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ABSTRACT

We consider matrix groups, specified by a list of generators,
over finite fields. The two most basic questions about such
groups are membership in and the order of the group. Even
in the case of abelian groups it is not known how to answer
these questions without solving hard number theoretic prob-
lems (factoring and discrete log); in fact, constructive mem-
bership testing in the case of 1 × 1 matrices is precisely the
discrete log problem. So the reasonable question is whether
these problems are solvable in randomized polynomial time
using number theory oracles.

Building on 25 years of work, including remarkable recent
developments by several groups of authors, we are now able
to determine the order of a matrix group over a finite field of
odd characteristic, and to perform constructive membership
testing in such groups, in randomized polynomial time, using
oracles for factoring and discrete log.

One of the new ingredients of this result is the following.
A group is called semisimple if it has no abelian normal sub-
groups. For matrix groups over finite fields, we show that
the order of the largest semisimple quotient can be deter-
mined in randomized polynomial time (no number theory
oracles required and no restriction on parity).

As a by-product, we obtain a natural problem that belongs
to BPP and is not known to belong either to RP or to coRP.
No such problem outside the area of matrix groups appears
to be known. The problem is the decision version of the
above: Given a list A of nonsingular d × d matrices over a
finite field and an integer N , does the group generated by A
have a semisimple quotient of order ≥ N?

We also make progress in the area of constructive recog-
nition of simple groups, with the corollary that for a large
class of matrix groups, our algorithms become Las Vegas.
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1. INTRODUCTION
The two most common explicit representations of finite

groups are permutation groups and matrix groups over fi-
nite fields. We assume our groups are given by a list of
generators.

The basic questions about such groups include testing
membership in and computing the order of the group. A
constructive membership test not only answers the ques-
tion whether or not a given element belongs to a given
group but in the case of a positive answer, it also provides
a straight-line program that constructs the given element
from the given generators of the group. Advanced questions
ask about the structure of the group such as the names of
its composition factors.

For permutation groups, Sims’s classical algorithms, de-
veloped in the 1960s to serve the needs of computational
group theory [49, 50], have been shown to solve the ba-
sic questions in polynomial time (cf. [36, 47]). The first
analyzed version [27], motivated by the first group theo-
retic algorithm in graph isomorphism testing [3], appeared
in 1980. Subsequently a number of advanced questions were
also solved in polynomial time, including composition fac-
tors [39], Sylow subgroups [33] (cf. [41]), and the solvable
radical ([38], see [42]).

In contrast, for the considerably more important class of
groups of d×d matrices over the finite field of order q = pe (p
a prime), even the most basic problems present great difficul-
ties. For starters, even for d = e = 1, we cannot determine
the order of a subgroup without factoring the integer p − 1,
which is equivalent (under ERH) to factoring arbitrary in-
tegers [13, p. 241, Ex. 30]. Constructive membership testing
in the case d = 1 is precisely the discrete logarithm prob-
lem. Membership for groups of 2 × 2 diagonal matrices is
precisely the decisional Diffie-Hellman problem, a standard
hard problem in cryptography. So the reasonable question
is: What can we do in (randomized) polynomial time, per-
mitting oracles for these hard number theoretic problems?
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A complexity-theoretic study of problems of matrix groups
over finite fields was initiated in the 1984 paper [12]. That
paper introduced the concept of black-box groups and proved,
among other things, that membership in black-box groups is
in NP. The subsequent paper [4] put the membership prob-
lem in coAM; this problem thus served as one of the original
motivations behind the concept of interactive proofs.

A black-box group is a finite group whose elements are en-
coded, not necessarily uniquely, by (0, 1)-strings of uniform
length n, with an oracle to perform group operations on the
codewords, including the decision whether or not a string
encodes the identity. Subgroups of a black-box group are
given by a list of generators (i. e., strings corresponding to
generators). (For the exact definition, see Def. 3.3.)

This concept turned out to be highly productive. While
we cannot answer the basic questions without number theory
oracles even for matrix groups, the “nonabelian structure”of
the group has been mapped out in great detail in random-
ized polynomial time in the generality of black-box groups
carrying a natural promise (see Def. 3.7 and Thm. 5.2).

Algorithmic developments started around 1990, first as
two separate projects, one in the STOC/FOCS environment,
another in the pure and computational group theory com-
munity. Most recently the two approaches merged and the
“polynomial-time”paradigm received powerful contributions
from group theorists who adopted the “black-box group”
concept [2, 20, 21, 23, 29, 43].

The informal summary of the conclusions is that we were
left with two layers of solvable (“nearly abelian”) bottlenecks:
the “outer automorphism layer” and the “solvable radical.”
Our main technical contribution in this paper is the removal
of each of these remaining obstacles. The analysis heavily
depends on recent results in statistical group theory [10,
43]. To discover the bottom layer, we build on Bray’s algo-
rithm [17], as analyzed by Parker and Wilson [43].

As a by-product, we describe a natural problem that be-
longs to BPP but is not known to belong to RP or coRP
(Problem 2.6). As far as we can tell, no such problem out-
side the area of matrix groups is currently known.

The overall procedures for our results combine new el-
ementary algorithms with a large body of previous work,
algorithmic as well as group theoretic. Some of the ingredi-
ents depend on detailed knowledge of the classification of

finite simple groups (CFSG). However, no such knowledge
will be required for reading this paper.

2. MAIN RESULTS
The general linear group GL(d, q) consists of the d×d non-

singular matrices over the field Fq (d ≥ 1, q = pe is a prime
power). Subgroups G ≤ GL(d, q) are called matrix groups of
characteristic p. The number theory oracles our results
refer to are the prime factorizations of the numbers qi − 1
for i = 1, . . . , d (preprocessing); and Discrete Log oracles for
fields of order pkℓ where k | e and ℓ ≤ d (so pkℓ ≤ qd).

2.1 Constructive membership
Constructive membership is the problem of expressing an

element in terms of the generators of the group.

Definition 2.1. Let G be a group and S ⊆ G. A straight-
line program reaching some g ∈ G from S is a sequence
(w1, . . . , wm), wi ∈ G, such that for each i either wi ∈ S or
wi = w−1

j for some j < i or wi = wjwk for some j, k < i.

Definition 2.2. Let G ≤ H be groups; let G be given by a
generating set S. The constructive membership problem for
G in H is, given g ∈ H, decide whether g ∈ G, and if so find
a straight-line program over S reaching g.

Our ambient group H will typically be GL(d, q) or Sℓ.

2.2 Membership: odd characteristic
In this paper we prove the following main result.

Theorem 2.3. There is a randomized polynomial-time algo-
rithm which uses number theory oracles and, given a matrix
group G of odd characteristic p,

(a) computes |G| and decides membership in G;

(b) solves constructive membership in G.

Previously similar results were known for solvable matrix
groups only (Luks 1992 [40]; Luks’s algorithms are determin-
istic). Our results give a definitive, and even recently not
particularly hoped for, answer to the questions formulated
a quarter century ago. The algorithms and their analysis
build on a large body of prior work and most notably on the
recent papers [10, 43] and Holmes et al. [29].

2.3 Unconditional results
The solvable radical Rad(G) is the largest solvable nor-

mal subgroup of G. Importantly, in a black-box group G, the
radical is recognizable (Thm. 4.3, cf. Def. 3.4) and therefore,
if G is a black-box group then G/ Rad(G) can be treated
as a black-box group. Note that G/ Rad(G) is the largest
quotient of G without abelian normal subgroups. Thus, by
cutting out Rad(G) we remove the “abelian bottom” of the
group. Our second main result says this is sufficient for a
genuine BPP algorithm.

Theorem 2.4. There is a randomized polynomial-time algo-
rithm which, given a matrix group G ≤ GL(d, p), computes
|G/ Rad(G)|.

Note that no oracles are required for this result and the
case p = 2 is not excluded. In fact, the result works even
in the generality of “black-box groups of characteristic p”
(Theorem 5.2, cf. Def. 3.7).

Our third main result finds the radical, the most elusive
structural component of the group.

Theorem 2.5. There is a randomized polynomial-time al-
gorithm which, given a matrix group G ≤ GL(d, p) with p
odd, computes Rad(G).

Note that no oracles are required for this result.
The limitation to odd characteristic is related to our cur-

rent inability to efficiently find an element of even order in
black-box simple groups of Lie type of characteristic 2; a
major open problem (cf Section 3.2). (Random sampling
has an exponentially small chance of finding such elements.)
Specifically, Theorems 2.5 and 2.3(a) build on [43]; The-
orem 2.3(b), in addition, also uses a technique from [29].
These techniques do not work in the case p = 2.

Nevertheless, with different methods, we make progress in
the even characteristic case as well (Section 2.7).

2.4 A problem in BPP
Groups without abelian normal subgroups are called

semisimple; so G/ Rad(G) is the largest semisimple quo-
tient of G. Consider the following decision problem:
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Problem 2.6. Given a prime p, integers N and d, and a
list A of nonsingular d× d matrices over Fp, does the group
generated by A have a semisimple quotient of order ≥ N?

This problem is in BPP by Theorem 2.4 but currently we
are not able to place it in either RP or coRP.

2.5 Composition series

Theorem 2.7. There is a randomized polynomial-time al-

gorithm which, given a matrix group G ≤ GL(d, p),
(a) finds a composition series of G/ Rad(G), and finds

black-box representations and the standard names of

the composition factors of G/ Rad(G);

(b) finds a composition series of G, and lists the orders of

the abelian composition factors, using number theory

oracles, assuming p 6= 2.

Note that part (a) does not use number theory oracles
and does not exclude the case p = 2. Note also that the
composition factors discovered (unconditionally) in part (a)
include all nonabelian composition factors of G.

Theorem 2.3(a) is an immediate consequence of Theo-
rem 2.7(b); and Theorem 2.4 is an immediate consequence
of Theorem 2.7(a).

2.6 Constructive recognition
Constructive recognition of a simple group L is the ability

to compute, in both directions, an isomorphism between the
given representation of L and the natural representation of
L (the explicit representation used in their textbook defini-
tions). With each finite simple group L one can associate
an explicit “standard” set of O(log |L|) generators with the
property that given h ∈ L, one can express h as a word
of length O(log |L|) in these generators, and such a word
can be found in polynomial time (by generalized Gaussian
elimination).

Definition 2.8. Let L be a finite simple group, given in its
natural representation, along with its standard set T of gen-
erators. By constructive recognition of L within a class B of
black-box groups we mean the following promise problem:
Given a black-box group G = 〈S〉 ∈ B, known to be isomor-
phic to L, find a set S∗ of generators of G and a bijection
S∗ → T which extends to an isomorphism λ : G → L, and
set up a data structure which permits the computation of
λ(g) for any g ∈ G.

We note that computing λ−1 reduces to the postulated
computations: for h ∈ L, represent h as a word w(T ); then
λ−1(h) = w(S∗).

We say that a constructive recognition algorithm works
within a certain resource bound (such as “Las Vegas poly-
nomial time with number theory oracles”) if S∗ is found,
and for any g ∈ G, λ(g) is found, within the given resource
bound. The class B we shall use consists of“quotients of ma-
trix groups by recognizable normal subgroups”(cf. Def. 3.4).
We refer to this class as “matrix group quotients.”

We call a class N of finite simple groups “nice” if the
members of N admit constructive recognition in randomized
polynomial time with number theory oracles within the class
of matrix group quotients.

The conjecture is that all finite simple groups form a nice
class. Note that a subclass of a nice class is nice, and the
union of a finite number of nice classes is nice.

Combining our machinery with Conder et al [23] and with
[34] and the work by Brooksbank and Kantor [18, 19, 20, 21],
we obtain the following result.

Theorem 2.9. All finite simple groups, with the possible
exception of those of exceptional Lie type, form a nice class.

The result is obvious for sporadic groups. For cyclic groups
of prime order, it follows from [6, 40] and our algorithms in
Section 5; for the alternating groups, from [15] (cf. [6, 16]).
The main content of Theorem 2.9 is that the classical sim-
ple groups are nice. The bulk of the proof can be found in
[34] and in a series of papers by Brooksbank and Kantor [18,
19, 20, 21]; the latter prove constructive recognizability of
the classical simple black-box groups assuming, in addition
to the number theory oracles, an oracle for black-box con-
structive recognition of the groups PSL(2, q) (see Sec. 3.1).

In our context (the groups are given as matrix group quo-
tients), the Brooksbank-Kantor reduction requires construc-
tive recognition of PSL(2, q) given as a matrix group quo-
tient. Our contribution is that, using pioneering work by
Conder et al. [23], we provide such a recognition algorithm.

Lemma 2.10. Let G ≤ GL(n, p) be given. Let N be a rec-
ognizable normal subgroup of G such that G/N ∼= PSL(2, q).
Then we can constructively recognize the PSL(2, q) quotient
in Las Vegas polynomial time using number theory oracles.

Conder et al. [23] solve this problem for the case when N =
1, i. e., G ∼= PSL(2, q). They erroneously remark that with
this result they provide the oracle needed by Brooksbank
and Kantor; this is incorrect even if the simple group L in
question is given as a matrix group (rather than as a matrix
group quotient).

2.7 Membership: all characteristics
To handle the case p = 2 we take an approach which

works in all characteristics so in this subsection we make no
assumption on the parity of p.

Let us fix a “nice” class N of finite simple groups (Sec-
tion 2.6). We say that a group G is p-nice if all composition
factors of G that are of Lie type of characteristic p belong to
N . (Note that under the conjecture mentioned, all groups
are p-nice for all p.)

Theorem 2.11. Theorem 2.3 holds for all groups G ≤
GL(d, p) that are p-nice.

We sketch the proof of this result and the corollaries below in
Section 8. We should mention that essentially this result was
erroneously claimed as [35, Thm. 6.1]. Two errors invalidate
that claim: (1) [35] adopted the error of [23] mentioned after
Lemma 2.10 ; and (2) [35] overlooked the unresolved status
of the “outer automorphism layer” (see our Theorem 5.1).

2.8 Las Vegas upgrade
The “Short Presentation Conjecture” (SPC) [12] states

that all finite simple groups G have presentations of bit-
lengths polylog|G|. The constructive version (CSPC) re-
quires these presentations to be explicit. It was shown in
[12] that while membership in black box groups is in NP,
under CSPC it is also in coNP. There does not seem an al-
ternative to short presentations to certify nonmembership;
CSPC, therefore, remains a cornerstone of any attempt to
upgrade membership tests to Las Vegas status. CSPC has
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been verified for all finite simple groups except for the “Ree
groups of rank 1,” a class of exceptional simple groups, de-
noted 2G2(q) where q = 32k+1, k ≥ 1 [8, 31, 51].

Corollary 2.12. If G ≤ GL(n, p) is p-nice and in case
p = 3 none of the composition factors of G is of type 2G2(q)
then a presentation for G can be computed in Las Vegas
polynomial time using number theory oracles.

This upgrades our main results to Las Vegas for such groups:

Corollary 2.13. Under the conditions of Corollary 2.12,
the order of G, as well as constructive membership in G,
are computable in Las Vegas polynomial time using number
theory oracles.

Terminology. In the rest of this paper, “efficient” will
mean “randomized polynomial time” (no number theory or-
acles permitted unless expressly stated otherwise). We do
not claim practical efficiency.

3. PRELIMINARIES

3.1 Group theory review
For the basics of group theory we refer to Rotman [45].

Here we briefly review notation and some concepts.
Let G be a group. H ≤ G denotes a subgroup, N ✁ G

normal subgroup (G = N permitted), G/N the quotient
group. G is simple if |G| ≥ 2 and N ✁ G ⇒ N = 1 or
N = G. The subgroup generated by the subset A ⊆ G is
denoted by 〈A 〉. The normal closure of A ⊆ G is the
smallest normal subgroup containing A, denoted 〈AG〉. We
call A ⊆ G a set of normal generators of G if 〈AG〉 = G.
The commutator of a and b is [a, b] = a−1b−1ab. For A, B ⊆
G we set [A, B] = 〈 [a, b] : a ∈ A, b ∈ B 〉 ≤ G. The center
of G is Z(G) = {z ∈ G : [z, G] = 1}. The central quotient
of G is G/Z(G). The derived subgroup is G′ = [G, G]. We
say that G is perfect if G′ = G. The commutator chain of
G is the chain G ≥ G′ ≥ G′′ ≥ . . . . The stable commutator
is the unique perfect member of this chain. The group G
is solvable if its stable commutator is the identity. Every
group has a unique maximal solvable normal subgroup, the
solvable radical Rad(G).

Aut(G) denotes the automorphism group of G. For g ∈ G,
the conjugation map γg : a 7→ g−1ag is an inner automor-
phism of G. The group Inn(G) = {γg : g ∈ G} is normal
in Aut(G); the quotient Out(G) = Aut(G)/ Inn(G) is the
outer automorphism group of G.

A p-group is a group of order a power of p. All p-groups
are solvable. An elementary abelian p-group is a direct
product of cyclic groups of order p.

The socle Soc(G) is the product of the minimal normal
subgroups of G. It is a direct product of simple groups.

Fact 3.1. If T1, . . . , Tm are nonabelian simple groups then
the only min. normal subgroups of T1 × · · · × Tm are the Ti.

A presentation G = 〈A |R 〉 of a group G is a description
of G in terms of a set A of generators and a set R of relators,
i. e., words in the free group F over the alphabet A. The
group G is then the quotient F/〈RF 〉.

The most important examples of finite groups are permu-
tation groups (subgroups of the symmetric groups Sn) and
matrix groups over finite fields. The even permutations form

the alternating group An which has index 2 in Sn. A permu-
tation representation of G is a homomorphism ϕ : G → Sn.
We say that ϕ is faithful if it is injective (ker(ϕ) = 1).

The general linear group GL(d, q) consists of the d × d
nonsingular matrices over Fq. If q = pe then GL(d, q) ≤
GL(de, p). The subgroups of the groups GL(d, q) (q = pe)
are the matrix groups of characteristic p. The special linear
group SL(d, q) consists of the matrices g ∈ GL(d, q) with
det(g) = 1. The projective special linear group is the central
quotient PSL(d, q) = SL(d, q)/Z(SL(d, q)).

3.2 Classification of finite simple groups
For information about the Classification of Finite Simple

Groups (CFSG) we refer to [24]. In brief: the finite simple
groups are the cyclic groups of prime order, the alternating
groups of degree ≥ 5, several families of “simple groups of
Lie type,” and a finite number of “sporadic” simple groups.
Two consequences of the CFSG regarding the outer auto-
morphism group are most pertinent.

Fact 3.2. Let G be a finite simple group. Then Out(G)
is solvable in three steps: Out(G)′′′ = 1; and |Out(G)| =
O(log |G|).

The simple groups of Lie type are central quotients of
certain matrix groups over finite fields. The simplest ex-
amples are the groups PSL(d, q) (Sec. 3.1). The Lie-type
simple groups come in two brands, “classical” and “excep-
tional.” There are six classes of classical simple groups, each
parametrized by a pair (d, q) where d refers to the dimen-
sion (of the matrices in the natural representation of these
groups, i. e., in the matrix representation used in their defi-
nition, before taking the central quotient) and q is the order
of the field. The names of the classes of classical groups
are projective linear, symplectic, unitary, and three kinds
of orthogonal groups. (The adjective “projective” applies
to all and indicates that we factor out the center.) There
are ten classes of exceptional groups, each parametrized by
a prime power; each class is represented by matrices of a
fixed dimension, so all exceptional groups are represented
by matrix groups of bounded dimension (in their natural
representation). Each Lie type simple group has an asso-
ciated positive integer r called its Lie rank. We note that
r = Θ(d) where d the is dimension mentioned above.

3.3 Black-box groups

Definition 3.3. Let G be a finite group. A black-box repre-
sentation of G with code-length n is a surjection f : S → G
for some subset S ⊆ {0, 1}n of “valid strings,” along with an
oracle that performs the group operations: given two valid
strings x, y, the oracle produces valid strings z, u such that
f(x)f(y) = f(z) and f(x)−1 = f(u), and also answers the
question whether or not f(x) = 1. We say that G is “given”
as a black-box group if in addition a list of valid strings
x1, . . . , xk is given such that 〈f(x1), . . . , f(xk)〉 = G.

Note that |G| ≤ 2n where n is the code-length. The com-
plexity of black-box group algorithms is always relative to
the input length, which is |A|n if G is given as G = 〈A 〉.
Definition 3.4. A subgroup H ≤ G of a b.b. group is
known if a set of generators for H is known. To compute
H means to compute generators for H. A subgroup H ≤
G is recognizable if for any g ∈ G we can efficiently test
membership g ∈ H.

58



A subgroup can be recognizable without being efficiently
computable. Recognizable subgroups include the center and
the solvable radical of G, neither of which can we compute
efficiently for b.b. groups. (In this paper we show how to
compute the radical efficiently for matrix groups.) In the
context of permutation groups, the automorphism group of
a graph is recognizable (within the symmetric group on the
vertices) but we cannot (currently) compute it efficiently.

The converse to this question, namely, whether a known
subgroup is necessarily recognizable, has been the main ques-
tion of the area for 25 years; it is this question that we resolve
for matrix groups of odd characteristic, using number theory
oracles.

Remark 3.5. As pointed out in [12], if G is a b.b. group
and N is a recognizable normal subgroup then the quotient
group G/N can be treated as a b.b. group, using the compo-
sition f : S → G → G/N . This transition gives particular
power to the b.b. group model and is used extensively in
the present paper.

Remark 3.6. Black-box groups have appeared in the quan-
tum computing literature, typically with the restriction that
f be one-to-one (the codewords are unique). This is a se-
vere limitation since it removes the flexibility indicated in
the preceding remark. Note, however, that our main result
implies (via Shor [48]) that membership in and order of ma-
trix groups of odd characteristic (or characteristic 2 with
“nice” composition factors) belongs to the class BQP. Previ-
ously this was only known for solvable matrix groups [40].

The quantum complexity of black-box group membership
has also been studied for its possible impact on the separa-
tion of the complexity classes QMA and QCMA [1].

Definition 3.7. We say that a black-box group G of en-
coding length n is a black-box group of characteristic p
if G is isomorphic to a quotient of a subgroup of GL(m, p)
where m = ⌈n/ log p⌉.

4. PREREQUISITES
Of the three subsections below, only the second depends

on detailed knowledge of CFSG.

4.1 General theory
First we make a general observation which follows by com-

bining [7] and well-known facts about presentations such as
[40, Lemma 4.1].

Proposition 4.1. If G is a black-box group, N a recogniz-
able normal subgroup, and we have constructive membership
testing in and a presentation of G/N then we can efficiently
compute N .

As mentioned in the Introduction, for permutation groups,
the basic problems, including order, constructive member-
ship, and normal closure can be solved in polynomial time.
Moreover, the same algorithms also construct a presentation
of the group. We shall also need the fact that for permuta-
tion groups, a composition chain can be found in polynomial
time [39].

For matrix groups, Luks found deterministic algorithms
for the following problems.

Theorem 4.2 (Luks [40]). Let G ≤ GL(n, p). Solvability
of G can be decided in deterministic polynomial time. More-
over, if G is solvable then constructive membership testing

in G can be performed and the order of G and a presen-
tation of G can be found in deterministic polynomial time
using number theory oracles.

For all other efficient algorithms we are aware of in matrix
groups over finite fields, randomization is necessary. Ran-
domization comes on two levels. The elementary method of
“random subproducts” suffices for the following.

Theorem 4.3 ([7]). Given a black-box group G = 〈A 〉 with
code-length n, one can efficiently find (i) a set of O(n) gen-
erators for G; (ii) the normal closure of any subset B ⊆ G;
(iii) the commutator chain and the stable commutator of G;
(iv) decide solvability of G.

All the remaining algorithms require access to nearly uni-

formly distributed random elements of G. This can be
done in polynomial time for all black-box groups [5]. (A
variation of the [5] algorithm, proposed by G. Cooperman
and recently analyzed by Dixon [25], shows greatly improved
time bound. For practical purposes, the “product replace-
ment” heuristic due to Leedham-Green and Soicher [22] is
preferred (cf. [28])).

4.2 Solvable-by-simple groups
A group G is solvable-by-simple if G/ Rad(G) is simple.

We review algorithms for such G.
An algorithm from [15] handles the case when G/ Rad(G)

has a low degree permutation representation.

Theorem 4.4 (“Blind descent” [15]). Given a black-box
group G and an integer m, if G has a nontrivial permu-
tation representation of degree ≤ m then one can find, in
randomized O((m+n)c) group operations, a faithful permu-
tation representation of G of degree ≤ mc, or a nontrivial
element from a proper normal subgroup of G. (Here c is an
absolute constant.)

This result builds on, and can be powerfully combined
with, the following theorem.

Theorem 4.5 ([37, 46, 26]). If G ≤ GL(d, p) has a compo-
sition factor T which is a simple group of Lie type of char-
acteristic r 6= p then T has a faithful permutation represen-
tation of degree ≤ dc for some absolute constant c.

So the case not covered by Theorem 4.4 is when G/ Rad(G)
is of Lie type of characteristic p. There has been much recent
progress on this difficult case.

The first major result we require is the statistical recog-
nition of black-box simple groups of characteristic p.

Theorem 4.6 ([9]). Let G be a black-box group with the ad-
ditional promise that G is a simple group of Lie type of char-
acteristic p. Then the order of G can be found efficiently,
based on a small sample of the orders of its elements.

Actually, the statistics are based not on the orders of ele-
ments (which require a factorization of |GL(m, p)| for some
m), but on polynomial-time computable properties of the
orders.

This in fact means that we can recognize the standard
name of the simple group G, except for an infinite sequence
of pairs of finite simple groups of equal order. These pairs
have been efficiently separated by Altseimer and Borovik [2],
building on an algorithm due to Bray [17] for centralizers of
involutions.
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Theorem 4.7 ([17, 2, 43]). Let G be a black-box group iso-
morphic to a simple group of Lie type in odd characteristic p.
Then involution centralizers can be computed in randomized
polynomial time.

Definition 4.8. We say that the group G is an irreducible
affine extension of characteristic p of the simple group T
if G has a minimal normal p-subgroup N on which G acts
nontrivially by conjugation and G/N ∼= T . (Note that in
this case, N = Rad(G) is elementary abelian.)

A further application of Bray’s method will be central to
our main result:

Theorem 4.9 (“affine descent,” Parker-Wilson[43]). Let p
be an odd prime and G a black-box group with the additional
promise that G is an irreducible affine extension of charac-
teristic p of a simple group T of Lie-type of characteristic
p. Then a nontrivial element of Rad(G) can be found effi-
ciently.

Finally, we need the following algorithmic result.

Theorem 4.10 ([11, Thm. 4.15]). Let G be a black-box group
of characteristic p. Assume G/Z(G) is nonabelian simple.
Then we can efficiently find Z(G).

The main tool in the analysis of our algorithms is the fol-
lowing result in statistical group theory:

Theorem 4.11 ([10, Cor.1.3&Thm.1.4]). For a nonabelian
finite simple group G and a prime r, let ρr(G) denote the
proportion of elements in G of order relatively prime to r.
(a) For all r and G, ρr(G) ≥ c/

p

log |G|, where c > 0 is an
absolute constant. (b) If G is a quotient of a subgroup of
GL(d, q) for some d, q then ρr(G) ≥ min{1/31, 1/(2d)}.

Note that for a black-box group of code-length n this
means a proportion of Ω(1/

√
n), so random sampling will

find elements of order relatively prime to r with fair fre-
quency.

4.3 Overall framework
The structural frame of the overall algorithm is the fol-

lowing normal chain, defined in the programmatic paper [6];
much of the development during the past decade, outlined
above, was directly or indirectly in response to that paper.

1 ≤ Rad(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G. (1)

We define the terms in this chain. Let H = G/ Rad(G) and
let ϕ : G → H be the natural surjection. Then Soc∗(G) =
ϕ−1(Soc(H)). Let Soc(H) = T1 × · · · ×Tm where the Ti are
nonabelian simple groups. Then by Fact 3.1, conjugation by
G permutes the set {T1, . . . , Tm}, thus we obtain a permu-
tation representation G → Sm. We define Pker(G) as the
kernel of this representation.

To find the order of G, we only need to find the or-
der of each of the four “layers” in this chain. We note
that the top layer, G/ Pker(G) is a permutation group (≤
Sm); the second layer, Pker(G)/ Soc∗(G) is a subgroup of
Out(T1)× · · ·×Out(Tm) and is therefore solvable; the third
layer, Soc∗(G)/ Rad(G) is a product of simple groups; and
the most elusive fourth layer, Rad(G), is solvable.

We summarize the main results of [6].

Theorem 4.12 ([6]). Given a black-box group G of charac-
teristic p, the following can be computed efficiently: the per-
mutation representation ϕ : G → Sm; its kernel Pker(G);
for each i ≤ m, a perfect subgroup T ∗

i ≤ G such that
T ∗

i Rad(G)/ Rad(G) = Ti; a black-box representation of char-
acteristic p for each Ti; and a permutation representation for
each Ti that is not Lie-type of characteristic p.

Corollary 4.13. Given a black-box group G of characteris-
tic p, we can efficiently find the orders of layers 1 and 3.

Indeed, layer 1 is an explicit permutation group; and for
layer 3, if Ti is not Lie type of characteristic p then we again
have a permutation representation; in the remaining (hard)
case, we can find |Ti| by Theorem 4.6. In this paper we find
the orders of the solvable layers 2 and 4.

5. OUTER AUTOMORPHISM LAYER
The following result maps out layer 2 (the “outer auto-

morphism layer”).

Theorem 5.1. Let G be a black-box group of characteristic
p. Then a faithful permutation representation of
Pker(G)/ Soc∗(G) can be computed efficiently. Consequently
the order of this group as well as generators for Soc∗(G) can
be computed efficiently.

Combined with Corollary 4.13 this will yield the following
result, which includes Theorem 2.7(a) and Theorem 2.4.

Theorem 5.2. For a black-box group G of a given finite
characteristic, one can efficiently determine the order of the
quotient group G/ Rad(G).

Lemma 5.3. Let G be a black-box group of characteristic
p with the promise that there exist nonabelian simple groups
T1, . . . , Tm such that T1 × · · · × Tm ≤ G ≤ Aut(T1) × · · · ×
Aut(Tm). Let ϕi : G → Aut(Ti) be the i-th projection.
Given g ∈ G and i ≤ m we can efficiently decide whether or
not ϕi(g) ∈ Ti. (Note that we are not assuming that ϕi is
“given.”)

Proof. For simplicity, we give the proof under the addi-
tional assumption that a superset P of the primes dividing
the order of G is given. However, this assumption can be
dispensed with, using an explicit set of “pretend-primes” to
find appropriate “pseudo-orders” of elements (see [6, 10]).

Note that given P, we can compute the order of any g ∈ G.
For integers r and z, by the r′-part of z we mean the largest
divisor of z relatively prime to r. For h ∈ G, let er(h) denote
the r′-part of the order of h.
Algorithm 1
split G′′′ = T1 × · · · × Tm into its factors Tj

for r
˛

˛ |g| do

gr := ger(g)

set “ϕi(gr) ∈ Ti”= FALSE
repeat O(

√
n log |P|) times

x := random element of Ti

y := (grx)er(grx)

if [y, Ti] = 1 then set “ϕi(gr) ∈ Ti”= TRUE
end(repeat)
if “ϕi(gr) ∈ Ti”= FALSE then

return “ϕi(g) 6∈ Ti”, exit
end(for)
return “ϕi(g) ∈ Ti”
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Proof of correctness. We have Rad(G) = 1 and Soc(G) =
G′′′ = T1 × · · · × Tm. According to Theorem 4.12, we can
compute each Tj .

Let now h ∈ G be an r-element, x ∈ Ti, and y = (hx)er(gx).
Note that if ϕi(g) 6∈ Ti then for any x ∈ Ti, we have ϕi(y) /∈
Ti and therefore [y, Ti] 6= 1. On the other hand, if ϕi(h) ∈ Ti

then for a random x ∈ Ti, the element ϕi(h)x = ϕi(hx) is
also a random element of Ti and therefore, by Theorem 4.11,
it has an Ω(1/

√
n) chance of having order relatively prime

to r, in which case ϕi(y) = 1 and therefore [y, Ti] = 1. So re-
peating the test [y, Ti] = 1 for O(

√
n log |P|) random choices

of x will, for any constant c, with probability > 1 − |P|−c,
tell whether or not ϕi(h) ∈ Ti. By choosing c large enough,
we ensure that with high probability, there will be no error
for any r.

For g ∈ G, the Chinese Remainder Theorem gives g ∈
〈ger(g) | r ∈ P〉, so ϕi(g) ∈ Ti exactly if ϕ(ger(g)) ∈ Ti for
all primes r

˛

˛ |g|. ✷

Now to prove Theorem 5.1, we may assume Rad(G) = 1
(viewing G/ Rad(G) as a black-box group, because Rad(G)
is recognizable according to Theorem 4.3 (ii) and (iv)). Ac-
cording to Theorem 4.12 we have generators for Pker(G), so
we may assume G = Pker(G). In other words, we are exactly
in the situation of Lemma 5.3. Using that lemma, we are
able to construct the Cayley table (multiplication table) of
ϕi(G)/Ti efficiently because, by Fact 3.2, |ϕi(G)/Ti| ≤
|Out(Ti)| = O(log |Ti|) is small. We can then turn the Cay-
ley table into a faithful (regular) permutation representation
of ϕi(G)/Ti.

Finally, the map g 7→ (ϕ1(g)T1, . . . , ϕm(g)Tm) now gives
a permutation representation of G = Pker(G) on the small
domain

S

i ϕi(G)/Ti with kernel Soc(G) = Soc∗(G). ✷

6. THE SOLVABLE RADICAL
Above we have seen three algorithms, in Thms 4.4, 4.9,

and 4.10, which produce elements of the radical in certain
very special cases. We describe a general “adaptation prin-
ciple” which allows us to essentially apply the algorithms of
Theorems 4.9, and 4.10 to quotients of G by normal sub-
groups which we haven’t constructed and cannot recognize.

Definition 6.1. We say that a black-box group algorithm
distinguishes groups G and H if: (1.) The output of the
algorithm, for any input group, is “yes” or “no”. (2.) The
probability of output “yes” on input G differs from the prob-
ability of output “yes” on input H by at least some constant
c > 0.

Note that the gap c can be amplified to 1−ǫ by repetition
and threshold vote.

The algorithms of Theorems 4.9 and 4.10 can be used to
distinguish G from H if Rad(H) is trivial but Rad(G) is of
the type that would be found by the algorithm (simply have
the algorithm output “yes” if it finds a nontrivial element of
the radical).

Lemma 6.2 (Adaptation Principle). Let G be a black-box
group, with normal subgroups A and B, such that B ≤ A
and A is recognizable. Suppose we have a black-box algorithm
which distinguishes G/B from G/A. Then the algorithm can
be modified to compute a list U , of elements of A, containing
with high probability at least one element of A \ B.

Proof. We run the algorithm on G/A; that is, we use the
membership test for A when the algorithm performs an iden-
tity test. We let U be the list of elements tested which were
found to lie in A. Since the algorithm distinguishes G/B
from G/A, it must be the case that, with high probability,
some identity test has distinct answers for G/B and G/A.
That is, some element of U lies in A \ B. ✷

A more detailed explanation of a similar idea can be found
in [14, p. 41].

The following lemma is the key step in the proof of The-
orem 2.5.

Lemma 6.3. Let G be a black box group of odd character-
istic p. Assume G is perfect and that G/ Rad(G) is simple.
Then Rad(G) can be constructed efficiently.

For the proof, we first use Theorem 4.4 on G/ Rad(G) (so
we require only the simple group case of the [15] algorithm).
If a permutation representation is constructed then we com-
pute its kernel, which must be Rad(G). Otherwise, we are in
the case that G has no permutation representation of small
degree.

In this case we shall use adaptations, via Lemma 6.2, of
the algorithms of Theorems 4.9, and 4.10. The recogniz-
able subgroup A is Rad(G). Note that to run the adapted
algorithms we need only specify A. We concatenate the lists
U returned by several iterations of the adapted algorithms;
we will show that the resulting list is likely to be a set of
normal generators for Rad(G).

Algorithm 2a (: The input G is a black box group of odd
characteristic p. G is perfect, and G/ Rad(G) is simple. We
construct Rad(G).:)

run “blind descent” (Theorem 4.4) on G/ Rad(G).
if a representation ϕ : G → Sk is found then

return ker(ϕ), exit.
U := ∅.
repeat O(n) times:

(A) U := U ∪ AdaptedCenter(G)
(B) U := U ∪ AdaptedAffineDescent(G)

end(repeat)
return 〈UG〉

Proof of correctness. If G/ Rad(G) has a low degree permu-
tation representation, then the first part of the algorithm
will find such a representation, which, when viewed as a
representation of G, has kernel exactly Rad(G), and we are
done.

Otherwise: we observe that “U ⊆ Rad(G)” is indeed a
loop-invariant. Suppose that before a particular iteration of
the“repeat” loop, 〈UG〉 6= Rad(G). We claim that then with
high probability, 〈UG〉 increases during this iteration.

Let A = Rad(G). Let us now choose a normal subgroup
B ✁ G such that U ⊆ B < A, with B be maximal under
these constraints. Then A/B is elementary abelian for some
prime r. There are two possibilities:

(a) A/B ≤ Z(G/B).

(b) G/B acts nontrivially and irreducibly on A/B.

If G belongs to case (a) then method (A) produces ele-
ments of A \ B with high probability. If G belongs to case
(b) then our initial run of the algorithm of Theorem 4.4
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forces r = p, and method (B) produces elements of A \ B
with high probability.

Since 〈UG〉 can only increase log |G| ≤ n times, O(n) iter-
ations will guarantee an exponentially high (1−C−n) prob-
ability of success (〈UG〉 = Rad(G)) by a Chernoff argument
because each round succeeds with constant probability in
increasing 〈UG〉 while 〈UG〉 < Rad(G). ✷

Lemma 6.4. Let G be a black-box group. Suppose we are
given a superset P of the prime divisors of |G|. Suppose
further that G = H × R where H = T1 × · · · × Tm and the
Ti are nonabelian simple groups. Assume each Ti is known.
Then any given g in G can be efficiently expressed as the
product gRg1 · · · gm, with gR ∈ R and gi ∈ Ti.

Proof. Let h ∈ G. As before, let er(h) denote the r′-part
of the order of h. We say that the support of h is the set
supp(h) = {i ∈ [m] : [h, Ti] 6= 1}.

We are claiming we can compute the projection maps from
G to R and to the Ti. Note that any element of G can ef-
fectively be expressed, via the Chinese Remainder Theorem,
in terms of the ger(g), which have prime power order. Since
the projections are homomorphisms, it suffices to show that
we can compute them in the case that |g| is a power of some
prime r.

Algorithm 2b
I := {1, . . . , m}
while I 6= ∅ do

for i ∈ I select ti ∈ Ti at random end(for)
a := gt1 · · · tm

h := aer(a)

I := supp(h)
end(while)
a := gt1 · · · tm

compute N : N ≡ 1 (mod |g|), N ≡ 0 (mod er(a))
gR := aN

for i = 1, . . . , m do gi := gR
−1(ati

−1)N end(for)

Proof of correctness. Note that h commutes with Ti iff the Ti

component of h is trivial. This happens iff the Ti component
of a has order prime to r, which depends only on g and ti,
and not on tj for j 6= i. So as soon as we find a good ti, so
that i 6∈ supp(h), we have i 6∈ I for subsequent iterations,
and ti remains unchanged.

By Theorem 4.11, | supp(h)| is expected to be reduced by
a factor of (1− 1/s) in each round of the while loop, where

s = O(maxi

p

log |Ti|) = O(n); so with high probability we
reach supp(h) = ∅ in O(n log m) rounds of the while loop.

By choice of N , we have gN = g, but the Ti component of
(gti)

N is trivial. So the computed gR value is the R compo-
nent of g. Also, the computed gi value is the Ti component
of g, as it agrees with g in the Ti component and has all
other components trivial. ✷

Now we proceed to the proof of Theorem 2.5. By Theo-
rem 5.1 we can efficiently construct Soc∗(G), so we may
assume G = Soc∗(G). Let the T ∗

i be as in Theorem 4.12.
Then the T ∗

i satisfy the conditions of Lemma 6.3 and there-
fore we can compute Si := Rad(T ∗

i ) = T ∗
i ∩ Rad(G). Let S

be the normal closure of
Sm

i=1 Si.
Now, for each i, Ti✁G/S, therefore G/S = T1×· · ·×Tm×

R where R = Rad(G/S). To generate Rad(G)/S, we run,
O(n) times, the adaptation of the algorithm of Lemma 6.4,

as in Lemma 6.2. The subgroup A is Rad G, and the sub-
group B is the normal closure of

Sm
i=1 Si, and we view the

algorithm of Lemma 6.4 as distinguishing R = 1 from R 6= 1.
✷

Remark 6.5. In our application of Lemma 6.2 to Lemma 6.4,
there are two kinds of identity tests: those involved in com-
puting supp(h), and testing if gR is the identity. Note for the
tests of the first type, we get the same answer mod Rad(G)
as we would mod S: an element which centralizes Ti mod
Rad(G) necessarily centralizes Ti mod S. Therefore, the el-
ements gR which we construct, which are of course trivial
mod Rad(G), are actually the projections into R of the g
when considered mod S. In particular, to obtain a gener-
ating set for R, it suffices to project a generating set of G
consisting of elements of prime power order.

7. CONSTRUCTIVE MEMBERSHIP
In this section we combine our framework with a recent

method of Holmes et al. [29] to obtain constructive mem-
bership testing for all matrix groups of odd characteristic
(Theorem 2.3).

Centralizers of involutions are a key ingredient; we require
Bray’s algorithm 4.7, as analyzed in [2] and [43]. Holmes et
al. [29] give a reduction of constructive membership in a
black-box group G to three instances of constructive mem-
bership in involution centralizers in G; they show their re-
duction runs in polynomial time in the case G is a Lie type
simple group of odd characteristic. Their timing does not in-
clude the time for the subproblems, and as the subproblems
involve groups that are not simple, additional work is needed
before one can recursively apply their algorithm. They state
([29, p.729]) that “If the obstructions to a fully recursive al-
gorithm could be overcome, then [29, Thm.2] could be used
to bound . . . the number of recursive calls to a polynomial
in” (the Lie rank of G). For matrix groups, we complete this
project below.

First we extract what we need from the main results of [29].
For a prime p, let Lp denote the class of Lie-type simple
groups of characteristic p. For G ∈ Lp, let rp(G) denote the
Lie-rank of G if G is classical and the Lie-rank plus 1 if G is
exceptional. For an arbitrary group G, let rp(G) denote the
maximum Lie-rank of those composition factors of G which
belong to Lp, and 0 if G has no such composition factor.

Theorem 7.1 (Holmes et al. [29]). There is an absolute con-
stant C such that the following holds. Let G ∈ Lp be a black-
box group. Then constructive membership in G reduces, in
randomized polynomial time, to constructive membership in
three subgroups Hi ≤ G (i = 1, 2, 3) such that (i) rp(Hi) <
rp(G); (ii) rp(G) ≥ C ⇒ (∀i)(rp(Hi) < 3rp(G)/4). ✷

Proof of Theorem 2.3(b): Let G = 〈S〉 ≤ GL(d, p), p odd.
We construct an SLP from S to g ∈ GL(d, p); if any step
fails, we abort with “g 6∈ G.”

Let ϕ : G → H be a homomorphism. We adopt the con-
vention that an SLP routine applied to (G, g, ϕ) computes
an SLP in H which, lifted to G, reaches x ∈ G with ϕ(x) =
ϕ(g), replaces g with gx−1, and replaces G with ker(ϕ). We
use the following subroutines: SLP-Perm(G, g, ϕ) [49, 50, 27,
36] for ϕ a permutation representation; SLP-Sol(G, g) [40]
for G a solvable matrix group; and SLP-Lie(G, g, ϕ) [29] for
H = Im(ϕ) ∈ Lp. The first two of these are self-contained,
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the last recursively calls our Algorithm 3 below on three sub-
problems. - We identify some important homomorphisms
which we can compute:

1. ϕtop : G → G/ Pker(G) (by Theorem 4.12)

2. ϕout : Pker(G) → Pker(G)/ Soc∗(G) (Thm. 5.1)
3. ϕsmall : T → Sℓ, T /∈ Lp nonab. simple (Th. 4.4)
4. ϕi : Soc∗(G) → Ti (Lem. 6.4 proj. mod Rad(G))

Algorithm 3
1. find T ∗

1 , . . . , T ∗
m as in Theorem 4.12

2. SLP-Perm(G, g, ϕtop) (:reduced to Pker:)

3. SLP-Perm(G, g, ϕout) (:reduced to Soc∗:)
4. for i = 1, . . . m:
5. if ϕi(G) ∈ Lp then SLP-Lie(G, g, ϕi)
6. else SLP-Perm(G, g, ϕsmall ◦ ϕi) end(if)
7. end(for) (:reduced to Rad:)
8. SLP-Sol(G, g)

Line 5 calls the procedure for 3 subproblems. We estimate
the number f(G) of recursive calls. We note that rp(G) =

O((logp |G|)1/2).
Let G1, . . . , Gt be the groups on which Algorithm 3 is

called recursively by line 5 within the for loop of line 4.
So

P

i logp |Gi| ≤ 3 logp |G|. Let Φj =
P

logp |H| where the
summation extends over all groups occurring at level j of the
recursion tree. It follows that Φj ≤ 3Φj−1. For rp(G) ≥ C
we also have rp(Gi) ≤ (3/4)rp(G); therefore the height of
the recursion tree is h < C + log4/3 rp(G). Therefore the

number of nodes of the tree is f(G) ≤ P

j Φj = O(3hΦ0) =

O(rp(G)log4/3 3 logp |G|) = O((logp |G|)2.91). ✷

8. ARBITRARY CHARACTERISTIC
In this section we no longer require the characteristic to

be odd. Instead, we place additional restrictions on the com-
position factors (“nice” groups, cf. Sec. 2.6) and make more
extensive use of discrete log oracles through the constructive
recognition algorithms of [23, 18, 19, 20, 21].

Before proving Lemma 2.10, we state a structural result.

Definition 8.1. Let T ✁G and S = G/T. Let V be a group
with a G-action; let L be the kernel of this action. We say
that this action is S-trivial if LT = G.

Proposition 8.2. Let G be perfect, R = Rad(G), S = G/R
simple. Let p be a prime. Assume G acts S-trivially on all
p′-chief-factors of R. Then R contains a p-subgroup K such
that K ✁ G and R/K ≤ Z(G/K).

We omit the proof.

Proof of Lemma 2.10: Let G ≤ GL(d, p) and suppose that G
has a recognizable normal subgroup N with quotient group
H ∼= PSL(2, q) for some prime power q. We show how to
explicitly map G to H and perform constructive recognition
in the image.

By Theorem 4.6, we know q. If q is tiny, we use the
algorithm of [34] on the black box group G/N . We assume
henceforth that q is not tiny.

We apply the algorithm of Theorem 4.12 to compute a
homomorphism ϕ : G → Sm with kernel Pker(G) and sub-
groups T ∗

i for each composition factor Ti of Soc∗(G)/ Rad(G).
We have by Theorem 4.5 that q is a power of p, H = Ti for
some i, and the conditions of Proposition 8.2 are met by
the subgroup T ∗

i . Also, modulo the radical, G is the direct

product of T ∗
i and N ; so we can use Lemma 6.4 to project

G onto T ∗
i .

It now suffices to explicitly map T ∗
i to H and perform

constructive recognition in the image. We compute a com-
position series of F

d
p, considered as a T ∗

i module [44, 30, 32].
It follows from Proposition 8.2 that on one of the composi-
tion factors T ∗

i acts as a quasisimple matrix group (cf. [35,
Sec. 6]) and so the algorithm of [23] can be applied for con-
structive recognition. ✷

Recall (Section 2.6) that Lemma 2.10 completes the proof
of Theorem 2.9, establishing a large nice family N of simple
groups.

Lemma 8.3. Let G ≤ GL(d, p). Assume G is perfect and
that G/ Rad(G) ∈ N is a Lie-type simple group.Then Rad(G)
can be constructed efficiently using number theory oracles.

Proof. Apply Prop. 4.1, using constructive recognition of
G/ Rad(G). ✷

Proof of Theorem 2.11(b): The only place where we have to
modify the algorithm we gave for odd characteristic is that
we need to find a new solution to the constructive member-
ship problem in groups H ≤ GL(d, p), where H/ Rad(H) is a
simple group in N . Since H/ Rad(H) ∈ N , the constructive
recognition algorithm for H/ Rad(H) yields an SLP that re-
duces the constructive membership problem to Rad(H); the
latter is solved via [40]. ✷

Proof of Corollaries 2.12 and 2.13. If the composition fac-
tors of a group G are constructively recognizable then stan-
dard techniques (cf. [47, Section 8.4], [40, Lemma 4.1]) allow
us to write a polynomial-length presentation for G. Evalu-
ating this presentation we can check the correctness of our
calculations, thereby turning our algorithms into Las Vegas.
✷
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