
Polynomial-Time Verification of the Observer Property in Abstractions

Patrı́cia N. Pena, José E.R. Cury and Stéphane Lafortune

Abstract— This paper presents an algorithm to test if an
abstraction obtained through natural projection has the ob-
server property, without having to compute the abstraction.
The original automaton and the set of events to be kept by
the projection are inputs to the algorithm. An automaton,
the verifier, is built such that the verification of the property
becomes a verification of reachability of a special state. The
complexity of the algorithm is polynomial in the size of the
state space of the automaton. Two examples are presented to
illustrate the algorithm.

I. INTRODUCTION

The observer property characterizes languages obtained by

natural projection. It appears in many works in supervisory

control of discrete event systems, such as [1], [2], [3], [4],

[5], [6], [7].

It is well known that the complexity of obtaining natural

projections is exponential (with the number of states of the

non-deterministic automaton), in the worst case. It is also

well known that the state space of the minimal automaton

that generates the projected language may grow exponen-

tially with the number of states of the original minimal

automaton [8]. However, if the projection has the observer

property, the number of states is at worst of the same size

as the original automaton [8]. The observer property was

first introduced in the context of hierarchical control of

discrete-event systems [1] for prefix-closed languages and

was extended to non-prefix-closed languages in [2].

Reference [9] discusses the complexity of obtaining ab-

stractions with the observer property and finds that the

problem of obtaining minimal abstractions (in terms of the

number of states and transitions) is NP-hard. Reference [9]

also presents a polynomial algorithm that gives, from an

initial set of relevant events, a reasonable extension for this

set such that the projection has the observer property. This

algorithm is an extension of previous work [8], where an

algorithm that renames events that cause the projection to

fail the observer property is presented. For the authors of

reference [10], it is not clear what should be the initial

set of relevant events in [8]. So, they propose that this

set be composed of the shared events of the decentralized

subsystems.

In this paper, we propose a polynomial algorithm to test

if, given an automaton and a set of events to be kept in the

P. Pena - Department of Electronics Engineering (DELT) - Federal Uni-
versity of Minas Gerais, Belo Horizone, MG, Brazil. ppena@ufmg.br

J.E.R. Cury - Department of Automation and Systems (DAS)
- Federal University of Santa Catarina, Florianópolis, SC, Brazil.
cury@das.ufsc.br

S. Lafortune - Department of Electrical Engineering and Computer
Science (EECS) - The University of Michigan, Ann Arbor, MI, USA.
stephane@eecs.umich.edu

projection, the resulting natural projection has the observer

property, without having to compute it. To the best of our

knowledge, this is the first polynomial test for the observer

property. Our algorithm makes use of a verifier to help

reasoning about the property. It is inspired by the verifier

introduced in [11], for the purpose of testing the property of

diagnosability of languages. When searching for a projection

with the observer property, if we use the algorithm presented

in this paper, the projection need only be computed after

knowing that it will have the property. This avoids per-

forming unnecessary calculations. Calculating intermediate

projections, iteratively obtained until the projection with the

observer property is found, may increase the complexity of

the overall problem exponentially.

In previous work of the authors, the observer property

was used in the context of local modular control of discrete

event systems [12]. The idea was to apply the nonconflict

test over abstractions instead of applying it over the set

of supervisors [6], [7]. For this new test to work, the

abstractions, obtained through natural projections, have to

obey certain conditions. Among the conditions, there is one

that states that the abstractions have to be OP-abstractions,

namely, their languages have the observer property.

In Section II, a review of some basic concepts of languages

and automata theory is presented, along with the definition

of the observer property. In Section III, we first introduce

an auxiliary automaton denoted by M . We characterize the

observer property in terms of the language of M . Then

we present an algorithm that constructs the verifier that

is used for checking the observer property. Two theorems

that support the algorithm and the conclusions drawn from

it are established. Section IV presents two examples that

illustrate the testing procedure. The last section presents the

conclusions.

II. PRELIMINARIES

The paper is set in the supervisory control framework

of Ramadge and Wonham [13]. We refer the reader to

[14] or [15] for a detailed introduction to the theory. In

this framework, a DES is modeled as an automaton G =
(Q,Σ, δ, q0, F), where Q is the set of states, Σ is the set of

events, δ is the transition function, q0 is the initial state, and

F is the set of marked states. Σ∗ is the set of all finite traces

of elements in Σ, including the empty trace ǫ. A language is

a subset of Σ∗. The behavior of G, modeled as a language

L(G) ⊆ Σ∗, is the set of finite traces that G can generate. G
can model a second language, Lm(G) ⊆ L(G), that is the

set of traces that represent completed tasks (or, equivalently,

that end in marked states).

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

WeA14.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 465

The natural projection θ : Σ∗ → Σ∗

r is an operation over

languages defined over two sets of events, Σ and Σr, where

Σr ⊆ Σ. The set Σr is sometimes referred to as the relevant

event set. The natural projection maps traces in Σ to traces

in Σr by erasing the occurrences of events in Σ \Σr and is

defined as follows:

θ(ǫ) = ǫ

θ(σ) =

{

ǫ if σ /∈ Σr

σ if σ ∈ Σr

θ(sσ) = θ(s)θ(σ) with s ∈ Σ∗, σ ∈ Σ.

The concept of natural projection can be extended to lan-

guages as follows:

θ(L) = {ui ∈ Σ∗

r |ui = θ(u) for some u ∈ L}.

The property of projections known as the observer prop-

erty is presented in Definition II.1.

Definition II.1 [2] Let L ⊆ Σ∗ be a language, Σr ⊆ Σ an

event set and θ : Σ∗ → Σ∗

r the natural projection of traces

in Σ∗ to traces in Σ∗

r . If (∀m ∈ L)(∀n ∈ Σ∗

r) θ(m)n ∈
θ(L) =⇒ (∃p ∈ Σ∗) θ(mp) = θ(m)n and mp ∈ L then

θ(L) has the observer property.

We will use the same notation θ for projections of

languages, as in θ(L), or for projections of automata, as

in θ(G). In the latter case, θ(G) will denote the trim

deterministic automaton that marks the projected language

θ(Lm(G)). We will say that θ(G) is an “OP-abstraction”

if the corresponding language θ(Lm(G)) has the observer

property. So, we can assume without loss of generality that

G is a trim automaton. We present an example where the

projection violates the observer property.

Example II.1 Let the automaton G be the one presented in

Fig. 1(a). The deterministic automaton associated with the

natural projection erasing events Σu = {x, z} is presented

in Fig. 1(b).

s t a r t 0

1b

2

z

3
b

4
x

a

5
x

6

z

b

(a)

s t a r t 0 1
a,b

2
b

(b)

Fig. 1. Example II.1: (a) G; (b) θ(G).

To show that this projection does not have the observer

property, we choose m = z and n = b, such that θ(z)b = b ∈
θ(Lm(G)). However, there is no p ∈ Σ∗ such that θ(zp) =
θ(z)b and zp ∈ Lm(G). That means that for this choice

of Σr, the projection θ(Lm(G)) does not have the observer

property; stated differently, θ(G) is not an OP-abstraction.

In the next section we present the main results of the paper.

III. MAIN RESULTS

The main result of this paper consists of a procedure to be

applied over a automaton G = (QG,Σ, δG, qG
0 , FG), given

the set of relevant events Σr, to check if θ(G), where θ :
Σ∗ → Σ∗

r , is an OP-abstraction. To get rid of the marking

of G, we use an auxiliary M where marked states in G
are replaced by unmarked states with self-loops labeled with

an special event τ (Section III-A). Using M , a trace in the

marked language Lm(G) is represented as a trace that ends

with this special event in L(M). Then, the observer property

is translated into a test, termed OP-Test, over the language

L(M) (Section III-B). In the following subsection (Section

III-C), we introduce the OP-verifier, a transition structure that

translates the OP-Test into the verification of the reachability

of a specific state. The failure of the OP-Test causes a state

named Dead in the OP-verifier to be reached.

A. Auxiliary Transition Structure M

The first step is to obtain M = (QM ,Στ , δτ , qM
0) from the

original automaton G. QM is the set of states and QM = QG.

The set of events of M is denoted by Στ = Σ∪{τ} and τ is

considered relevant, namely, τ ∈ Σr. The transition function

δτ is defined as:

δτ (q, σ) =

{

δG(q, σ) if q ∈ QM , σ 6= τ
q if q ∈ FG, σ = τ

namely, the transition function δτ of M has the same

transitions as G plus self-loops labeled with τ in the states

corresponding to marked states in G. The initial state qM
0 of

M corresponds to the initial state of G, qG
0 . This represen-

tation is convenient because it allows to represent a marked

state of G as a state in M where a special transition, labeled

by τ , is defined.

The language generated by M is:

L(M) = {s′ ∈ Στ∗|δτ (qM

0 , s′) is defined}.

The language Lm(G) can be re-defined in terms of the

traces of L(M) as:

Lm(G) = {s ∈ Σ∗|s′ = sτ with s′ ∈ L(M)}.

We define the language N ⊆ L(M) as the sublanguage

of L(M) composed of traces in Σ∗, namely,

N = L(M) ∩ Σ∗.

It is trivial to show that N = L(G).
We define a function T : Σ∗ → 2Σ

∗

as:

T (s) = {t ∈ Σ∗|stτ ∈ L(M)}

namely, T (s) returns the set of traces t ∈ Σ∗ such that stτ ∈
L(M).

A restriction imposed on the automaton G, for the purpose

of the results in this paper, is that G does not have cycles of

non-relevant events.

466

B. OP-Test

In this section, we present a test to be applied over M ,

such that it is possible to determine if θ(Lm(G)) has the

observer property. The OP-Test is as follows:

OP-Test If s1, s2 ∈ N such that θ(s1) = θ(s2) then

θ(T (s2)) = θ(T (s1)).

Namely, for all s1, s2 ∈ N with θ(s1) = θ(s2), ∀t ∈ Σ∗

such that s2tτ ∈ L(M), ∃v ∈ Σ∗ such that s1vτ ∈ L(M)
and θ(t) = θ(v). In such a case, we say that M satisfies the

OP-Test.

Theorem III.1 shows that θ(G) is an OP-abstraction if and

only if the condition presented above can be verified for all

pairs s1, s2 ∈ N with θ(s1) = θ(s2).

Theorem III.1 Let the automaton G, the transition structure

M , the languages L(M) and N , the natural projection θ and

the OP-Test be as presented before. We have that:

M satisfies the OP-Test ⇔ θ(G) is an OP-abstraction.

This proof uses the definition of the observer property and

the OP-Test. It is omitted due to lack of space. Complete

details can be found in [16].

Example III.1 uses the G and Σr of Example II.1 to illus-

trate how the OP-Test detects the violation of the observer

property.

Example III.1 The automaton G and the transition struc-

ture M are presented in Figures 1(a) and 2, respectively.

Let N be as defined before. To show that M does not

s t a r t 0

1b

2

z

3
b

4

x

a

5
x

6
b

z
τ

τ

Fig. 2. Example III.1: M .

satisfy the OP-Test, we choose s2 = ǫ, s1 = z, such that

θ(s2) = θ(s1) and s1, s2 ∈ N . The trace bx ∈ T (s2) but

θ(bx) = b /∈ θ(T (s1)). Notice that those traces are the same

ones that violated the observer property, in Example II.1.

The OP-Test, as stated, does not provide an effective

way of verifying the observer property. In the next section,

we introduce a transition structure, named OP-verifier, that

translates the OP-Test into a problem of reachability of a

state named Dead.

C. OP-verifier

The OP-verifier, denoted by VG, is a nondeterministic

transition structure obtained from M whose states represent

pairs of states of M that have the same projection. We

present in this section an algorithm to build the OP-verifier.

This algorithm uses as inputs the transition structure M and

the set of relevant events Σr.

Let M = (QM ,Στ , δτ , qM
0) be as defined before and

EnM (q) = {σ ∈ Στ |δτ (q, σ)!} be the set of events defined

at state q of M . The execution of the algorithm results in a

structure VG = (Q,Στ , δ, q0), where:

- Q ∈ QM × QM ∪ {Dead} is the set of states;

- Στ = Σ ∪ {τ} is the event set;

- q0 = (qM
0 , qM

0) is the initial state;

- δ : Q × Σ → Q is the extended transition function. It

is defined later, as procedure δ(q).

As in the verifier introduced in [11], the OP-verifier is a

nondeterministic automaton. At first, the only known state is

MainAlgorithm

1 QT+1 = {(0, 0)}
2 QT = { }
3 ∀q ∈ (QT+1 − QT)
4 QT = QT ∪ q
5 δ(q)
6 if Dead ∈ QT+1

7 quit
8 end

9 end

10 VG = (QT ,Στ , δ, q0)

Fig. 3. Main Algorithm.

the initial one. The other states are enumerated as they are

reached from the initial state of VG. The procedure to build

VG is presented Fig. 3, where Σu = Σ − Σr. The transition

function δ, presented in Fig.4, is applied over each state of

QT+1 that is not in QT , to generate the new set of reached

states to be included in QT+1. This procedure is applied

iteratively, until QT+1 = QT . At the end, we have the set

of reachable states of VG. If the state Dead is included in

Q, then we can say that the observer property is violated

in Lm(G). Actually, in the algorithm, we halt the execution

once state Dead is reached from any state in QT+1.

Like the verifier presented in [11], the OP-verifier has its

transition function defined differently for each type of event:

σ relevant (σ ∈ Σr) and σ non-relevant (σ ∈ Σu).

Let s1, s2 ∈ N , with θ(s1) = θ(s2), be traces that take

M from the initial state to states q1 and q2, respectively.

The observer property, restated in terms of traces with the

same projection and their suffixes in what we called OP-Test

before, establishes that θ(T (s2)) = θ(T (s1)), namely, that

the set of projections of the suffixes of s2 must be equal to

set of projections of the suffixes of s1.

The algorithm builds the OP-verifier, whose states repre-

sent pairs of states of M , so that the traces that reach those

states of VG are traces of M with the same projection. A

state Dead is reached when a relevant event σ is defined in

q2 (s2σ ∈ N) of a state (q1, q2) and neither σ is defined in

q1 (s1σ /∈ N) nor there is a non-relevant event α defined

in q1 (∄α ∈ Σu such that s1α /∈ N) or if the dual is true,

namely, when a relevant event σ is defined in q1 (s1σ ∈ N)

of a state (q1, q2) and neither σ is defined in q2 (s2σ /∈ N)

467

δ(q)
11 q1 = q(1)
12 q2 = q(2)
13 ∀σ ∈ En(q) = EnM (q1) ∪ EnM (q2)
14 if σ ∈ Σr

15 if δτ (q1, σ)! & δτ (q2, σ)!
16 δ((q1, q2), σ) = (δτ (q1, σ), δτ (q2, σ))
17 QT+1 = QT+1 ∪ {(δτ (q1, σ), δτ (q2, σ))}
18 elseif δτ (q1, σ)!&EnM (q2) ∩ Σu = ∅ or δτ (q2, σ)!&EnM (q1) ∩ Σu = ∅
19 δ((q1, q2), σ) = (Dead)
20 QT+1 = QT+1 ∪ {(Dead)}
21 end

22 else

23 if δτ (q1, σ)!
24 δ((q1, q2), σ) = (δτ (q1, σ), q2)
25 QT+1 = QT+1 ∪ {(δτ (q1, σ), q2)}
26 end

27 if δτ (q2, σ)!
28 δ((q1, q2), σ) = (q1, δ

τ (q2, σ))
29 QT+1 = QT+1 ∪ {(q1, δ

τ (q2, σ))}
30 end

31 end

32 end

Fig. 4. Transition Function Algorithm δ(q)

nor there is a non-relevant event α defined in q2 (∄α ∈ Σu

such that s2α /∈ N).

This situation characterizes that θ(T (s2)) 6= θ(T (s1))
namely,

• for at least one suffix v ∈ Σ∗ of s1 (s1vτ ∈ L(M)) it is

true that ∄t ∈ Σ∗ with s2tτ ∈ L(M) and θ(t) = θ(v)
or

• for at least one suffix t ∈ Σ∗ of s2 (s2tτ ∈ L(M)) it is

true that ∄v ∈ Σ∗ with s1vτ ∈ L(M) and θ(t) = θ(v).

The first state to be analyzed is state (0, 0), where q1 =
0 ∈ QM and q2 = 0 ∈ QM . Based on the events defined in

state q2 ∈ QM we find which states of VG are reached from

the state q. The new states reached are included in QT+1 and

state (0, 0) is copied to set QT . This procedure is iteratively

performed until QT+1 = QT .

State Dead is reached if and only if θ(L(M)) does

not have the observer property. This result is presented in

Theorem III.2.

Theorem III.2 Let M , VG, θ and the OP-Test be as previ-

ously defined. State Dead is not reachable in VG if and only

if M satisfies the OP-Test.

The proof of Theorem III.2 can be found in [16].

Corollary III.2.1 follows from Theorems III.1 and III.2.

Corolary III.2.1 θ(G) is an OP-abstraction ⇔ state Dead
is not reached in the OP-verifier VG.

Overall, the procedure to verify the observer property is

done in three steps, given G and Σr:

- Obtain the transition structure M from G, by the

introduction of self-loops labeled with τ in all marked

states of G and remove the marking of the states;

- Apply the algorithm to build the OP-verifier VG from

M ;

- Classify θ(G) as an OP-abstraction in case state Dead
is not reachable in VG or as not being an OP-abstraction

otherwise.

The complexity involved in this algorithm is polynomial in

the number of states of M , in the worst case. The worst

condition would be when the number of states of the OP-

verifier is equal to the number of pairs of states of M , that is

n2 (n is the number of states of M). In general, the number

of states of VG will be less than n2. Moreover, in case the

observer property is violated, meaning that state Dead is

reached, the algorithm halts and the OP-verifier may not be

fully constructed.

The next section presents two examples that illustrate the

procedure of building VG.

IV. EXAMPLES

Two examples are presented, one that has the observer

property and another that does not have the observer prop-

erty.

Example IV.1 Let G = (QG,Σ, δG, qG
0 , FG) be the au-

tomaton and its projection as presented in Figures 5(a) and

5(b). The set of non-relevant events is Σu = Σ−Σr = {x, z}.

To obtain M , self-loops labeled with event τ are to the

marked states of G, as shown in Fig.6.

468

start 0

61a

2

z

3b

4

x

a

5
x

b

z

(a)

start 1 02
a b

(b)

Fig. 5. Example IV.1: (a) G; (b) θ(G).

The execution of the algorithm presented in Figures 3

and 4 for the construction of VG from M is shown in the

following.

(0, 0).a.(1, 1)→ Line 15

(0, 0).z.(2, 0)→ Line 23

(0, 0).z.(0, 2)→ Line 27

(0, 2).a.(1, 4)→ Line 15

(0, 2).z.(2, 2)→ Line 23

(2, 2).a.(4, 4)→ Line 15

(4, 4).b.(6, 6)→ Line 15

(6, 6).τ.(6, 6)→ Line 15

(1, 4).b.(3, 6)→ Line 15

(1, 4).x.(4, 4)→ Line 23

(3, 6).x.(5, 6)→ Line 23

(5, 6).z.(6, 6)→ Line 23

(2, 0).a.(4, 1)→ Line 15

(2, 0).z.(2, 2)→ Line 27

(4, 1).b.(6, 3)→ Line 15

(4, 1).x.(4, 4)→ Line 27

(6, 3).x.(6, 5)→ Line 27

(6, 5).z.(6, 6)→ Line 27

(1, 1).b.(3, 3)→ Line 15

(1, 1).x.(4, 1)→ Line 23

(1, 1).x.(1, 4)→ Line 27

(3, 3).x.(5, 3)→ Line 23

(3, 3).x.(3, 5)→ Line 27

(5, 3).x.(5, 5)→ Line 27

(5, 3).z.(6, 3)→ Line 23

(3, 5).x.(5, 5)→ Line 23

(3, 5).z.(3, 6)→ Line 27

(5, 5).z.(6, 5)→ Line 23

(5, 5).z.(5, 6)→ Line 27

start 0

1a

2

z

3b

4

x

a

5
x

6b

z
τ

Fig. 6. Example IV.1: M .

The verifier VG is presented in Figure 7.

start 0,0 2,0
z

1,1

a

0,2

z

4,1

a

2,2

z

x

3,3

b

1,4
x

6,3b

4,4

x

z

a

a

5,3
x

3,5
x

z

5,5x 6,5
x

x

3,6

b

6,6

b

x

z

z

5,6

z z

x z

τ

Fig. 7. Example IV.1. Verifier VG obtained from the algorithm.

State Dead is not reached so, we can conclude that θ(G)
is an OP-abstraction.

Now, we present and example in which the same choice

of relevant events leads to a projection that is not an OP-

abstraction.

Example IV.2 Let Gb be as in Figure 8(a). Notice that now

we have states 4 and 6 marked and a transition labeled with

b from state 0 to 1. The projection in shown in Figure 8(b).

s t a r t 0

1b

2

z

3
b

4
x

a

5
x

6

z

b

(a)

s t a r t 0 1
a,b

2
b

(b)

Fig. 8. Example IV.2: (a) Gb; (b) θ(Gb).

The automaton Mb is not shown. It can be obtained by

replacing every marking state of Gb by an unmarked one

with a selfloop labeled with τ .

The automaton VGb
is presented in Fig. 9. It can be noticed

that state Dead is reachable, indicating that θ(Gb) is not

an OP-abstraction. The verifier presented is completely built

just for the sake of illustration. Once state Dead is reached,

the algorithm halts. So, in this example, after the fourth step

of the execution, the algorithm halts.

s t a r t 0,0

2,0

z

1,1

b

0,2
z

2,2

z

Deadb

4,1

x

3,3

b

1,4x

6,3b

4,4

x

z

b

a

5,3

x

3,5x

z

5,5x

6,5x
x

3,6
b

6,6

b

x

z

z

5,6z

z

x

z τ

τ

Fig. 9. Example IV.2: Verifier VGb
.

The violation of the observer property can be shown by

making the choices m = z ∈ L(Gb) and n = bx, so that

θ(m)n = θ(z)bx ∈ θ(Lm(Gb)). There is no continuation

p ∈ Σ∗ such that zp ∈ Lm(Gb) and θ(p) = θ(bx), which

violates the observer property.

V. CONCLUSIONS

In this paper, we presented a test that is necessary and

sufficient to classify if an abstraction obtained by the natural

projection operation is an OP-abstraction without computing

the projection. A transition structure VG is built such that

the application of the OP-Test translates into the verification

469

of the reachability of state Dead in the verifier VG. This

structure is constructed from M and the set of relevant

events. The reachability of state Dead implies the violation

of the observer property. The complexity of this algorithm is

polynomial in the number of states of M , in the worst case.

In general, the number of states of VG will be less than n2.

Using the method presented in this paper, we avoid the

calculation of projections that do not have the property,

providing a reduction of the complexity of the intermediate

steps in obtaining OP-abstractions. However, there is no

automatic procedure to help defining the set of relevant

events. The OP-verifier can be used to reason about the

best choices to be made in terms of the relevant set. Some

preliminary investigations in that regard are reported in [17].

ACKNOWLEDGMENTS

The first author is supported by FAPEMIG (TEC

00138/07). The second author is supported in part by CNPq

grant 300953/93-3. The research of the third author is

supported in part by NSF grant ECS-0624821.

REFERENCES

[1] K. Wong and W. M. Wonham, “Hierarchical Control of Discrete-Event
Systems,” Discrete Event Dynamic Systems: Theory and Applications,
vol. 6, no. 3, pp. 241–273, 1996.

[2] K. Wong, J. Thistle, R. Malham, and H.-H. Hoang, “Supervisory
Control of Distributed Systems: Conflict Resolution,” Discrete Event

Dynamic Systems: Theory and Applications, vol. 10, pp. 131–186,
2000.

[3] R. Hill and D. Tilbury, “Modular Supervisory Control of Discrete
Event Systems with Abstraction and Incremental Hierarchical Con-
struction,” in Proceedings of the 8th International Workshop on

Discrete Event Systems, WODES’06, Ann Arbor, MI, USA, July 2006,
pp. 399–406.

[4] K. Schmidt, H. Marchand, and B. Gaudin, “Modular and Decentralizd
Supervisory Control of Concurrent Discrete Event Systems Using
Reduced Systems Models,” in Proceedings of the 8th International

Workshop on Discrete Event Systems, WODES’06, Ann Arbor, MI,
USA, July 2006, pp. 149–154.

[5] L. Feng and W. Wonham, “Computationally Efficient Supervisor
Design: Abstraction and Modularity,” in Proceedings of the 8th

International Workshop on Discrete Event Systems, WODES’06, Ann
Arbor, MI, USA, July 2006, pp. 3–8.

[6] P. Pena, J. Cury, and S. Lafortune, “Testing Modularity of Local Su-
pervisors: An Approach Based on Abstractions,” in Proceedings of the

8th International Workshop on Discrete Event Systems, WODES’06,
Ann Arbor, MI, USA, July 2006, pp. 107–112.

[7] ——, “New Results on Testing Modularity of Local Supervisors using
Abstractions,” in 11th IEEE International Conference on Emerging

Technologies and Factory Automation, Sep. 2006, pp. 950–956.
[8] K. Wong, “On the Complexity of Projections of Discrete-Event

Systems,” in Proceedings of the 4th Workshop on Discrete Event

Systems, WODES’98, Aug. 1998.
[9] L. Feng, “On the Computation of Natural Observers in Discrete-Event

Systems,” Systems Control Group Report, University of Toronto, Tech.
Rep., Jan. 2006.

[10] K. Schmidt and T. Moor, “Marked-String Accepting Observers for the
Hierarchical and Decentralized Control of Discrete Event Systems,”
in Proceedings of the 8th International Workshop on Discrete Event

Systems, WODES’06, Ann Arbor, MI, USA, July 2006, pp. 413–418.
[11] T. Yoo and S. Lafortune, “Polynomial-time verification of diagnosabil-

ity of partially observed discrete-event systems,” IEEE Transactions

on Automatic Control, vol. 47, no. 9, pp. 1491– 1495, Sep. 2002.
[12] M. de Queiroz and J. Cury, “Modular Control of Composed Systems,”

in Proceedings of the American Control Conference, ACC’00, June.
[13] P. Ramadge and W. Wonham, “Supervisory Control of a Class of

Discrete Event Processes,” SIAM Journal Control and Optimization,
pp. 206–230, Jan. 1987.

[14] C. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-

tems - Second Edition. Springer, 2007.
[15] W. Wonham, “Supervisory Control of Discrete-Event Systems,” Dept.

of Electrical & Computer Engineering, University of Toronto, 2005.
[16] P. Pena, J. Cury, and S. Lafortune, “Polynomial-Time Verification of

the Observer Property in Abstractions,” Discrete Event Systems Group
Report, Department of Automation and Systems (DAS) - Federal
University of Santa Catarina, Tech. Rep., Sep. 2007.

[17] P. Pena, A. da Cunha, J. Cury, and S. Lafortune, “New Results on
the Nonconflict Test of Modular Supervisors,” in Proceedings of the

9th International Workshop on Discrete Event Systems, WODES’08,
Göteborg, Sweden, May 2008.

470

