,5]. Relational specifications can also be computed
in PSPACE [5] and their size may be exponential in the
size of the database (6].

In this paper, we make a step towards making TDDs
feasible. We seek tractability: restrictions on temporal
rules that will guarantee a polynomial upper bound on
yes-no and all-answers query processing. Most of the
restrictions that we present here are semantic and ex
press properties of least (Herbrand) models of sets of
temporal rules. Others are syntactic and prescribe the
form of sets of temporal rules.

Least models of TDDs have a repetitive, periodic struc
ture [7]. We show that if for a given set of temporal
rules, the period of its least models is bounded from the
above by a polynomial in the database size, then also
the time to process yes-no queries (as well as to compute
relational specifications) can be polynomially bounded.
We present a bottom-up query processing algorithm BT
that is guaranteed to terminate in polynomial time if the
periods are polynomially bounded. Polynomial period
icity is our most general criterion, however it can not be
directly applied. Therefore, we exhibit two weaker crite
ria, defining inflationary and !-periodic sets of temporal
rules.

Intuitively, an inflationary set of temporal rules ex-

presses an infinite phenomenon with the following prop
erty: if a fact P(tO,a) is true, then also P(t,a) is true
for all t>tO. We show that it can be decided whether a
set of temporal rules is inflationary.

A set of rules is !-periodic if there is a common,
database-independent period for all its least models.
This property is undecidable (as we show). It can, how
ever, be approximated by a syntactic notion of multi
separability which prohibits mutual recursion and re
stricts the syntax of recursive rules. This approximation
is quite close, because for every !-periodic set of rules
Z, there is a multi-separable set of rules Z1 such that
for all databases D, the least model of Z 1\ D is equal
to the least model of Z1 1\ D1. The database D1 differs
very little from D and can be obtained from it. Multi
separable sets of rules are more general than separable
sets of rules discussed in a different context in (7].

Least models of inflationary and I-periodic sets of tem
poral rules have polynomially-bounded periods, thus in
both cases the yes-no query processing algorithm BT is
guaranteed to terminate in polynomial time.

The paper is organized as follows. We provide two ex
amples of tractable TDDs in section 2. In section 3, we
define basic notions. We also summarize known com
plexity results in this area. In section 4, we explain
our notion of tractability and we prove that polynomial
periodicity implies tractability. We study inflationary
temporal rules in section 5 and I-periodic temporal rules
in section 6. We review related work in section 7 and
conclude with an analysis of possible extensions of this
work in section 8.

2 Examples

We give here two examples of tractable TDDs. The
set of rules in the first is !-periodic, in the second -
inflationary.

Example: A travel agent has obtained the following
specification from an airline: "flights to ski resorts are
scheduled every seventh day during off-season, every
second day during the winter and every day during win
ter holidays" . This can be specified using temporal rules
as follows:

plane(T+7 ,X) :- plane(T ,X),
resort(X), offseason(T).

plane(T+2,X) :- plane(T ,X),
resort(X), winter(T).

plane(T+1,X) :- plane(T,X),
resort(X), holiday(T).

offseason(T+365) :- offseason(T).
winter(T+365) :- winter(T).

380

holiday(T+365) :- holiday(T).

The temporal database may look as follows1:

plane(01/01/90).
offseason(03/21/90).

offseason(12/19/90).
winter(12/20/89).

winter(03/20/90).
holiday(12/25/89).
holiday(01/01/90).

Now to verify whether a plane leaves to Hunter
on a given day tO, it has to be checked whether
plane(tO,' 'Hunter'') is implied by the rules and the
database. We might also ask about all days when a
plane leaves to Hunter and this query has infinitely
many answers.

The set of rules in this example is multi-separable (but
not separable), and consequently !-periodic. But it is
not inflationary: take a database with nonempty plane
relation but empty offseason, winter and holiday re
lations. 0

Example: Consider the following set of rules:

path(I{,X,X) :- node(X), null(l{).
path(1{+1 ,X ,Z) ·- edge(X, Y), path(l{, Y, Z).
path(l{+ 1, X, Y) :- path(l{, X, Y).

This set of rules is inflationary, because of the third
rule. If the predicates node and edge represent nodes
and edges of a directed graph, the predicate path has
no tuples in the database and the predicate null has
only one tuple null(O) in the database, the meaning
of path(l{, X, Y) is "there is a path of length at most 1{
between the nodes X and Y".

The above set of rules is not !-periodic, because the
length of a path in an arbitrary graph can not be
bounded from above. 0

3 Basic notions

We assume here that the reader is familiar with the
syntax and the semantics of logic programs: [16],[11,
Chapter 1 and 2].

1The actual dates that appear in the database are re
ally abbreviations for terms of the form (... ((0+1)+1) ... +1).
We can imagine that those abbreviations are expanded when
the database is being input. Similarly, we could pro
vide an abbreviation for intervals and represent vinter and
offseason as single tuples vinter(<12/20/89,03/20/90>) and
offseason(<03/21/90,12/19/90>).

3.1 Syntax

In this section, we define the class of temporal deductive
databases: our postulated extension of DATALOG.

Language. We assume that the language contains in
finitely many variable, function and predicate symbols.
As usual, we call 0-ary function symbols constants.
Variables and constants are (disjointly) partitioned into
temporal and non-temporal ones. We assume that there
is exactly one temporal constant 0. A predicate symbol
is either temporal or non-temporal.

Terms. A non-temporal term is either a non-temporal
constant (a standard database constant) or a non
temporal variable. A temporal term is defined induc
tively:

1. the temporal constant 0 is a temporal term.

2. a temporal variable is a temporal term.

3. if v is a temporal term, then v+1 is a temporal
term.

4. there are no other temporal terms.

Term which do not contain any variables are called
ground. The only ground non-temporal terms are con
stants, while ground temporal terms may be arbitrarily
deep. A non-ground temporal term contains exactly one
variable and this variable is temporal. All the temporal
and non-temporal terms are distinct.

Temporal terms will appear in bold font. We will write
k instead of (· · · ((0 +1) + 1) · · · +1) and t+k instead

k time$
of (· .. ((t +1) + 1) · · · +1). The integer k corresponds

k time$
to the temporal term k in a natural way.

Formulas. If P is a temporal predicate symbol and R is
a non-temporal predicate symbol, v is a temporal term
and x is a vector of non-temporal terms of appropriate
arity, then P(v ,x) is a temporal atom and R(x) is a non
temporal atom. The term v is the temporal argument
and the elements of x are the non-temporal arguments
of P(v,x).

A temporal database is a finite set of tuples: ground
atoms which can be temporal or non-temporal. Tempo
ral Horn rules are defined in the standard way, except
that they have to be built from the atoms defined above.
All variables are universally quantified. A temporal de
ductive database (TDD) is a finite set of temporal rules
and a temporal database. A temporal query is a first
order formula without equality built from temporal and
non-temporal atoms, standard logical connectives and

381

quantifiers 2 . We will write Q(x1, ... , Xk) to denote the
query Q with free variables x 1 , ... , Xk·

A temporal rule r is semi-normal if r contains at most
one temporal variable and if this variable appears in r, it
has to appear as the temporal argument of some literal.
A temporal rule r is normal if it is semi-normal and
non-ground temporal terms in r are of depth at most 1.

For every set of temporal rules, there is a set of equiv
alent semi-normal rules and another set of equivalent
normal rules. Both are obtained through the introduc
tion of additional predicates and rules, as shown in [5].
Thus, we will assume that the rules are normal through
out this paper, except in section 6 where assuming only
semi-normality is more convenient. We will also assume
that rules do not contain any ground terms.

3.2 Semantics

By an interpretation we mean a Herbrand interpretation
of a formula, i.e. an interpretation which is a subset of
its Herbrand base, and by a model- a Herbrand model.
Both the Herbrand universe and the Herbrand base of
a temporal formula are infinite. By the results of [16],
every temporal deductive database Z 1\ D (where Z is
a set of rules and D is a database) has a least (Her
brand) model denoted by M z AD. This model is also
the least fixpoint LFP(Z, D) of a mapping Tz/I.D from
interpretations to interpretations:

Tz"n(I) ={A: A= A0 8, 8 is a ground substitution,
Ao : -At, ... , Ak E Z, At8 E I, ... , Ak(} E I} U D.

We have:

LF P(Z, D)= U~=l T~"n(0).

In the following definitions, assume that M is a set 3

of temporal and non-temporal tuples and to and t1 are
ground temporal terms.

Define the snapshot M(to) of M as:

M(to)={A: (3P)(3x)(A = P(to, x) and A EM)}.

M(to) may be thought of as the result of the selection
Ust=to(M). Additionally, M(tO) is always finite, be
cause non-temporal arguments can assume only finitely
many values.

Define the segment M(to ... tl) of M as:

2 We assume that both existential and universal quantifiers
come in two different sorts: one quantifying over ground temporal
terms and the other- over non-temporal constants.

3 M does not have to be finite. However, it has to contain only
finitely many constant and function symbols. Every Herbrand
model of a temporal deductive database has this property.

M(to ... tl)=Uto~t~n M(t).

Define the non-temporal part Mnt of M as the set of all
the non-temporal tuples in M.

Define the state M[to] of M as:

M[to]={B: (3P)(3x)(B = P(x) and P(tO, x) EM)}.

M[to] may be thought of as a result of "projecting out"
the temporal arguments in the predicates in M(to).
Therefore, it is a finite, function-free database. Every
M has only finitely many different states. Moreover, if
for every t we know M[t], we can reconstruct the entire
set M.

A model M of a temporal deductive database Z 1\ D
(such that c is the max. depth of a temporal term in
the database D) is periodic with period (k- c,p) if:

('It~ k)(M[t]=M[t+p]).

This definition assumes that the rules are normal. If
they are only semi-normal, the equality of single states
has to be replaced by the equality of g subsequent states
(where g is the max. depth of a non-ground temporal
term in Z).

Theorem 3.1 {7} The least model Muv is periodic
with a period (b,p) such that b+p is at most exponential
in the size of the database D.

3.3 Query processing

We adopt the view that TDDs define (possibly infinite)
structures in which queries are evaluated.

Let Z be a set of temporal rules and D a temporal
database. A substitution B to the open variables of a
temporal query Q is an answer to Q if QO is ground and
MZI\D I= QO. Query evaluation finds all answers to a
given query. When Q is closed, query evaluation returns
"yes" if MZt .. D I= Q, "no"- otherwise. We assume that
negative queries are evaluated using the Closed World
Assumption.

In temporal deductive databases, the least model MzAD
may be infinite and consequently there may be infinitely
many different answers to a query. To handle this prob
lem, we introduced in [6] the notion of a relational
specification: a finite structure equivalent to the infinite
least model. Here we present it in a slightly different
formulation.

A relational specification SzAD of L = MzAD is a triple
(T, B, W) where T is a finite set of ground temporal
terms, B is a temporal database (by definition finite)

382

and W is a finite set of ground rewrite rules whose both
sides are temporal terms. We will call the terms in
T representative and B - the primary database. We

will write t~to to indicate that the ground term t can
be rewritten to tO using the rules in W and no more
rewritings are applicable (tO is a canonical form oft).

A relational specification S z AD = (T, B, W) of L
MzAD satisfies the following conditions:

1. B=Uter L(t)ULnt·

2. for every ground temporal term t, there is a term

tOE T such that t~to and L[t]=L[to]. The term
tO is called a representative oft.

The last condition suggests how to evaluate a ground
atomic query in S z AD: rewrite the query atom using W
until no more rewrite rules apply. If the rewritten atom
is in B, answer "yes", otherwise answer "no". Similarly,
an open query may be simply computed on the primary
database B 4 . There will be finitely many answer substi
tutions, each representing possibly infinitely many orig
inal answer substitutions. The correspondence between
those two types of substitutions are captured by the
rewrite rules, so the rewrite rules themselves should be
a part of the query answer.

The notion of a relational specification is applicable
to functional deductive databases - a generalization of
TDDs. Relational specifications are well-defined only
if rules are range-restricted: every variable in the head
has to appear also in the body. A similar requirement
has been postulated for DATALOG [14]. In the rest
of this paper, we will assume that the rules are range
restricted.

In [6,5], we showed a procedure to compute a relational
specification SzAD = (T, B, W). In the following, we
will refer to the specification computed by this proce
dure as the relational specification S z AD. This specifi
cation has the property that W is a terminating rewrite
system and every ground temporal term has a single
representative in T.

In the case of TDDs, the relational specification has a
particularly simple form: the set W contains exactly
one rewrite rule:

where (b,p) is a period of MzAD and c is the max.
depth of a temporal term in the database D. The pro
cedure presented in [6] computes a minimal period (b,p)
of MuD which has the following property:

4 This method is appropriate only if it leaves the query answer
unchanged. We show that this is indeed the case for temporal
queries.

where t is the max. depth of a representative term in
SZt,D·

Example: Take the following set of rules Z consisting of
one rule:

even(T+2) :- even(T).

and the following database:

even(O).

The relational specification (T, B, W) of M Zt,D 1s as
follows:

T={O, 1}.
B={ even(O)}.
W={2-+0}.

We use the specification to answer queries. For exam
ple, the query even(4) will be first rewritten as even(2)
and then as even(O). The tuple even(O) is in the pri
mary database B, thus the answer to the original query
is "yes".

On the other hand, the query even(3) will be rewritten
as even(1) and no further. But the tuple even(1) is
not in B, thus the answer is "no".

An answer to an open query even(X) consists of the
substitution X=O and the rewrite rule 2--+0. This an
swer represents infinitely many answer substitutions:

X=O, X=2, X=4 ...

0

The construction of the relational specification makes
explicit the period of a TDD.

We will say that a query Q(x1, ... , xk) is invariant with
respect to relational specifications iffor every set oftem
poral rules Z and every temporal database D:

(Vx1, ... , xk)
(Mz"D f= Q(x1, ... , Xk) iff B I= Q(r(x1), ... , r(xk))).

where Sz"D = (T,B, W) is the relational specification
of MzAD and:

r(xi) = x; if x; is non-temporal.

r(x;) = xo such that x; ~ xo, if x; is temporal.

It should be clear that for a representative term y,
r(y) = y.

383

Proposition 3.1 Every temporal query zs invariant
w. r. t. relational specifications.

Proof: See Appendix. 0

Therefore, any temporal query Q can be answered by
first computing S z AD = (T, B, W) and then evaluating
Q over B using W to rewrite ground temporal terms
in the query. In the definition of query evaluation over
B, the quantifiers binding temporal variables are inter
preted as ranging over the set of representative terms.

3.4 Computational complexity

The graph Gr(Z, Q) of a set of temporal rules Z and a
temporal query Q is defined as:

Gr(Z, Q) = {(d, D) : Mz"D f= Q(d)}.

where d is a vector of ground terms of appropriate ar
ity and D is a temporal database. The complexity of
Gr{ Z, Q) will be called the data complexity [4,17) of Z
and Q. We will be interested in the complexity of de
termining the membership in Gr(Z,Q) (yes-no query
processing) and the complexity of computing the rela
tional specification of MzAD (all-answers query process
ing). Because all temporal queries are invariant w.r.t.
relational specifications, all the answers to any temporal
query can be obtained from S z AD.

Theorem 3.2 [12, 7) For a set of temporal rules Z and
a ground atomic query Q, yes-no query processing is
PSPA CE-data-complete.

Theorem 3.3 {5} For a set of temporal rules Z, com
puting the relational specification SzAD of MzAD is
PSPACE-data-complete. There is a set of temporal
rules Z for which the size of Sz"D is exponential in
the size of D.

The exponential size specification mentioned in the
above theorem consists of exponentially many represen
tative terms, an exponentially sized primary database
and a single rule whose left side is an exponential ground
temporal term. Clearly, the non-temporal part of Mz"D
(which is also a part of S z AD) is always at most poly
nomial in size.

4 Tractability

The above results state that obtaining a yes-no answer
to a ground atomic temporal query in TDDs can not be

done in polynomial time unless P=PSPACE. The same
is true of computing relational specifications. These
facts motivate our interest in classes of temporal rules
for which queries may be processed in polynomial time.

We say that a set of temporal rules Z is tractable if for
every temporal database D, the relational specification
SzAD can be' computed in time polynomial in the size
of D. The size of the database D is considered here to
be max(n, c) where n is the number of tuples in D and
c the maximum depth of a temporal term in D. This is
equivalent to the assumption that temporal terms in D
are encoded in unary.

We argue that our notion of tractability is quite ro
bust. The polynomially-sized relational specification
SzAD, once computed, can be used to answer queries.
If a query is invariant w.r.t. Sz,.D and is computable
in polynomial time on finite structures, then it is also
computable in polynomial time on the possibly infinite
MzAD (provided, of course, that the size of SzAD is
polynomial in the size of D). We know that tempo
ral queries, although quite general, satisfy both criteria:
invariance and polynomial time computability on finite
structures, and consequently are polynomial time com
putable.

There are other candidate criteria of tractability which
differ from ours by considering smaller classes of queries.
For example, one can take only ground atomic queries.
But then a gap appears: more general yes-no queries,
e.g. existentially quantified, can no longer be com
puted in polynomial time unless P=PSPACE (see the
PSPACE lower bound example in [7]). A similar gap ex
ists as well between queries using only existential quanti
fiers and queries using also universal quantifiers, c.f. an
example presented in [9] 5 . Moreover, polynomial time
computability of ground atomic queries does not guar
antee polynomial time computability of all the answers
to queries. The relational specification SzAD of all an
swers may be exponentially-sized, while ground atomic
queries to Z AD are polynomial time computable [5].

We are going to prove now our most general result, a
complete semantic characterization of tractable sets of
temporal rules. Subsequently, we are going to use this
result to infer the tractability of various classes of tem
poral rules.

Theorem 4.1 Let Z be a set of temporal rules and D
a temporal database. The size of the relational specifica
tion SzAD is polynomial in the size of D iff SzAD can
be computed in time polynomial in the size of D.

Proof: The right-to-left direction is trivial but the left-
5 The example in this paper uses Skolem functions, but in this

context the difference is immaterial.

384

to-right is not.

We will show first that ground atomic queries to the
TDD Z AD can be computed in time polynomial in
max(n, c, h) where n is the number of tuples in D, cis
the max. depth of a temporal term in D and h is the
depth of the temporal term in the ground atomic query
Q. We have that

MzAD f= Q iff Z AD A -.Q is unsatisfiable.

Define

m = max(c, h)+ range(Z A D).

where range(Z A D) is the number of different states in
MzAD· If the size of SzAD is a polynomial in max(n, c),
so is range(Z A D). Therefore, m is a polynomial in
max(n, c, h).

The algorithm shown in Figure 1 determines whether
Z ADA-.Q. It works in time polynomial in max(n, m).
Its correctness can be justified in the same way as
the correctness of a bottom-up algorithm in [7,5]. Es
sentially, the algorithm constructs a ground hyper
resolution refutation of Z A D A -.Q.

L':=D
repeat

L:=L'(O ... m)
L':=Tz,.D(L)

until L(O ... m)=L'(O ... m) and Lnt=L' nt
answer:=£ f= Q

Figure 1: Algorithm BT

The size of representative terms is also polynomial in
the size of D, thus the algorithm from [6], computing
SzAD, runs in polynomial time as well. D

For temporal rules, the size of S z AD is polynomially
bounded iff there exists a polynomial period of M z AD.
Therefore, we will refer to the tractability criterion from
Theorem 4.1 as polynomial periodicity.

Currently, we don't know whether polynomial periodic
ity is decidable. The weaker criterion: "polynomial time
computability of ground atomic temporal queries" can
be easily shown to be as hard as determining whether
P=PSPACE. In the following, we will show several
classes of temporal rules that have polynomial periods.

5 Inflationary rules

A predicate P is derived by a set of rules Z if it appears
in the head of some rule in Z.

A set of temporal rules Z is inflationary if for all tempo
ral databases D, all ground temporal terms t, all vectors
of non-temporal constants x of appropriate arity and all
temporal predicates P derived by Z:

MzAD I= P(t, x) => MzAD I= P(t + 1, x).

This notion is inspired by the inflationary semantics for
negation [10,2]. The graph example from the introduc
tion is inflationary. However, if we dropped the restric
tion to derived predicates in the above definition, that
example would no longer be considered inflationary.

Theorem 5.1 Every inflationary set Z of temporal
rules is polynomially periodic and thus tractable.

Proof: Take a temporal database D. Assume n is the
number of tuples in D and c is the max.depth of a tem
poral term in D. The size of every state of L = MzAD
is bounded by a polynomial P1 (n) which is independent
of c. Consider the states:

L[c+1],L[c+2], ... ,L[c+s+1].

where s = P1(n) + 1. Only derived predicates may ap
pear in any of those states, because c is the max.depth
of a temporal term in D. In the above sequence, there
must be a pair of identical subsequent states L[tl] and
L[t1+1], because the length of a sequence of differing
states

L[c+ 1]CL[c+2]CL[c+3]C ...

is at most s + 1. If L[tl]=L[t1+1], then also
L[tl]=L[t1+2] etc. Therefore, (P1(n)+l, 1) is a period
of L and Theorem 4.1 can be applied. 0

Theorem 5.2 It is decidable whether a domain
independent set of temporal rules Z is inflationary.

Proof: We show that Z is inflationary iff for all derived
predicates Pi that appear in it:

~(1, a) E MzAD;·

where Di = {Pi(O, a)} and a is a vector of appropri
ate length consisting of pairwise-different non-temporal
constants.

The necessity of the above condition is obvious. We
show that it is also sufficient, i.e. that from

Pi(1, a) ELi= MzAD;

385

it follows that Z is inflationary. Assume a stands for a
vector of I elements a 1 , ... , a1, b for a vector of l elements
b1, ... ,bt and

Pi(u,b) E L = Mzw.

We are going to show that

Pi(u + 1,b) E L.

Define a mapping G between ground, temporal or non
temporal, terms:

G(ai) = bi for i = 1, ... , /.
G(O) = u.
G(s + 1) = G(s)+1

for all ground temporal terms s.

The mapping G can be generalized to vectors of terms
in an obvious way.

Define another mapping H between ground atoms:

H(P(s, x)) = P(G(s), G(x)) for a temporal atom.
H(R(x)) = P(G(x)) for a non-temporal atom.

We are going to show that for all ground atoms A:

A E Li => H(A) E L.

If this is true, we can take A= Pi(1, a) and subsequently
obtain

H(A) = Pi(G(1),G(a)) = Pi(u+ 1,b) E L.

Because A E Li = LF P(Z, Di), we have that A E
Ttv (0) for some j. We prove now the thesis by the
induction on j. If j = 1, A has to be the only database
tuple Pi(O, a). By the original assumption

H(A) = Pi(u,b) E L.

Assume that the thesis is true for some j and take an
'+1 atom A E TkAD;(0). If it belongs to Di, we reason as

above. Otherwise, there must be a rule

r: Ao :-At, ... , Ak E Z

and a ground substitution () such that

and A0 () = A. From the inductive assumption, for all
Ap, p = 1, ... , k:

We show another substitution T such that for all Ap,
p=O, ... ,k:

Consequently, from

it follows that AoT = H(A 0 B) E L.

We specify now the substitution T and prove that it sat
isfies the required condition. For the temporal variable
T:

TT = G(TB).

and similarly for every non-temporal variable y:

yT = G(yB).

Notice that y(} has to be one of the a; that appear in
D;, by the range-restrictedness of rules. Also, T(} is a
ground temporal term and G is defined for every such
term. Thus T is well defined.

Consider Ap = P(T, x) where T is the temporal vari
able. Now:

H(ApB) = H(P(TB,xB)) = P(G(TB),G(xB)) =
= P(TT, xT) =ApT.

If Ap is a non-temporal atom, the argument is similar.
IfAp=P(T+l,x):

D

6

H(ApB) = H(P(TB+ l,xB)) = P(G(TB+l),G(xB)) =
= P(G(TB)+l,G(xB)) = P(TT+ l,xT) =ApT.

I-periodicity

A set of temporal rules Z is !-periodic if there is a pair
of integers (b0 , p0) which is a period of M z AD for every
temporal database D. We will call iz = (bo,po) an !
period of Z.

Clearly, an 1-period of Z does not have to be (and
usually isn't) a minimal period of MzAD for a given
database D.

Theorem 6.1 Every !-periodic set Z of temporal rules
is polynomially periodic and thus tractable.

However, !-periodicity is not an effective notion.

386

Theorem 6.2 Testing !-periodicity is undecidable.

Proof: By reduction from boundedness detection shown
undecidable in [8). A set of function-free rules S is
strongly k-bounded iffor every function-free database D,
LF P(S, D) = r;AD(0),

Take any set of function-free rules S. Create a set of
temporal rules S' in the following way.

For every rule rule r E S create a temporal rule r' E S'
which counts the iterations of r. For example, if r is:

a(X,Z) :- p(X,Y), a(Y,Z).

then r' is:

a(T+l,X,Z) :- p(T,X,Y), a(T,Y,Z).

For every predicate create a copying rule. E.g.

a(T+l,X,Y) :- a(T,X,Y).

Finally, transform every function-free database to a
temporal database by extending every tuple with a tem
poral argument equal to 0. E.g.

a(O,b,c).

It is easy to see that S is strongly k-bounded iff S' is
!-periodic (with the 1-period equal to (k, 1)).

D

We define now syntactically the class of multi-separable
rules guaranteed to be !-periodic. A temporal rule r is
time-only if it is recursive and non-temporal arguments
in all the occurrences of the recursive predicate are iden
tical. A time-only rule is reduced if every non-temporal
argument that appears in in its body appears also in its
head.

Example: The following rule is time-only and reduced:

D

near(T+l,X,Y) :- near(T,X,Y),
idle(T ,X), idle(T, Y).

A temporal rule r is data-only if it is recursive and the
temporal argument in all the temporal literals is identi
cal.

Example: The following rule is data-only:

happy(T ,X) ·- happy(T, Y), friend(X, Y).

D

A set of rules is multi-separable if it is mutual-recursion
free and all the rules defining a recursive predicate are
either time-only or data-only.

Our main result here is Theorem 6.5 which states
that multi-separable rules are !-periodic and therefore
tractable. Without loss of generality, we may assume
that time-only rules in a multi-separable set of tem
poral rules are reduced. The reduced form may be ob
tained through the introduction of additional predicates
and additional non-recursive rules. This transformation
preserves multi-separability. We assume here that the
rules are semi-normal, because the normalization [6) in
troduces mutual recursion. Therefore, a multi-separable
set of rules may become non-multi-separable after the
normalization. However, the periodicity of a least model
is the same for normal and semi-normal rules if for semi
normal rules it is redefined as suggested in section 3.

The following two theorems show that !-periodic and
time-only rules are very closely related.

Theorem 6.3 Every set of reduced time-only rules Z
is !-periodic.

Proof: The basic idea is as follows: there is only a finite,
constant number of pairs (b1,pt), ... , (bk,Pk) such that
for every database D, one of the above pairs is a pe
riod of M z AD. This fact is true when Z is reduced
time-only, even though the number of non-temporal
constants that may appear in a database D is un
bounded and the temporal terms in D can be arbitrar
ily large. The pair (maxi=l, ... ,k(b;), fli=l, ... ,k p;) is an
1-period of Z. We show now how to obtain the periods
(bl,Pl), ... , (bk>Pk)·

Initially, assume that all the predicates in Z are tempo
ral and have exactly two arguments. Define the follow
ing equivalence relation x ~L y between non-temporal
constants x and y where L = LF P(Z, D):

x ~L y iff (VP)(Vs)(P(s,x) E L:: P(s,y) E L).

Additionally, assume now that the only temporal term
in the database D is 0. Then there is a very simple
sufficient condition for x ~L y, namely:

(VP)(P(O,x) ED:: P(O,y) ED)=> x ~L y.

This condition may be justified by noticing that
P(s, x) E L is derived solely on the basis of tuples with
the second argument equal to x.

On the basis of the database D, we construct a skele
ton database D' in the following way. For every equiv
alence class of ~L, we choose one delegate constant.
The database D' is formed by removing from D tuples

387

containing non-delegate constants. We will say that a
non-delegate constant is eliminated by the correspond
ing delegate constant. Denote L' = LF P(Z, D'). No
tice that in view of the preceding paragraph, L' may be
equivalently constructed by removing tuples with non
delegate constants from L. We show that the periods of
L and L' are identical. More precisely:

(Vtl)(Vt2)(L[tl)=L[t2) iff L'[tl]=L'(t2]).

Assume L[tl]=L[t2]. Take P(tl, z) E L'. Clearly,
P(tl, z) E L and consequently P(t2, z) E L. Now be
cause z is a delegate, also P(t2,z) E L'.

Assume L'[tl]=L'[t2). Take P(tl, z) E L. If z is a
delegate, then P(tl,z) E L'. Consequently, P(t2,z) E
L' and P(t2, z) E L. Otherwise, assume that z has
been eliminated by x. Clearly, P(tl,x) E L' and as
above P(t2, x) E L. Thus also P(t2, z) E L.

Therefore, in the construction of the 1-period of Z, we
have to consider only the periods of LF P(Z, D) where
D is a skeleton database.

Take a truth assignment T to literals P(O, x) for some
constant x and all predicates P in Z. In any skeleton
database D', there can be at most one (delegate) con
stant y such that:

(VP)(T(P(O, x)) =true:: P(O, y) ED').

If s is the number of predicates in Z, then there are 2'
such truth assignments and consequently 22' skeleton
databases with possibly different periods. To obtain
an !-period of Z, those periods are computed by the
algorithm constructing relational specifications [6] and
combined as suggested at the beginning of the proof.

We sketch now how to relax the initial assumptions. If
the database D contains temporal terms different from
0, but the set of rules Z is normal, skeleton databases
may be constructed as above. This is partly due to the
fact that a period of LF P(Z, D) is defined relative to
the biggest temporal term in D. If Z is semi-normal,
skeleton databases will contain tuples with the temporal
argument greater than 0 but less than g (where g is
the max. depth of a non-ground temporal term in Z).
If non-temporal predicates are allowed in Z, skeleton
databases will contain non-temporal tuples. Finally, if
the arity of predicates is not restricted, the relation ~L
should be defined between vectors of constants. D

Theorem 6.4 For every !-periodic set of temporal
rules Z, there is a mutual-recursion-free set of reduced
time-only rules zl such that for every temporal database
D, there is a temporal database D 1 satisfying the follow
ing conditions:

• biggest temporal terms in D and D1 differ by a
database-independent constant.

Proof: If the 1-period of Z is (b,p), then for every pred
icate P in Z, put in Zt the following rule:

P(T+p,x) :- P(T,x).

Let L = MzAD and c be the biggest temporal term in
D. Put in Dt all such tuples P(t,x)E L where t~ c+h.
0

Theorem 6.5 Every multi-separable set Z of temporal
rules is /-periodic.

Proo[- Because Z is mutual-recursion-free, we can as
sign a different level number to every predicate. The
proof is by induction on the level number. 0

7 Related work

Recently, there has been a considerable interest in tem
poral logic programming [1,3,7], i.e. Horn rules capa
ble of modelling infinite temporal phenomena. The ap
proach in [1] and [3], is to pick a subset of Linear Tempo
ral Logic which can be treated as a programming lan
guage. Usually, this means that the subset has well
defined operational semantics. The subset studied in
those papers consists of Horn clauses with appropri
ately restricted occurrences of modal temporal opera
tors. The semantics is patterned after the well-known
semantics of standard logic programs [16].

We have been pursuing a different approach. Instead of
extending the language of logic programs, we restricted
it by designating one argument in predicates as tempo
ral, i.e. containing terms built from 0 and the unary
function symbol +1. Clearly, such a language inherits
the declarative and operational semantics of [16]. More
over, it captures the same class of infinite temporal phe
nomena as the modal language of [3]. Having database
applications in mind, we further restricted this language
by disallowing function symbols in non-temporal argu
ments obtaining temporal deductive databases: a tem
poral extension of DATALOG.

In [7], we suggested a different, database-independent,
approach to finite representation of infinite query an
swers based on the notion of infinite objects. However, it
was applicable only to separable temporal rules, defined
similarly to multi-separable rules in this paper, except
for an additional requirement that recursive time-only

388

rules have at most one temporal literal in the body.
Even for separable rules, the approach of [7] produced
exponential-size representations of query answers.

In [6], we studied a generalization of TDDs where more
than one function sumbol is allowed. Unfortunately,
for this class of rules the proof of Theorem 4.1 does
not go through and no tractable subclasses have been
identified.

8 Further work

This work raises a lot of interesting questions.

We have studied two tractable classes of temporal rules:
inflationary and !-periodic rules. Both classes are useful
and practical: inflationary sets of rules can be effectively
recognized and !-periodic sets of rules are very closely
approximated by syntactically defined multi-separable
rules. Other useful tractable classes should exist as well.

How hard is the verification of polynomial periodicity -
our criterion of tractability? Can this criterion be for
mulated without a reference to relational specifications?
Is there a class of queries whose polynomial time com
putability will capture the same notion?

Intuitively, we would like all queries which are "easy"
(PTIME-computable) on finite structures, be also
PTIME-computable in tractable TDDs. However, in
this paper we establish only that this correspondence
holds for queries which are invariant w.r.t. relational
specifications. There are very simple queries which are
not invariant.

Example: Consider the equality of temporal terms:

E(s, t) = s = t.

Take the following TDD Z AD:

p(T+1) ·- p(T).
p(O).

The relational specification S z AD = (T, B, W):

T = {0}.
B = {p(O)}.
w = {1=>0}.

Take Yo = 0 and Y1 = 1. We have that

r(yo) = r(yt) = 0.

Therefore:

B I= E(r(yo), r(yt)).

but:

0

Such queries can not be evaluated by constructing the
relational specification first. The notion of query eval
uation becomes problematic, because the structure in
which the query is to be evaluated, namely MzAD, may
be infinite. Alternatively, query evaluation may be de
fined syntactically, for example along the lines of Re
iter's syntactic reconstruction of the Closed World As
sumption [13]. But in the presence of function symbols,
Reiter's construction leads to infinite formulas.

The next step after identifying tractable temporal rules
is to study the methods of optimizing their evaluation.
In particular, various methods of rule rewriting devised
for DATALOG (15] might be applicable to temporal
rules as well.

Acknowledgments

I am grateful to Tomasz Imielinski for suggesting that
I work on this topic and for many discussions. Thanks
go to Jack Minker and the University of Maryland Insti
tute for Advanced Computer Studies for support during
the early stages of the preparation of this paper. Tony
Bonner provided several valuable e-mail comments.

References

(1] M. Abadi and Z. Manna. Temporal Logic Program
ming. In IEEE Symposium on Logic Programming,
pages 4-16, San Francisco, Ca., September 1987.

[2] S. Abiteboul and V. Vianu. Procedural and
Declarative Database Update Languages. In ACM
SIGACT/SIGMOD Symposium on Principles of
Database Systems, 1988.

[3] M. Baudinet. Temporal Logic Programming is
Complete and Expressive. In ACM SIGPLAN
Symposium on Principles of Programming Lan
guages, 1989.

[4] A.K. Chandra and D. Harel. Computable Queries
for Relational Databases. Journal of Computer and
System Sciences, 21:156-178, 1980.

[5] J. Chomicki. Functional Deductive Databases:
Query Processing in the Presence of Limited Func
tion Symbols. PhD thesis, Rutgers University, New
Brunswick, New Jersey, January 1990.

389

[6] J. Chomicki and T. Imielinski. Relational Specifi
cations of Infinite Query Answers. In ACM SIC
MOD International Conference on Management of
Data, Portland, Oregon, May 1989.

[7] J. Chomicki and T. Imielinski. Temporal De
ductive Databases and Infinite Objects. In ACM
SIGACT/SIGMOD Symposium on Principles of
Database Systems, Austin, Texas, March 1988.

[8] H. Gaifman, Sagiv Y., H. Mairson, and M.Y. Vardi.
Undecidable Optimization Problems for Database
Logic Programs. In IEEE Symposium on Logic in
Computer Science, 1987.

[9] T. Imielinski. Complexity of query processing in
incomplete databases. Submitted.

[10] P.G. Kolaitis and C.H. Papadimitriou. Why
not Negation by Fixpoint? In ACM
SIGACT/SIGMOD Symposium on Principles of
Database Systems, pages 231-239, Austin,Texas,
March 1988.

[11] J.W. Lloyd. Foundations of Logic Programming.
Springer Verlag, 2nd edition, 1987.

[12] D.A. Plaisted. Complete Problems in the First
Order Predicate Calculus. Journal of Computer
and System Sciences, 29:8-35, 1984.

[13] R. Reiter. Towards a Logical Reconstruction of
Relational Database Theory. In M.L. Brodie, J.
Mylopoulos, and J .W. Schmidt, editors, On Con
ceptual Modeling, pages 191-233, Springer-Verlag,
1984.

[14] J.D. Ullman. Principles of Database and
Know/edge-Base Systems. Volume 1, Computer
Science Press, 1988.

[15] J.D. Ullman. Principles of Database and

[16]

[17]

Knowledge-Base Systems. Volume 2, Computer
Science Press, 1989.

M.H. van Emden and R.A. Kowalski. The Se
mantics of Predicate Logic as a Programming Lan
guage. Journal of the A CM, 23(4):733-742, 1976.

M.Y. Vardi. The Complexity of Relational Query
Languages. In ACM SIGACT Symposium on The
ory of Computing, pages 137-146, 1982.

A Appendix

We prove Proposition 3.1 in several steps. First, it
immediately follows from the definition that any atomic
open query is invariant w.r.t. relational specifications.
Assume now that S z AD = (T, B, W) is the relational
specification and the mapping r is defined as in Section
3. Quantifiers binding temporal variables in the query
are interpreted as ranging over representative terms.

Lemma A.l If the query Q(y, z1 , ... , zk) is invariant
w.r.t. relational specifications, then so is the query

Proof' We have to prove that

Mz~~.v ~ P(zt, ... , Zk) iff B I= P(r(zt), ... , r(zk)).

The left-hand side of this equivalence is equivalent to

Mzw ~ 3y Q(y, z1, ... , zk)·

which is in turn equivalent to

for some y0 . From the original assumption, this is equiv
alent to

B ~ Q(r(yo), r(zt), ... , r(zk)).

which in turn implies

B ~ 3y Q(y, r(zt), ... , r(zk)).

because r(y0) is a representative term. The last condi
tion is equivalent to

B ~ P(r(zt), ... , r(zk)).

Now assume:

B ~ 3y Q(y, r(zt), ... , r(zk)).

and let Yo be such y. We have r(yo) = Yo, because Yo
is either a representative term or a non-temporal term.
Therefore:

B ~ Q(r(yo), r(zt), ... , r(zk)).

From the original assumption, it follows that

390

and

D

Lemma A.2 If the query Q(y, z1 , ... , Zk) is invariant
w.r.t. relational specifications, then so is the query

Proof' We have to prove that

The left-hand side of this equivalence is equivalent to

We are going to verify that the above condition implies

B I= Vy Q(y, r(zt), ... , r(zk)).

Take any y0 within the scope of the above universal
quantifier. We have r(y0) = y0 , because either Yo is a
representative term or it is a non-temporal term. There
fore:

B I= Q(yo,r(zt), ... ,r(zk)).

follows from the original assumption and the fact that

for any term Yo.

Now assume that

B I= Vy Q(y, r(zt), ... , r(zk)).

Take any term y0 . We have that

B I= Q(r(yo), r(zt), ... , r(zk)).

because either r(y0) is a representative term or Yo is a
non-temporal term and y0 = r(y0). In both cases, the
above fact follows directly from the previous one. Now
from the original assumption, we can infer that

Mz~~.v ~ Q(yo, z1, ... , zk)·

Because y0 was arbitrary, also:

0

Lemma A.3 If the query Q(z1, ... , zk) is invariant
w. r. t. relational specifications, so is its negation:

Proof: Clearly:

The left-hand side of this equivalence is equivalent to:

because we assume that negative queries are evaluated
under the Closed World Assumption. The equivalence
of the right-hand side to:

follows from the fact that for all ground terms
a1, ... ,ak, the query -.P(r(al), ... ,r(ak)) is correctly
evaluated under the CWA applied just to B. Notice
that we never evaluate in B atoms containing ground
temporal terms which are not representative. 0

Lemma A.4 If Ql(Yl, ... , Yk. z1, ... , Zm)

and Q2(x1, ... ,Xn,Z1, ... ,zm) are invariant w.r.t. re
lational specifications, so are:

(Q11\ Q2)(y1, · · ·, Yk, X!,···, Xn, Z1, · · ·, Zm)

:: Ql(Yl, · · ·, Yk, Z1, · ·., Zm) 1\ Q2(x1, ·. ·, Xn, Zl, ... , Zm)·

(Ql V Q2)(y1, ... , Yk. X1, ... , Xn, Z1, ... , Zm)

=: Ql(Yl, ... , Yk, Z1, ... , Zm) V Q2(x1, ... , Xn, Z1, ... , Zm)·

Proof: Straightforward. 0

All the above lemmas taken together imply Proposition
3.1.

391

