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With no = 4, p = 10, n can be increased to 16 * 40 = 640 also indebted to the referees for their valuable comments 
bits, the number of redundant symbols r = 160, k = and suggestions. 
640 - 160 = 480 and 

r 7. lo-lo. 

To correct all phased burst errors with A = 3 using the 
Reed-Solomon code over GF(230) we would need r = 
7 * 30 = 210 redundant bits, but the block length in this 
case can be much longer. Computer implementation of 
operations over GF(23) is substantially simpler than over 
GF(230). 
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Polynomial Weights and Code Constructions 
JAMES L. MASSEY, DANIEL J. COSTELLO, JR., AND J0RN JUSTESEN 

Absrruci-For any nonzero element c of a general tinite field GF(q), 

it is shown that the polynomials (x - c)*, i = 0,1,2,. . ., have the 
“weight-retaining” property that any linear combination of these 
polynomials with coefficients in GF(q) has Hamming weight at least 
as great as that of the minimum degree polynomial included. This 
fundamental property is then used as the key to a variety of code con- 
structions including 1) a simplified derivation of the binary Reed-Muller 
codes and, for any prime p greater than 2, a new extensive class of p-ary 
“Reed-Muller codes,” 2) a new class of “repeated-root” cyclic codes 
that are subcodes of the binary Reed-Muller codes and can be very 
simply instrumented, 3) a new class of constacyclic codes that are 
subcodes of the p-ary “Reed-Muller codes,” 4) two new classes of binary 
convolutional codes with large “free distance” derived from known 
binary cyclic codes, 5) two new classes of long constraint length binary 
convolutional codes derived from 2’-ary Reed-Solomon codes, and 
6) a new class of q-ary “repeated-root” constacyclic codes with an 
algebraic decoding algorithm. 
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I. INTRODUCTION 

I N THIS paper, it is shown that the polynomials 

(x - c)‘, i = 0,1,2,.-a, where c is any nonzero element 
of GF(q), have the fundamental property, which we term 
“weight-retaining,” that any linear combination of these 
polynomials with coefficients in GF(q) has Hamming weight 
at least as great as that of the minimum degree polynomial 
included. This is proved separately in Section II-A for the 
case where GF(q) has characteristic p = 2 since the binary 
case has a simplicity lacking in general and since it has the 
most interesting applications. The applications to 1) Reed- 
Muller codes, 2) a new class of “repeated-root” binary 
cyclic codes, 3) two new classes of binary convolutional 
codes derived from binary cyclic codes, and 4) two new 
classes of binary convolutional codes derived from Reed- 
Solomon codes are given in Sections II-B, II-C, II-D, and 
II-E, respectively. 

In Section III-A, we give a new class of “constacyclic” 
codes over fields GF(q) with characteristic p greater than 2 
that are “maximum distance separable” and haye a simple 
algebraic decoding algorithm. This class of codes is then 
employed in Section III-B as the basis for an inductive proof 
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of the weight-retaining property for a general finite field 
GF(q). Finally, in Section III-C, we give a new p-ary 
generalization of the Reed-Muller codes and a new class 
of constacyclic subcodes of these p-ary codes having the 
same minimum distance as the parent codes. 

II. THE BINARY CASE 

A. The Weight-Retaining Property in Fields of 
Characteristic Two 

Let c be a nonzero element of the finite field GF(q) where 
q = 2’ for some integer r. Since the polynomials (X + c)‘, 
i = 0,1,2;. ., include exactly one polynomial of each degree, 
they are a basis for the vector space of all polynomials 
over GF(2’) and hence every polynomial P(x) over GF(2’)’ 
can be expressed uniquely as a linear combination of these 
polynomials. Hereafter, let W[P(x)] denote the Hamming 
weight of P(x), i.e., the number of its nonzero coefficients. 
The following theorem relates W[P(x)] to the expansion of 
P(x) in the above basis. 

so that with the aid of (4) we have W[P(x)] = 2 W[P,(x)] 2 
W[(x + c)~,~,], as was to be shown. Conversely, suppose 
that PO(x) # 0. We then have from (3) 

w[%41 2 wEPdx>l (5) 
since any nonzero terms in P,(x) cancelled by the addition 
of c’“P,(x) must reappear as nonzero terms in x2”P,(x). 
Since P,,(x) has degree less than 2”, the induction hypothesis 
gives W[P,(x)] 2 W[(x + ~)~m’n], which, together with (5), 
yields (I), and the theorem is proved. 

We remark that, for the special case r = 1, Theorem 1.1 
is equivalent to showing that the binary 2” x 2” matrix 
whose (i + 1)th row is the sequence of coefficients in 
(x + l)‘, i.e., the (i + 1)th row of Pascal’s triangle reduced 
modulo 2, has the property that any sum of its rows has 
Hamming weight at least as great as the uppermost row 
included in the sum. For n = 3, this matrix is 

Theorem 1.1: Let I be any finite nonempty set of non- 11000000 

negative integers with least integer imin and let 10100000 

P(X) = C bi(X + C)i 
11110000 

iel 
10001000 
11001100 

where c and each bi is a nonzero element of GF(2’). Then 10101010 
W[P(x)] 2 W[(x + c)i,in]. (1) 1 1 1 1 1 1 1 1. 

riooooooo- 

Proof: We proceed by induction on the greatest 
integer im,, in I. A simple check shows that (1) holds for 

imax < 22. We suppose then that (1) holds for i,,,,, < 2” and 
show that (1) holds for i,,, < 2”+l. 

Partition Z into the sets I,, and Ii, where I0 contains those 
and only those i in I such that i < 2”. Then 

C bi(X + C)i = (X + C)2” iz, bi(X + C)ie2”p 

ieli 

which, upon writing PI(x) for the summation on the right- 
hand side which is a polynomial of degree less than 2”, 
becomes 

C bi(X + C)' = X'"P,(X) + C'"P,(X). 
isI 

(2) 

Similarly, write P,(x) as the polynomial of degree less than 2” 
given by 

P,(X) = C bi(X + C)'. 
islo 

From (2) and the definitions of I, and I, we then have 

P(x) = [PO(X) + ?P,(x)] + xZ”P,(x). (3) 

Suppose first that P,(x) = 0. Then, from (3), we have 
W[P(x)] = 2W[P,(x)]. Since PI(x) has degree less than 
2”, we have from the induction hypothesis 

w [P,(x)] 2 W[(x + c)imin-2”]. (4) 

But also 

W[(x + c)imq = W[(x + c)Z”(x + C)i-in-2n] 

= W[(x2” + c”“)(x + C)im~n-2n] 

= 2W[(x + C)i-in-2n] 

These matrices are of some importance in switching theory 
where Preparata [l] has pointed out other interesting 
properties of these matrices, including the fact that they are 
self-inverse. 

B. Binary Reed-Muller Codes 

We shall make frequent use of the following fact. 
Lemma 1: Let c be a nonzero element of a finite field 

GF(q) with characteristic p, and let i be a nonnegative 
integer with radix-p form [im- r, * * * ,il,iO]. Then 

m-l 
W[(X + C>i] = n (ij + 1) 

j=O 
(64 

or, for the particular case where p = 2, 

W[(x + l)i] = 2”(‘) (6b) 

where w(i) is the number of l’s in the radix-2 form of i. 

To prove this lemma, we first note that W[(x + c)~] is 
just the number of integers k, 0 I k I i, such that the 
binomial coefficient (i) is nonzero modulo p. But, by a 
theorem of Lucas [2, p. 1131, 

(7) 

where the ij and the kj are the digits in the radix-p forms of 
i and k, respectively and where, by convention, a binomial 
coefficient whose ,lower member exceeds its upper is zero. 
It then follows from (7) that there are exactly ij + I 
choices for kj, namely 0,1,2,. . . ,ij, such that the corre- 
sponding binomial coefficient in (7) is nonzero module p. 
Thus (6a) follows and the lemma is proved. 
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We are now in position to use Theorem 1.1 for a simple 
derivation of the binary Reed-Muller codes. Let m and u be 
any two positive integers such that u < y11. Consider the 
binary matrix G with n = 2” columns whose rows contain 
the sequence of coefficients in (x + l)i for all i such that 
i < IZ and w(i) 2 u. The number of such i, i.e., the number 
of rows of G, is just 

For example, with m = 3 and u = 2, we have 

I 

1 1 1 1 1 1 1 1 
10101010 

G= 11001100’ 
11110000 I 

We then take G to be the generator matrix of an (n,k) 
binary parity-check code. It follows from Theorem 1 .l 
that every nonzero codeword, i.e., every sum of one or 
more rows of G, has Hamming weight at least 2”, since our 
choice of G ensures that such a sum corresponds to a 
sum of polynomials (x + 1)’ for which w(i,,,J 2 u and 
hence, by Lemma 1, W[(x -t l)imin] 2 2”. Moreover, 
some rows of G have Hamming weight exactly 2” so the 
minimum distance of the code is d = 2”. This code is 
precisely the uth order Reed-Muller code of length n = 2” 
and, in fact, the rows that we have chosen for G are the 
same as those chosen by Reed [3] (except for a trivial 
reversal of each row). 

The evaluation of k and d for the binary Reed-Muller 
codes as given here is a substantial simplification of past 
arguments. 

C. A New Class of Binary Repeated-Root Cyclic Codes 

For 2 I u I m, consider the binary polynomial 

g(x) = (x + I)’ 03) 
where 

i = 2” - 2m-u+1 + 1. (9) 

The radix-2 form of i is then 

~im-l,* * * ,i,,i,J = 11 1 . . . 1 0 0 * . . 0 I] 

w 

where the run of O’s has length nz - u. We note that 
2”-l < i < 2”, which implies that g(x) divides xn + 1 
for IZ = 2” (since then x” + 1 = (x + I>“) but for no 
smaller n. Hence, g(x) generates a binary (n,k) cyclic 
code with n = 2” and n - k = i, which, from (9), gives 
k = 2”-U+l - 1. The rows of the generator matrix G 
for this cyclic code may be chosen as g(x)(x + I)’ for 
forj = O,l;.+ ,k - I, or equivalently as (x + I)j for i < 
j < n. But it follows from (10) that w(j) 2 w(i) for 
i I j < n = 2” since the radix-2 form ofj must have u - 1 
leading l’s and at least one 1 in its last m - u + 1 positions. 
Thus the rows of 6 are a subset of the rows of G as given in 
Section 1 I-B. Hence the cyclic code generated by g(x) is a 
subcode of the uth order binary Reed-Muller code having 
the same minimum distance as the parent code since 

W[g(x)] = 2” = d. [Hereafter we call a cyclic code in 
which the irreducible factors and hence the roots of g(x) 
have multiplicity greater than one a repeated-root cyclic 
code.] We have then proved the following. 

Theorem 2: For 2 I u I m, the (n = 2m, k = 2m-U’1 - 1) 
binary repeated-root cyclic code generated by g(x) = 
(x + 1)nfk is a subcode of the uth order binary Reed- 
Muller code’ having the same minimum distance d = 2” 
as the parent code. 

Although the repeated-root cyclic codes of Theorem 2 
are generally inferior to comparable Bose-Chaudhuri- 
Hocquenghem (BCH) codes, they have two interesting 
properties that might recommend their use in certain 
practical applications. 

First, very simple syndrome-forming and decoding 
circuitry is possible for the repeated-root codes. The 
circuitry utilizes logical elements corresponding to the 
factor (x + 1) in combinations that lend themselves to 
implementation with integrated circuits. Consider the 
circuit of Fig. l(a). It may be readily checked that if a 
polynomial P(x) = P,,-r-x”-’ + * . * + P,x f PO is read 
into this circuit with higher degree coefficients leading, then 
the contents 

s(x) = so + six + .-* + Sn-k-lXn-k-l 

when Pi is the only nonzero coefficient will be Pj(x + 1)’ . 
mod (x”-“); hence, by linearity, the response for general 
P(x) will be 

s(x) = P(x -t- 1) mod (xnTk) 

[where here and hereafter we write P(x) mod Q(x) for the 
remainder when the polynomial P(x) is divided by the 
polynomial Q(x).] In particular, when P(x) = f(x) -t- e(x) 
where f(x) = a(x)g(x) = a(x)(x + l)nmk is a codeword 
in the repeated-root code and e(x) = e, + e,x + * . . 
+ e,-l~n-l is the channel error-pattern, we have 

s(x) = e(x + 1) mod (x”-~) 

n-l 

= Jo ej(x + 1)” mod (x”-~), (11) 

which shows that s(x) depends only on the error pattern and 
is thus a true syndrome. Suppose then that one has realized 
a logical function F that forms the decoding estimate 
&,,- 1 of the leading error digit e,- t from the syndrome s(x). 
After further i shifts of the logic in Fig. l(a), the contents of 
the syndrome register become 

n-1 

“s(x)” = C ejMi(x + l)j mod (x”-~) 
j=O 

[where we understand e-,, = en-,,] so that the same function 
F will then be forming the corresponding estimate a,,- i- 1 
of e,,- i- 1. Thus, reminiscent of the technique first proposed 
by Meggitt [4] f or cyclic codes, a complete decoder for 
the repeated-root code can be implemented as shown in 
Fig. l(b). The connection shown dotted in this decoder is 
included if it is desired to “remove” the effect of correctly 
decoded error digits from the syndrome so that the syndrome 
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%I Sl %-k-l 

L 

. . . 

--P: -r!?i 

(4 

any nonzero element c of GF(2’), and any nonnegative 
integers n and N, 

wrp(x>w + 4”l 
2 W[(x + c)“] * W[P(x) mod (x” + c)]. (13) 

mod-2 

adder --D- 

unit 

delay 

(b) 
Fig. 1. (a) Syndrome-forming circuit for the binary repeated-root 

cyclic codes of Theorem 2. (b) Complete decoder. 

Proof: Letting P(x) = Q,(Y) + xQ2(x”) + * * * 
+ x”- ‘Q,(Y), we have 

W[P(X)(X” + c)“] = i W[Qi(X”)(X” + c)“]. (14) 
i=l 

Now, identifying x” on the right-hand side of (14) with x in 
Theorem 1.2, we obtain 

W [P(X>(X” + cl”1 2 i$l w [QLc)I * W [<X + cl”1 

= W C<X + c>“l * i$l W [Qi(c)I 

= W[(x+C)N]*W t 
[ i=l 

xi- 'Qi(c)] 

contents must be all O’s after successful decoding of the 
complete block. and (13) now follows upon noting that the last summation is 

Second, since the repeated-root codes are subcodes of the just the polynomial P(x) mod (x” + c). 

Reed-Muller codes having the same minimum distance as 
the parent codes, Reed’s majority logic decoding algorithm 

To describe convolutional codes of rate R = l/o, we 

[3] can be used for a simple realization of the decoding 
resurrect a notation used by Massey [6]. The sequence 

function Fin Fig. l(b). For instance, for the (8,3) repeated- 
io,il,i2,. . . of information bits is described by its D-transform 

root code with d = 22 = 4, it may be readily checked that Z(D) = i. + i,D + i2D2 + . . . 

sa, s4 and so + s3 + s4 form a set of three parity checks 
orthogonal on e,- 1 = e7 [5] so that F may be realized to 
conform with the decoding rule: & = 0 if none or one of 
these checks have value I, & = 1 if all three have value 1, 
and detection of 2 or more errors announced if two of 
these checks have value 1. 

D. Construction of Binary Convolutional Codes from 
Binary Cyclic Codes 

As we now proceed to show, Theorem 1.1 provides the 
key for using known cyclic codes to construct convolutional 
codes with large “free distance.” To facilitate this discussion, 
we first recast Theorem 1.1 into the following two equivalent 
forms. 

Theorem 1.2: For any polynomial Q(x) over GF(2’), 
any nonzero element c of GF(2’), and any nonnegative 
integer N, 

WCQMx + 4”l 2 W[<x + 4”l * WCQ@)l. (12) 

Proof: We first expand Q(x) as 

and the convolutional code is defined by the polynomial 

G(D) = G,(D”) + DG,(D”) + . . . + D”-lG,(D”). (15) 

(The component polynomials Gj(D) are now commonly 
called the “code-generating polynomials” of the con- 
volutional code [5].) If M is the maximum of the degrees 
of the code-generating polynomials, then M is called the 
memory of the code and nA = (M + 1)~ is called the 
constraint length. The encoded sequence is the sequence 

to,t,,t,, . . * whose D-transform is given by 

T(D) = I(D”)G(D), (16) 

which of course is a polynomial whenever I(D) is a poly- 
nomial. 

The free distance d,,,, of the convolutional code is the 
minimum of W[T(D)] taken over all I(D) # 0. The code is 
said to be catastrophic, or to exhibit catastrophic error 
propagation, if a nonpolynomial I(D) can result in a 
polynomial T(D) [7], [S]. The well-known necessary and 
sufficient condition [7] for an R = l/v code to be non- 
catastrophic is that 

Q(X) = i$o bi(X + C)' gcd {G,(D),G,(D),-.. G,(D)) = 1, (17) 

where gcd denotes greatest common divisor and where we 
and note that Q(c) = b,. If b. = 0, then W[Q(c)] = 0 have assumed without loss of essential generality that at 
and (12) holds trivially. If b, # 0, then W[Q(c)] = 1 and least one of the code-generating polynomials has a nonzero 
taking P(x) in Theorem 1.1 to be (x + c)~Q(x), we have constant term. It has been well established that d,,,, is the 

imin = N so that again (12) holds. fundamental determinant of error probability for maximum- 
Theorem 1.3: For any polynomial P(x) over GF(2’), likelihood (Viterbi) decoding of convolutional codes [9] and 
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for “almost” maximum-likelihood decoding such as 
sequential decoding [lo]. 

We now proceed with the use of Theorem 1.3 as a tool 
for constructing binary convolutional codes with large d,,,, 
from binary cyclic codes. In what follows, we shall always 
write g(x) for the generator polynomial of a cyclic code, d, 
for the minimum distance of such a code, h(x) = (x” + l)/ 
g(x) for the dual polynomial, d,, for the minimum distance 
of the dual code, and IZ for the length of both codes. 

Theorem 3: If g(x) generates a cyclic code over GF(2’) of 
odd length n, then for any positive integer m the rate 
R = l/u 2’-ary convolutional code with u = 2m defined 
by G(D) = g(D) is noncatastrophic and has d,,,, 2 

min {d,, 2d,}. 
Proof: Since n is odd, g(x) has no repeated roots. But 

G(D) = g(D) = i Dj-‘Gj(DZm) = k Dj-‘tij(Dm)’ (18) 
j=l j=l 

where we use G,(D) to denote the polynomial obtained 
from Gj(D) by replacing each coefficient by its square root, 
the square root existing and being unique for every element 
in GF(2’). From (18), we see that any irreducible poly- 
nomial that divided each code-generating polynomial 
would result in an irreducible factor of g(x) with multiplicity 
of at least 2. We conclude then that gcd {G,(D),G,(D); . . 
G,(D)} = 1 so that the convolutional code is non- 
catastrophic. 

For any polynomial Z(D) # 0, we may write 

T(D) = Z(D’“)G(D) = f(Dm)‘g(D) (19) 

where again the coefficients in i(D) are the square roots of 
those in Z(D). It then follows from (19) that 

T(D) = P(D)g(D)2 i + ‘h(D)” (20) 

where i 2 0, j 2 0, and P(D) is a nonzero p,olynomial 
divisible by neither g(D) nor h(D). 

Suppose first that i 2 j; then from (20) 

T(D) = P(D)g(D)2’i-“+1(D” + I)“j, 

which by Theorem 1.3 implies 

WCW91 
2 WI[(D + l)“j] . W[P(D)g(D)2(i-j)‘1 mod (D” + I)]. 

The first factor on the right is at least 1; further 
p(D)g(D)2(‘-j)‘l mod (D” + 1) is a nonzero codeword in 
the cyclic code generated by g(X) and thus has Hamming 
weight at least d, so that 

W[T(D)] r d,. (21) 

Conversely, suppose i < j. From (20), we then have 

T(D) = P(D)h(D)“‘j-i)-l(D’ + 1)2i+1, 

which by Theorem 1.3 implies 

W[I T(D)1 

2 W[(D + 1)2if’] . W[P(D)h(D)2(j-i)-’ mod (D” + l)]. 

The first factor on the right is at least two; the argument 

105 

of the second factor is a nonzero codeword in the cyclic 
code generated by h(x) a.nd thus has Hamming weight at 
least d,, so that 

W[T(D)] 2 2d,,. (2.3 

The theorem now follows from (21) and (22). 

It should be noted that the lower bound on d,,,, provided 
by Theorem 3 is independent of m and hence of the rate R 
of the convolutional code derived from the cyclic code. 
Hence the bound will be tightest for m = 1, i.e., R = 4, 
since the actual d,,,, can only increase as m increases. The 
best convolutional codes are obtained by selecting a cyclic 
code such that d, N 2d,. In Table I we list several binary 
(P = 1) convolutional codes obtained from Theorem 3 for 
both R = + and R = $ and indicate the specific cyclic 
code used in the construction. 

The following theorem indicates a somewhat less obvious 
way to construct convolutional codes from cyclic codes. 

Theorem 4: If g(x) generates a cyclic code over GF(2’) 
of odd length n, then for any positive integer m the rate 
R = l/u 2’-ary convolutional code with v = 4m defined by 
G(D) = g(D)’ + h(D)’ is noncatastrophic and has d,,,, L 

min {d, + d,,. 3d,, 3d,}. 
Proof: Again we note that since n is odd g(x) has no 

repeated roots. Moreover, by our choice of G(D), we have 
from (15) 

s(D)2 = ,!$ D 2(j- l)Gzj- 1(p) = i pj- l);2j- l(p)4 
j=l 

where we use Ej(D) to denote the polynomial obtained from 
Gj(D) by replacing each coefficient by its fourth root, the 
fourth root existing and being unique for every element of 
GF(2’). Hence a common divisor of G,(D),G,(D), . . . , 
G,-,(D) would imply that g(x) has some roots of multi- 
plicity exceeding 1. We conclude that gcd {G,(D),G,(D); . . , 
G,-,(D)} = 1 and hence, a fortiori, gcd {G,(D),G,(D); . ., 
G,(D)} = 1 so that the convolutional code is non- 
catastrophic. 

For any polynomial Z(D) # 0, we may write 

T(D) = Z(D4”)G(D) 

= f(D”)4[g(D2) + Dh(D’)] 

where the coefficients in f(D) are the fourth roots of those in 
Z(D). We may then further write 

T(D) = P(D)g(D)4ih(D)4j[g(D)2 + Dh(D)‘] 

where P(D) is a nonzero polynomial divisible by neither 
g(D) nor h(D), from which it follows that 

W[T(D)] = W[P(D)g(D)4i+2h(D)4j] 

+ W[P(D)g(D)4ih(D)4j+2]. (23) 

Suppose first that i > j 2 0. Applying Theorem 1.3 
to the second term on the right in (23), we obtain 

W[WldD) 
4(i-j)-Z(Dn + 1)41+2] 

2 W[(D + 1)4j+2]. W[P(D)g(D)4(i-j’-2 mod (D" + l)]. 
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TABLE I 
SOMEBINARYCONVOLUTIONALCODESOBTAINEDFROMTHE 

CONSTRUCTION GIVENINTHEOREM 3. 

cyclic code such that d, N d,,. In Table II we list several 
binary (i.e., r = 1) convolutional codes obtained from 
Theorem 4 for R = + and indicate the specific cyclic code 
used in the construction. Comparison of Tables I and II show 
that the R = + codes obtained from Theorem 4 are often 
superior to the R = 4 codes obtained from Theorem 3 
(or at least the lower bound on d,,,, is larger.) 

Cyclic Code Employed 
~~~~~-~~~~ _ _~~ 

(7, 4) QR code, d, = 3, d,, = 4 

(7, 3) QR code, d, = 4, d,, = 3 

(15, 8) BCH code, d, = 4, d,, = 5 

(17, 8) QR code, d, = 6, dh = 5 

(15, 5) BCH code, d, = 7, d,, = 4 

(23, ;2) QR code, d, = 7, dh = 8 

(23, 11) QR code, d, = 8, dh = 7 

(31, 11) BCH code, d, = 11, d,, = 6 

(47, 24) QR code, d, = 11, dh = 12 

(47, 23) QR code, d, = 12, d,, = 11 

(63, 30) BCH code, d, = 13, d,, 2 8 

(63, 24) BCH code, d, = 15, d,, 2 8 

(79, 40) QR code, d, = 15, dh = 16 

(79, 39) QR code, dg = 16, d,, = 15 

(89, 44) QR code, d, = 18, dh = 17 

(103, 52) QR code, $ = 19, dh = 20 

(103, 51) QR code, d, = 20, dh = 19 

d free 

23 
23 
24 
k-4 
24 
24 
26 
26 
>7 
>7 
27 
L7 
28 
28 

211 
211 
211 
211 
212 
112 
213 
213 
215 
215 
215 
215 
216 
216 
218 
218 
219 
219 
220 
220 

The first factor on the right is at least 2 and the second at 
least d,, since the argument is a nonzero codeword in the 
cyclic code generated by g(x). Hence the second term on the 
right in (23) is at least 2d9. A similar argument shows that 
the first term is at least d, so that 

W[T(D)] r 3d,. (24) 

By an entirely similar argument when j > i 2 0, we have 

W[T(D)] 2 3d,. (25) 

Finally, suppose that i = j 2 0. Applying Theorem 
to the first term on the right in (23), we obtain 

.3 

@‘l?‘(DMD>2(D” + 

2 W[(D 

2 d,. 

1)4’] 

+ 1)4i] . W[P(Djg(Dj2 mod (D” + l)] 

A similar argument shows the second term on the right in 
(23) to be bounded below by d,, so that we have 

W[T(D)] 2 d, + dh. (26) 

The theorem now follows from (24), (29, and (26). 

Again we note that the lower bound on d,,,, provided by 
Theorem 4 is independent of m and hence of the rate R of 
the convolutional code derived from the cyclic code. 
Hence the bound will be tightest for m = 1, i.e., for R = a. 

The best convolutional codes are obtained by selecting a 

To obtain an indication of the quality of the convolutional 
codes obtained by the above constructions, the nA = 40 
and R = f code of Table I was compared with the nA = 40 
and R = + Bahl-Jelinek “complementary” code [ 1 l] and 
with the nA = 40 and R = + Massey-Costello “quick- 
look-in” code [lo] in Fano-alogirthm [12] sequential 
decoding for simulated binary symmetric channels and an 
additive white Gaussian noise channel. In an extensive 
simulation when the computational cutoff rate Rcomp of 
the channel was near the code rate +, it was found that the 
Table I code was slightly inferior in undetected error 
probability to the Bahl-Jelinek code but was significantly 
superior to the Massey-Costello code. In erasure prob- 
ability, the Table I code was inferior to the Massey- 
Costello code but superior to the Bahl-Jelinek code. It seems 
reasonable then that the codes obtained from Theorems 3 
and 4 will be competitive with the best known codes of 
other constructions. 

It should be evident that the generality of Theorem 1.3 
admits the construction of many new classes of convolutional 
codes by mixing g(x) and h(x) from several codes, etc. We 
leave such extensions to the reader. It should also be re- 
marked that the binary (r = 1) R = 3 special case of 
Theorem 1.3 was independently found by Rudolph and 
Miczo [13] with a very different argument. 

E. Construction of Binary Convolutional Codes from 
Reed-Solomon Codes 

By choosing g(x) in Theorem 3 (or Theorem 4) to be the 
generator polynomial of a Reed-Solomon (RS) 2’-ary 
code [2, p. 3101, we can construct some surprisingly good 
binary convolutional codes for very long constraint lengths. 
To obtain binary codes, each digit of the RS code is repre- 
sented as a binary r-tuple so that the R = 3 2’-ary con- 
volutional code with one information digit and two encoded 
digits per subblock becomes an R = + binary code with r 
information bits and 2r encoded bits per subblock. The 
constraint length nAb of the binary code is r times the 
constraint length nA of the 2’-ary code. 

For an (n = 2’ - 1,k) RS code, d, = n - k + 1 and 
d,, = k + 1. Thus the best bound on d,,,, in Theorem 3 
results from the choice k = Ln/3J where L. J denotes the 
integer part of the enclosed expression. For this choice one 
obtains 

4,,, 2 I@ + 4)/3] 
and 

nAb = 

r(n - k + l), n - k odd; 
r(n - k + 2), n - k even, 

so that 

(27) 
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TABLE II 
SOMEBINARY CONVOLUTIONALCODES OBTAINED FROM THE 

CONSTRUCTIONGIVENINTHEOREM 4. 
.- 

Cyclic Code Employed R nA drr.. 

n - k, which divides x” - cp, generates an (n, k) con- 
stacyclic code whose codewords are all the multiples of g(x) 
having degree less than n. The code is cyclic if and only if 
c = 1 and is negacyclic [2, p. 2111 if and only if c = - 1. 
The following theorem gives a new class of repeated-root 
constacyclic codes and in its proof we develop an algebraic 
decoding algorithm for these codes. The cyclic codes in this 
class have been given earlier by Assmus and Mattson [16] 
and by Berman [17]. 

(7, 3) QR code, d, = 4, d,, = 3 
(17, 8) QR code, d, = 6, dh = 5 

f 

g 
:: 

>7 
211 

(23, 11) QR code, d, = 8, d,, = 7 215 
(41, 20) QR code, d, = 10, dh = 9 j E 219 
(47, 23) QR code, d, = 12, dh = 11 223 
(63, 30) BCH code, d, = 13, dh L 8 $ 2: 221 
(79, 39) QR code, d, = 16, dh = 1 S & 231 
(89, 44) QR code, dg = 18, dh = 17 $ 9”; 235 
(103,51) QR code, d, = 20, dh = 19 & 108 239 

Inequality (27), for r = 10, shows that the free distance of 
these binary codes is still at least 10 percent of the con- 
straint length for nAb 1: 7000. 

Even better codes can be obtained by adding a single 
parity digit to the r-tuple used to represent the digits of 
GF(2’). In this case, the binary code still has only r informa- 
tion bits per subblock but the subblock length is increased to 
2(r + 1) and hence the rate of the binary code is reduced to 

R=I r 
2r+l’ 

(28) 

which approaches ) for large r. Since there are at least two 
nonzero bits in each nonzero digit of GF(2’) in this new 
representation, one has for the binary code 

and also 

dfree 2 2LPn + 4)/3J 

1 

(r + l)(n - k + l), 
nAb = (r + I)(n - k + 2), 

n - k odd; 
n - k even, 

so that 

(29) 

Inequality (29), for r = 19 and hence R quite near f, 
shows that the free distance of these binary codes is still at 
least 10 percent of the constraint length for nAb N 6 700 000. 

The strongest known lower bound on d,,,, for binary 
convolutional codes is that of Neumann [14] but there is an 

improved lower bound due to Costello [15] for “time- 
varying convolutional codes.” For R = 3, these lower 
bounds on dfree/nA become 0.22 and 0.40, respectively for 
large nA. The lower bound on dfree/ndb for the second class 
of codes in this section remains above these values for 
nAb I 900 and nAb I 100, respectively. 

III. THE NONBINARY CASE 

Hereafter, p shall denote a prime greater than 2, c a 
nonzero element of GF(p’), n the length of a p’-ary block 
code, k the number of information digits in said code, and d 
the minimum distance of said code. 

A. A New Class of p’-ary Repeated-Root Constacyclic 
Codes With an Algebraic Decoding Algorithm 

Following Berlekamp’s terminology [2, p. 3031, we 
shall say that a polynomial g(x) over GF(p’) of degree 

Theorem 5: The polynomial g(x) = (x - c)“- k for 
1 I k < p generates a pr-ary (n = p,k) constacyclic code 
with d = n - k + 1 (i.e., a maximum distance separable 

code [2, p. 3091.) 
Proof: We note first that (x - c)” = xp - cp so that 

g(x) divides xp - cp and hence generates a constacyclic 
code of length IZ = p. Moreover, by Lemma 1, W[g(x)] = 
p-k+l=n-k+lsothatd~n-kfl. 

Letf(x) be a codeword in this constacyclic code and let 
e(x) = e, + e,x + * . . + ep- ixp- ’ be the channel error 
pattern. The same analysis as led to (11) above now shows 
that after f (x) + e(x) is read into the circuit of Fig. 2 with 
higher degree terms leading then the resultant syndrome is 
given by 

s(x) = e(x + c) mod (xp- k, VW 

or equivalently 

p-1 

S(X) = C ej(x + c)j mod (x"-~). 

j=O 
WI 

From (30b), we see that the syndrome s(x) = so + 
SIX + . . . + Sp-k-tXP-k-l can be expressed as 

Oli<p-k (314 

or equivalently 

si = (i!)-’ die(c), O<i<p-k. @lb) 

where we write die(c) for the ith formal derivative of e(x) 
evaluated at x = c. 

We now define modified syndrome digits S,,S,, . . . , 
Spmkel as the following linear combination of the si 

(j!)CiSi, l<i<p-k (32) 

and 

so = so (33) 

where {$} denotes the Stirling number of the second kind 
[19]. From (31a) and (32) we obtain 

so that we may write 

p-1 

. 

Si = C ejcjji, O<i<p-k (34) 
j=O 

with the understanding that 0’ = 1. 
Suppose that the error pattern e(x) has weight t so that 
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Fig. 2. Syndrome-forming circuit for the p’-ary repeated-robt 
constacyclic codes of Theorem 5. 

it may be written 

44 = El yj<xlc>ij 

where Yj # 0 is the “modified” value of the jth error (and 
is related to the true error value ei, as et, = Yjc- ‘j) and 
where we define Xj = ij as the location of the jth error. 
Equation (34) may then be rewritten as 

si = i YjX], Oli<p-k. (35) 
j=l 

But (35) is just the usual syndrome relations for a BCH code 
with “design distance” [2, p. 2741 p - k + 1, which 
implies then that d 2 p - k + 1. 

We conclude then that d = p - k + 1, which proves 
the theorem. 

Moreover, we conclude from (35) that the error values 
and locations for the constacyclic codes of Theorem 5 may 
be determined by any BCH decoding procedure, such as 
Berlekamp’s iterative algorithm [2, pp. 219-2211. Par- 
ticularly when p is a Mersenne prime, i.e., whenp = 2” - 1 
for some integer m, so that GF(p) operations are just “one’s 
complement” arithmetic, the decoding procedure for the 
p-ary codes would be easy to implement, especially when 
c = 1 (the cyclic codes) or c = - 1 (the negacyclic codes) 
so that the syndrome-former in Fig. 2 is very simple. These 
codes might find practical application in concatenated 
coding schemes [ 191, 

We remark further that the parameters n, k, and d of the 
constacyclic codes of Theorem 5 coincide with those of the 
“extended” [2, p. 2341 p-ary Reed-Solomon codes and for 
c = 1 are just permutations of these codes. The interesting 
difference is that the repeated-root codes permit the use of 
the integers O,l, * * * ,p - 1 as the error locations whereas 
in the RS codes the error locators are taken as 0 and the 
powers a”,a, * * ’ ,ap-’ of a primitive element CI of GF(p). 
Use of the additive group of GF(p), rather than the multi- 
plicative group, as the error locations results both in the 
natural inclusion of the “0” position and also in a reduction 
in the number of multiplications required for decoding by 
the iterative algorithm. 

B. The Weight-Retaining Property of (x - c)~ over 

GF(p’) 

Again we remark that the polynomials (x - c)‘, 
i = 0,1,2;**, form a basis for the vector space of all 
polynomials over GF(p’). We now propose to show that the 

weight-retaining property given in Theorem 1.1 for p = 2 
holds in general. We find it more convenient to prove first 
the p-ary analog of Theorem 1.2 and thereafter to deduce the 
p-ary analog of Theorem 1.1. 

Theorem 6.2: For any polynomial Q(x) over GF(p’), any 
nonzero c in GF(pr), and any nonnegative integer N, 

W[Q(-W - c>“l 2 WC<x - c>“l * W-Q(41. (36) 

Proof: In what follows we shall make frequent use of 
the fact that for any i and any polynomial P(x), W[P(x)] 2 
W[P(x) mod (xi - c)]. 

We first show that (36) holds for N c p. If Q(c) = 0, then 
(36) holds trivially. If Q(c) # 0, then Q(x) is not divisible 
by (x - c) so that Q(x)@ - c)~ mod (xp - cp) is a non- 
zero codeword in the constacyclic code generated by g(x) = 
(x - c)~ and hence, by Theorem 5, has Hamming weight at 
least N + 1. Thus 

W[Q(x)(x - c)“] 2 W[Q(x)(x - c)” mod (xp - cp>] 

2 N + 1 = W[(x - c)“] 

where the last inequality follows from Lemma 1. Hence (36) 
holds for N < p. 

We now suppose that (36) holds for N < Kp’, 1 < K < p, 
and proceed by induction on K, which also includes induc- 
tion on i since (K + 1)~’ = pi+’ when K = p - 1. We 
have already shown that (36) holds for i = 0 so that a 
basis has been established for the induction. It remains to 
show that (36) holds for N < (K + 1)~’ or, equivalently, 
for N = Kp’ + L for all integers L such that 0 I L < p’. 

We begin by noting that 

W[Q(x)(x - c)“] = W [Q(x)(x - c)“(x - c)““~] 

= W[Q(x)(x - c)~(x~’ - c~‘)~]. (37) 

Now writing 

p’- 1 
P(X) = Q(x)(x - C)L = j~o X’Pj(Xpi) 

we have then from (37) 

pi- 1 

(38) 

W[Q(x)(x - c)“] = jzo W [Pj(x)(X - cP’IKI (39) 

where we have merely replaced xp’ by x in (38). Since 
K < p, (36) holds for each term on the right in (39) and, 
together with Lemma 1, gives 

pi-1 

w [Q(x>(x - c>“] 2 (K + 1) jgo WIPj(Cpi)I, 

which, upon invoking (38), may be written as 

Wt-Q(x)(x - 4”l 
2 (K + l)lV[Q(x)(x - c)~ mod (xp’ - cp’)]. (40) 

Now also 

Q(x)(x - c)~ mod (xp’ - cp’) 

= Q(x)(x - c)” mod (x - c)~’ 

= [Q(x) mod (x - c)Pi-“1(x - c)~. (41) 
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But L < pi so that (36) may be applied to the right-hand 
side of (41) to give 

W[Q(x)(x - c)~ mod (xp’ - cp’)] 

2 w ctx - 47 . w~wi (42) 

where we have recognized that Q(x) mod (x - c)” evaluated 
at x = c is just Q(c). From (40), (41), and (42), we obtain 

W[Q(x)tx - c)“] 2 (K + 1) W[(x - c>“] . W[QWl, 

which, with the aid of Lemma 1 and the facts that L -=z Kp’ 
and N = Kp’ + L, may finally be written as 

WQ(x)tx - 4”l L W[<x - c>“l. W[Q@)l, 

which is (36), and the theorem is proved. 

We now have as a trivial consequence of Theorem 6.2: 
Theorem 6.1: Let Z be any nonempty finite set of non- 

negative integers with least integer i,,,in and let 

P(X) = C bi(X - c)i 
iel 

where c and each bi are nonzero elements of GF(pr). 
Then 

W[P(x)] 2 W[(x - c)i=q. (43) 

This theorem follows from Theorem 6.2 by noting that 

P(x) = Q(x)(x - c)imin where Q(c) = bimin # 0. 

Theorem 6.1 is the desired p-ary analog of Theorem 1.1. 
Although we shall make no further use of it, we now state 
for completeness the p-ary analog of Theorem 1.3, which 
follows from Theorem 6.2 precisely as Theorem 1.3 followed 
from Theorem 1.1. 

Theorem 6.3: For any polynomial P(x) over GF(p’), 
any nonzero element c of GF(p’), and any nonnegative 
integers n and N, 

W[P(x)(x” - c)“] 

2 W[(x - c)“] . W[P(x) mod (x” - c)]. 

C. A New Class of p-ary “Reed-Muller” Codes 

Proceeding analogously to Section II-B, let m be any 
positive integer and consider the matrix G with n = pm 

columns, whose rows are the sequences of coefficients of 
(x - c)~ for all i < n such that W[(x -- c)~] 2 d, where d is 
some integer chosen such that equality holds for at least 
one such i. Given n and d, the k corresponding integers i 
can be found with the aid of Lemma 1. For simplicity, 
one would usually take c = 1 or c = - I, but this is not 
necessary. It follows immediately from Theorem 6.1 that 
G is the generator matrix of an (n = p”,k) p-ary code with 
minimum distance d. We call these codes “p-ary Reed- 
Muller codes” because of their similarity to the binary 
Reed-Muller codes as formulated in Section II-B. A short 
list of these codes is given in Table III. 
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TABLE III 
A SHORT TABLE OF THE NEW CLASS OF U-AKY REED-MULLER CODES 

GIVEN IN SECTION iII-C. 

p n k d P n k d 

27 11 8 25 
z: 10 9 

27 i :i 
27 1 27 

25 

;: 

4 

: 
1 

:4 
20 

:: 

:: 
10 

: 
4 
3 
1 

The codes in Table III have in most instances the same 
parameters n, k, and d as do the extended p-ary Reed- 
Muller codes as given by Kasami et al. [20] (which we 
hereafter call KLP codes) whenever the more sparse KLP 
codes exist; i.e., the codes of Table III generally have the 
same k but n and d both one larger than the corresponding 
KLP code. However, the 5-ary (25, 15) code in Table III 
has d = 6, whereas d is only 4 for the 5-ary (24, 15) KLP 
code, so that the “p-ary Reed-Muller codes” as given here 
are not merely permutations of the (more sparse) KLP 
codes. 

We also remark that one can obtain repeated-root 
constacyclic subcodes of the p-ary Reed-Muller codes 
given here that are analogous to the cyclic codes of Section 
II-C. The generator polynomial of the constacyclic code is 
chosen as g(x) = (x - c)ndk, where k = pm-“+’ - 1. 
These constacyclic subcodes have the same minimum dis- 
tance d = 2~“~’ as their parent p-ary Reed-Muller codes. 
The constacyclic code is cyclic if and only if c = 1 and is 
negacyclic if and only if c = - 1. 

IV. CONCLUDING REMARKS 

In the foregoing, it has been shown that the weight- 
retaining properties of the polynomials (x - c)’ admit of 
exploitation in the construction of both block codes and 
convolutional codes. This generality is somewhat sur- 
prising, and it seems safe to say that not all the consequences 
of the weight-retaining property have been uncovered in this 
paper. 

We wish to remark that the discovery by the second author 
of the binary R = 3 codes of Theorem 3 was the initial 
impetus for the research reported here. The binary con- 
volutional codes of Theorem 3 for m = 2’ and of Theorem 4 
for m = 1 were earlier described orally by the first two 
authors [21]. In the original manuscript of this paper, the 
results were obtained only for prime fields GF(p)’ rather than 
GF(p’) as appears here. The most significant consequence of 
this generalization was the subsequent discovery of the 
long constraint length convolutional codes in Section II-E 
by Justesen. 
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Correspondence 

A General Approach to Linear Mean-Square Estimation 
Problems 

STAMATIS CAMBANIS 

Abstract-An explicit and easily implemented solution is given to the 
general problem of linear mean-square estimation of a signal or system 
process based upon noisy observations, under the assumption that the 
auto- and cross-correlation functions of the signal and the observation 
processes are known. Also a number of specific estimation problems are 
briefly discussed. 

I. INTRODUCTION 

In this correspondence the linear mean-square estimation of 

a signal or system process on the basis of noisy observations is 
considered. A general solution is obtained under the assumption 
only that the autocorrelation of the observation process and the 
cross-correlation between the observation and the signal pro- 
cesses are known. No assumptions are made about the con- 
tinuous, stationary, or Gaussian properties of the signal or of the 
observation processes, or about the nature of the observation 
interval. The estimate is expressed in a series, each term of which 

Manuscript received May 4, 1971; revised April 12, 1972. This work was 
supported by the Air Force Office of Scientific Research under Grant 
AFOSR-68-1415. 

The author is with the Department of Statistics, University of North 
Carolina at Chapel Hill, Chapel Hill, N.C. 27514. 

is an easily implemented linear operation on the realizations of 
the observation process. The estimate is also approximated 
arbitrarily closely in the stochastic mean-square sense by an 
explicitly given linear integral operation on the observation 
process. The significance of this estimation procedure is that it 
provides a general solution to linear ‘mean-square estimation 
problems that can be implemented in a straightforward way. 

The basis for the approach taken in this correspondence is 
some structural properties of second-order processes presented 
in [l 1. These properties are summarized in Section II. In Section 
III the general linear mean-square estimation problem is for- 

mulated and solved. A number of estimation problems for which 
the estimation procedure presented in Section III is applicable 
are discussed in Section IV. 

It should be remarked that the use of stochastic-process 
representations in the solution of linear mean-square estimation 
problems is well known and widely used; see for instance [4] 
and further references mentioned in the following. In the light 
of prior work on this subject the contribution of this corre- 
spondence is twofold: i) the linear mean-square estimation 
problem is solved for all signal or system processes and observa- 
tion processes that are measurable and of second order and for 
all observation intervals; in contrast, all solutions previously 
reported in the literature apply to more restrictive classes of 
processes and observation intervals; and ii) the estimate can be 
implemented in a straightforward way and a significant freedom 


