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I. INTRODUCTION 

Classical Fourier transform-based analysis techniques have been 
shown to be often ineffective for analyzing nonstationary signals 
[ I ] .  For such signals, much attention has been focused on the 
Wigner-Ville distribution (WVD) or on smoothed variants of it [9]. 
This attention has resulted largely because the WVD provides optimal 
energy concentration in the time-frequency (t - f )  plane for linear 
frequency modulated (FM) (quadratic phase) signals [ 11. 

This paper considers an extension of the WVD to higher orders, 
such that one can obtain good time-frequency energy concentration 
for FM signals with higher order polynomial phase laws. It is shown 
that the expected value of such distributions can be related to time- 
varying higher order spectru (TVHOS). 

11. POLYNOMIAL WIGNER-VILLE DISTRIBUTIONS 

A .  The Wigner-Ville Distribution 

The WVD has optimal concentration in the t - f plane for linear 
FM signals [ l ]  in the sense that it yields a continuum of delta 
functions along the signal’s instantaneous frequency (IF) law. It is 
this property that makes the WVD useful for IF estimation [I] ,  [2]. 
However, for nonlinear FM signals, optimal concentration is not 
obtained, and smeared spectral representations result. We show in 
this paper that it is possible to design Polynomial WVD (PWVD’s), 
which exhibit a continuum of delta functions along the IF  law for 
arbitrary order polynomial FM signals [3] .  To explain how this is 
achieved, one needs to look closely at the mechanism by which the 
WVD attains optimal concentration for linear FM signals. Consider a 
unit amplitude analytic signal t i t )  = p J L ’ ( ‘ ) .  The WVD of this signal 
is defined by 
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where rT 
bilinear kernel I<: ( t .  7 )  is 

denotes the Fourier transform with respect to 7 ,  and the 

(2 ) 

Substitution of z ( t )  = r l0‘ ‘ ’  and (2) into ( 1 )  yields 
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The term o(t  + ~ / 2 )  - o( t  - r / 2 )  in ( 3 )  can be re-expressed as 

G ( t  + 7 / 2 )  - o( t  - r / 2 )  = 2 1 7 T f , ( t .  T )  (4) 

where ft ( t .  7 )  can be considered to be an IF  estimate. This estimate is 
the difference between two phase values divided by ~ X T ,  where 7 is 
the separation in time of the phase values. This estimator is simply a 
finite difference of phases centrally located about time instant t and is 
known as the central finite difference (CFD) estimator [4]. Equation 
(3) can therefore be rewritten as 

I i - z ( t . f )  = F [ c / ( 2 4 ‘ . T ) ) ] .  ( 5 )  
7 4 f  

Thus, the WVD kernel is a function that is reconstructed from the 
CFD-derived IF estimate. It is now apparent why the WVD yields 
good energy concentration for linear FM signals since the CFD 
estimator is known to be unbiased for such signals and in the absence 
of noise fl ( t .  7 ) = f ( t ). Thus, linear FM signals are transformed into 
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sinusoids in the WVD kemel with the frequency of the sinusoid being 
equal to the IF of the signal z ( t )  at time t .  Fourier transformation 
of the kemel then becomes 

l l*Z( t . f )  = n ( f  - f , ( t )  1 (6) 

that is, a row of delta functions along the true IF of the signal. The 
above equation is valid only for unit amplitude linear FM signals of 
infinite duration in the absence of noise. For nonlinear FM signals, 
a different formulation of the WVD has to be introduced in order to 
satisfy (6) under the same conditions. 

B .  Polynomial WVD’s 
Nonlinear FM signals are common both in nature and in engineer- 

ing applications. For example, the sonar system of some bats use 
hyperbolic FM and quadratic FM signals for echo location. In radar, 
certain pulse-compression schemes employ linear FM and quadratic 
FM signals [I]. 

One can generalize the WVD in order to effectively analyze 
nonlinear polynomial FM signals by replacing the central finite 
difference IF estimator (inherent in the WVD formulation) with an 
altemative IF estimator. The purpose of this corepondence is to 
introduce altemative IF estimators that are unbiased for polynomial 
frequency (or phase) laws of arbitrary order and assume a phase 
model given by 

,=O 

The problem of designing these IF estimators in discrete-time form 
reduces to the design of FIR-differentiating filters for polynomial 
laws, which is described in [4]. Essentially, the filter coefficients are 
obtained by solving a system of linear equations that relate the filter 
output to the true phase derivative. 

The estimators described in [4] weight the phases at equally spaced 
sample points and then sum these weighted phases. This process is 
defined by 

h = - - y / 2  

time at which the estimate is taken 

phase of the signal r ( t )  
a constant controlling the weighting of the different phase 
values. 

1% 

The “order” of the estimator is denoted by (I and, in (8), is assumed 
to be an even number such that y 2 p .  Coefficient bo in (8) is always 
zero [4]. 

An altemative way of implementing the required estimators is to 
weight the phases at unequally spaced samples and then to take the 
sum. This allows the weights h h  to be prespecified, which is a fact that 
will be seen to be important in Section 11-C. This type of estimator 
[ 3 ] ,  [SI is defined by introducing ch into (8) as follows: 

Here, CI. is a constant that controls the separation of the different 
phase values used to construct the filter. The coefficients b k  and C A  

may be varied to yield unbiased IF estimates for signals with an 
arbitrary polynomial FM law. The procedure for determining b k  and 
l’h fcr the case of y = 4 is given in Section 11-C. The PWVD’s that 

result from incorporating the phase difference estimators in (9) are 
defined analogously to (1) by 

where I i f ( t .  J )  is the polynomial kernel given by 

412  

I < s ( f .  T )  = n [ r ( t  + C L J ) ] b ” .  ( 1 1 )  
h = - q / 2  

The above expression for the kemel may be rewritten in symmetric 
form as 

9 / 2  

I < q ( f . T )  = n [ Z ( f  + ( . I T ) ] ”  [ Z * ( f  + C - k T ) ] - b - k .  (12) 
L=O 

The discrete-time version of the PWVD is given by the discrete 
Fourier transform of 

9 / 2  

r<:(T?.m) = n [ Z ( l l  + C h . n l ) ] 6 k  [ : * ( T I  + C - k 1 ) 7 ) ] - b - k .  (13) 
k=O 

where I I  = t f s ,  in = 7fs,  and fs is the sampling frequency. 
The conventional WVD is a special case of the PWVD and may be 

recovered by setting y = 2, b-1 = -1, bo = 0, b l  = 1, c-1 = -1/2, 
CO = 0, c1 = 1/2.  Note that if b h  is an integer, the PWVD kemel 
is multi-linear, as opposed to the hilinear kemel of the WVD. While 
the bilinear kernel transforms linear FM signals into sinusoids, the 
multi-linear kemel can be designed to transform higher order FM 
signals into sinusoids. These sinusoids are manifest as delta functions 
when Fourier transformed. Thus the WVD kernel may be interpreted 
as a first order approximation in a polynomial expansion of phase 
differences. 

C.  Example: Design of a Practical Polynomial Kernel 
One of the simplest generalizations of the usual WVD kemel can 

be achieved by making q = 4. This selection of y enables high energy 
concentration in the t - f plane for polynomial phase laws up to order 
p = 4 (i.e., for FM laws up to order 3). The set of coefficients bk  and 
ch must be found to completely specify the new kemel. Although b k  

may theoretically take any value [ 5 ] ,  it is practically constrained to 
be an integer for two reasons. First, the use of noninteger b k  would 
lead to a kemel in which one must raise signal values to noninteger 
powers. This would lead to ambiguities in the case of complex signals, 
which is clearly undesirable. Second, the use of integer h k  enables 
the expected value of the PWVD to be interpreted as TVHOS (see 
Section 111-B). 

It is also desirable that the sum of the magnitude of h k  be as small 
as possible since the greater the sum of (ha 1, the greater the deviation 
of the kernel from nonlinearity. This phenomenon results from the 
multiplication of h~ with the phase terms, which in tum translate into 
powers of ~ ( t  + C ~ T ) .  The extent of the nonlinearity in the kemel 
should therefore be limited to prevent excessively poor performance 
of the PWVD in noise. 

In order to transform second-order phase law signals into sinusoids, 
b~ must assume the values b-1 = 1, bo = 0, and bl = +l. To 
transform third- and fourth-order phase law signals into sinusoids, 
it is necessary to incorporate two extra b k  terms since the phase 
differentiating filter must have two extra taps [4]. Simply assigning 
f l  to these two extra terms would be fraught as the IF estimator 
obtained would be biased. The simplest values that these terms could 
then assume are z t 2 ,  and therefore, the simplest possible kemel 
satisfying the above criteria is 

b2 = -11-2 = 1. bl  = - b p i  = 2 .  bo = 0. (14) 
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The coefficients C I ;  must then be found so that the polynomial kernel 5 :c ~ 

transforms unit amplitude cubic, quadratic, or linear FM signals into 
sinewaves. The design procedure necessitates the construction of a 
system of equations that relate the polynomial IF of the signal to 
the IF estimates obtained from the polynomial phase differences and 

The construction of the design equations assume that the signal 

-L- 

' J o  

X solving for ex.. The procedure is described below. v 

phase (in discrete-time form) is a pth-order polynomial given by 
P 

o[n]  = xflt 1 1 )  (15) 
< = o  

where a ,  are the polynomial coefficients. The estimate of the IF is 
then given by [ l ] ,  [4] 

A qth-order phase difference estimator (with order y 2 p )  is applied 
to the signal. It is required that at any discrete-time index 1 7 ,  the 
output of the estimator yield the true IF. The system of equations 

I 

required to ensure this is given by 1_ 
~ 

~ - 
Y 
U 

Y/2 

- 1 br. o( t7 + ck7n) = f t [ n ]  (17) 
k = - q / 2  

2 7r r n  

that is 

l P  Y / l  P 

- 
27rm 

b k  En, ( n  + c ~ ; n z ) '  = -E! ( I ,  I t r - ' .  (18) 
r = l  

2Ti 
k=- -qJL r=O 

Note that because of the invanance of a polynomial's order to its 
origin, n may be set equal to zero without loss of generality. Setting 
7 1  equal to zero in (18) then yields 

Fig. 1 .  (a) WVD and (b) PWVD of the same quadratic FM signal (noiseless 
case) (sampling frequency is 200 Hz; number of samples is 512; time 
resolution is 0.16 s; a full-size window was used). 

(19) 

The a, coefficients on the left- and right-hand sides of (19) may be 
equated to yield a set of p + 1 equations. Performing this operation 
for the values of b k  specified in (14) yields 

(20) 

(21) 

(22) 

(23) 

c r o p  - 1 + 2 - 21 = 0 x (111 

n l  [e2 - c-2 + 2cl - 2c-11 = 1 x ( 1 1  

0 3  [r; - cT2 + 2c: - 2cR1] = o x ( 1 3  

(12 [ri  - cT2 + 2c: - 2c?,] = o x (12 

0 4  [e; - + 2c; - Zc",] = 0 x til. (24) 

It is obvious from inspection that if cl = -r-l and c2 = - r -p ,  then 
(20), (22), and (24) are verified. This condition amounts to verifying 
the symmetry property of the FIR filter. Solving for c1, e- 1, rz ,  and 
c-2 then becomes straightforward from (21) and (23), subject to the 
condition that c1 = -c-1 and c2 = - c - ~ .  The solution is 

1 

c2 = -c -9  = - 2 ' J 3  c1 = -0.63. 

c1 = -c-, = 2(2  - 2 1 / 3 )  = 0.GT.j (25) 

(26) 

The resulting discrete-time kernel is then given by 

I<:(n.m) = [ ~ ( n  +0.6i'5m) ~ ' ( n  - O.GT5ni)I '  
: * ( I ]  + 0.85ni) : ( I ?  - O.85nr). (27) 

Fig. 1 shows the WVD and the PWVD based on the kernel in (27) for 
the same quadratic FM signal (noiseless case). The superior behavior 
of the later is indicated by the sharpness of the peaks in Fig. l(b). 

The quadratic IF law can be easily recovered from the peaks of the 
PWVD, as opposed to the peaks of the WVD. Note that the WVD 
exhibits oscillations that have no physical interpretation. 

Several important points need to be made concerning the practical 
implementation of the kernel in (27). First, to form the discrete 
kernel, one must have signal values at noninteger time intervals. The 
signal must therefore be sampled reasonably densely or interpolation 
used. (The interpolation can be performed by use of an FFT-based 
interpolation filter.) Second, it is crucial to use analytic signals so 
that the artifacts that arise due to the interaction between positive 
and negative frequencies are suppressed [I]. Third, the PWVD is best 
implemented by calculating a frequency-scaled version of the kernel 
in (27) and then accounting for the scaling in the Fourier transform 
operation, that is, the PWVD is best implemented as 

: * ( I 7  + 1 . O l t t )  :(U - l.ollz)}. (28) 

This formulation reduces errors that may arise from the interpolation 
process since it causes some of the terms within the kernel to occur 
at integer lags. The properties of the PWVD are not listed in this 
correspondence due to space limitations. They appear in [ 5 ] .  
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Fig. 2. Statistical performance of the PWVD-based instantaneous frequency 
estimate of quadratic FM signal in white Gaussian noise. Mean square error 
of the estimate versus the Cramer-Rao bound for S = 64 points (dashed 
line shows the CR bound). A curve for the mean square error is obtained by 
simulations over 250 trials. 

111. POLYNOMIAL TIME-FREQUENCY DISTRIBUTIONS, INSTANTANEOUS 
FREQUENCY ESTIMATION AND HIGHER ORDER SPECTRA 

A .  Polynomial Time-Frequency Distributions and IF Estimation 
In practical Wigner-Ville analysis, some form of windowing is 

usually applied since the observed signal is not infinite in extent. The 
generalized class of one or two dimensionally windowed WVD’s is 
often referred to as Cohen’s class of time frequency distributions [9]. 
Similarly, Cohen’s class may be further generalized. Thus, we define 
a new class of polynomial time-frequency distributions (PTFD’s) as 

vdXe-J2” f ‘dT  (29) p J 2 r u ( X - - f ) d  

where o( v. T )  is the 2-D smoothing (filtering) function. For practical 
purposes, it is desirable that the time-frequency distribution is real. 
This constraint requires that bn = - b - k  and CI, = -c -k .  Note 
that the smoothing that occurs as a result of the 2-D windowing 
becomes a very important consideration for multicomponent signals. 
This is due to the fact that the PWVD’s multilinear kemel creates a 
multiplicity of artifacts, which must be reduced for practical analysis. 
The question of 2-D window design for GTFD’s will be investigated 
in future work. 

Another natural question that arises is whether the PWVD can 
be used for accurate estimation of the IF of nonlinear polynomial 
FM signals. The performance of the PWVD-based IF estimation for 
polynomial phase laws up to order p = 3 is described in [16] and 
[5] and is illustrated in Fig. 2. It shows that PWVD peak-based IF 
estimates meet the Cramer-Rao lower variance bounds at high SNR’s 
and thus provide a very accurate means for IF estimation. 

B.  TVHOS Based on Polynomial WVD’s 
The vast majority of research in the area of HOS generally 

assume that the signals under consideration are stationary. However, 
various methods have been proposed in an attempt to deal with 
the nonstationary case. Some of the earlier techniques include the 

third-order Wigner distribution [ 121 and the third-order spectrogram 
(“running bispectrum”) [ 151. Recently, other extensions of these 
methods have been developed in 1111, 1141, [lo], and [131. 

In this section, another form of TVHOS is defined, based on a 
link with the PWVD’s. It is of considerable interest to note that the 
expected values of the polynomial kemels (given by (11) and (12)) 
correspond to higher order moments and/or higher order cumulants 
evaluated at particular lags. Consequently, just as the expected value 
of the WVD is the time-varying power spectral density [ l ] ,  one may 
form TVHOS by introducing the expectation operator into the PWVD 
formulation [3], [5]. Thus, if an ensemble of random processes are 
available, one can obtain a high-resolution time-varying higher order 
spectral representation. If only one realization is available, one may 
assume a local ergodicity and perform smoothing in the t - f plane, 
that is, the use of one of the polynomial time-frequency distributions 
described in (29) as the polyspectral estimate. 

Consider a random signal zr ( t  ). The expectation of the polynomial 
kemel is 

< { I < ! T ( t , T ) }  = Z ; ’ ( f  + C A T )  [ Z : ( f  -k C-I ,T ) ] -6 -k  . (30) { :: } 
The resulting TVHOS relating to the fourth-order polynomial phase 
law is 

<{rv-:~(t.f)} = e{ z: ( t  + . 6 i 3 ~ )  
T’f 

[;:(t - . 6 i 5 ~ ) ] ’  z : ( t  + . S5r )  2, ( t  - 3 5 ~ ) ) .  (31) 

This expression is a spectrum of a higher order moment (sixth order) 
in which there is only one frequency variable. It is in fact a “reduced” 
TVHOS. It may be rewritten as 

A- 

where m;(t .  T )  is a time-varying sixth-order moment reduced to one 
lag variable. A full analysis of this class of TVHOS appears in [3] 
and [5]. Further results will appear in 171, [8], and [6], which describe 
the application of a member of this class of TVHOS to the analysis 
of FM signals in multiplicative noise. 

Notice that as the time-varying power spectrum (expected value 
of the WVD) of a stationary random process reduces to the power 
spectrum, the TVHOS based on the PWVD of the same process 
reduces to the polyspectra. One possible application relates to its use 
as a discriminator for nonstationary random processes with differing 
higher order moments (e.g., between Gaussian and nonGaussian 
processes). 

IV. CONCLUSION 

In this corespondence, the conventional WVD has been generalized 
in order to effectively characterize signals with nonlinear polynomial 
FM laws. It is shown that the PWVD of such signals produce a row of 
delta functions along its IF law in the t - f plane. In addition, a class 
of the PTFD’s, which includes Cohen’s class of TFD’s, have been 
defined as a tool for time-frequency signal analysis. The expected 
values of these PWVD’s are the Fourier transforms of some particular 
higher order moments and/or cumulants. The ensemble averaged 
PWVD’s therefore have the interpretation as TVHOS. 
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Abstract-The attenuated ultrasound pulse is divided into two parts: a 
stationary basic pulse and a nonstationary attenuation pulse. A standard 
ARMA model is used for the basic pulse, and a nonstandard ARMA 
model is derived for the attenuation pulse. The maximum likelihood 
estimator of the attenuated ultrasound pulse, which includes a maximum 
likelihood attenuation estimator, is derived. The results of this correspon- 
dence are of great importance for deconvolution and attenuation imaging 
in medical ultrasound. 
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1. INTRODUCTION 

In medical ultrasound, a short pressure pulse is emitted from a 
transducer. The ultrasound pulse then propagates in a narrow beam 
in the tissue. When the pulse arrives at inhomogeneities in the tissue, 
a part of the pulse is scattered back and received by the transducer. By 
mechanically or electronically changing the beam direction, an image 
of the acoustical properties of the tissue can be formed. Usually, 
only the envelope of the received signal is displayed. The attenuation 
of the tissue is not displayed directly. As the attenuation of the 
tissue is a clinically relevant feature, several attenuation estimation 
methods have been developed, e.g., the spectral-shift method and 
the spectral-difference method [3] ,  [4]. However, none of these 
attenuation estimation methods are based on the maximum likelihood 
principle. Attenuation estimation is of interest in medical ultrasound 
for another reason. The resolution of the envelope-detected image is 
poor because of the extent of the ultrasound pulse. The resolution 
can be improved by deconvolution, e.g., [6], but an estimate of the 
attenuated ultrasound pulse is needed by the deconvolution algorithm. 
This applies to both the axial and to the lateral direction, but only the 
axial (I-D) case is treated in this correspondence. As the maximum 
likelihood estimate of the attenuated ultrasound pulse includes a 
maximum likelihood attenuation estimate, it is seen that there is a 
close connection between attenuation estimation and pulse estimation. 

This correspondence is organized as follows. In Section 11, a non- 
standard ARMA model of the attenuated ultrasound pulse is derived. 
The maximum likelihood estimator of the attenuated ultrasound pulse 
in a constant attenuating medium is derived in Section 111. Section 
IV presents an example, and the conclusion is given in Section V. 

11. A PARAMETRIC MODEL OF THE ATTENUATED 
ULTRASOUND PULSE 

The propagation of ultrasound waves takes place in three dimen- 
sions, but we consider I-D effects only. The attenuated ultrasound 
pulse can be divided into two parts: a stationary basic pulse and a 
nonstationary attenuation pulse. The basic pulse consists mainly of 
the electromechanical response of the transducer and the scattering 
function; see [7, ch. 81. 

The signal y (  I I  j received by the transducer is given by 

where I (  = 1.. . . .*Y denotes the discrete-time index, 2 = eJd the 
:-transform variable, H I  (;) the stationary basic pulse, and H2 ( 2 ,  n ) 
the nonstationary attenuation pulse. The radian frequency is denoted 
J. The 1 -D reflection sequence 11 ( n  ) is assumed Gaussian i.i.d. with 
zero mean and variance U ; .  A standard ARMA model is used for 
the basic pulse 

(4) 

Maximum likelihood estimation of the parameters of nonstationary 
models is possible in the time domain only. The following ARMA 
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