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Abstract

We consider the bin packing problem with d different
item sizes si and item multiplicities ai, where all num-
bers are given in binary encoding. This problem formu-
lation is also known as the 1-dimensional cutting stock
problem.

In this work, we provide an algorithm which, for
constant d, solves bin packing in polynomial time. This
was an open problem for all d ≥ 3.

In fact, for constant d our algorithm solves the
following problem in polynomial time: given two d-
dimensional polytopes P and Q, find the smallest
number of integer points in P whose sum lies in Q.

Our approach also applies to high multiplicity
scheduling problems in which the number of copies of
each job type is given in binary encoding and each type
comes with certain parameters such as release dates,
processing times and deadlines. We show that a variety
of high multiplicity scheduling problems can be solved in
polynomial time if the number of job types is constant.

1 Introduction

Let (s, a) be an instance for bin packing with item
sizes s1, . . . , sd ∈ [0, 1] and a vector a ∈ Z

d
≥0 of item

multiplicities. In other words, our instance contains ai
many copies of an item of size si. In the following we
assume that si is given as a rational number and ∆ is
the largest number appearing in the denominator of si
or the multiplicities ai. Let P := {x ∈ Z

d
≥0 | sTx ≤ 1}.

Now the goal is to select a minimum number of vectors
from P that sum up to a, i.e.

(1.1) min
{

1Tλ |
∑

x∈P
λx · x = a; λ ∈ Z

P
≥0

}

where λx is the weight that is given to x ∈ P. This
problem is also known as the (1-dimensional) cutting
stock problem and its study goes back to the classical
paper by Gilmore and Gomory [GG61]. Note that
even for fixed dimension d, the problem is that both,
the number of points |P| and the weights λx will
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Figure 1: Knapsack polytope for s = (0.13, 0.205).

be exponentially large. Let OPT and OPTf be the
optimum integral and fractional solution to (1.1). As
bin packing for general d is strongly NP-hard [Joh92],
we are particularly interested in the complexity of bin
packing if d is constant. For d = 2 it is true that
OPT = ⌈OPTf⌉ and it suffices to compute and round
an optimum fractional solution [MSS97]. However, for
d ≥ 3, one might have OPT > ⌈OPTf⌉. Still, [FA05]
generalized the argument of [MSS97] to find a solution
with at most d − 2 bins more than the optimum in
polynomial time.

The best polynomial time algorithm previously
known for constant d ≥ 3 is an OPT +1 approximation
algorithm by Jansen and Solis-Oba [JSO10] which runs

in time 22
O(d) · (log∆)O(1). Their algorithm is based

on the following insights: (1) If all items are small,
say si ≤ 1

2d , then the integrality gap is at most one1.
(2) If all items have constant size, then one can guess
the points used in the optimum solution. It turns out
that for arbitrary instances both approaches can be
combined for an OPT + 1 algorithm. However, to find
an optimum solution, we cannot allow any error and a
fundamentally different approach is needed.

Note that for general d, the recent algorithm of
the 2nd author provides solutions of cost at most
OPT + O(log d · log log d) [Rot13], improving the clas-
sical Karmarkar-Karp algorithm with a guarantee of

1Compute a basic solution λ to the LP and buy ⌊λx⌋ times

point x. Then assign the items in the remaining instance greedily.
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OPT +O(log2 d) [KK82]. Both algorithms run in time

polynomial in
∑d

i=1 ai and thus count in our setting as
pseudopolynomial. In fact, those algorithms can still be
cast as asymptotic FPTAS.

Bin packing and more generally the cutting stock
problem belong to a family of problems that consist of
selecting integer points in a polytope with multiplici-
ties. In fact, several scheduling problems fall into this
framework as well, where the polytope describes the set
of jobs that are admissible on a machine under various
constraints.

We give some notation needed throughout the pa-
per. For a set X ⊆ R

d, we define the spanned cone as
cone(X) = {∑x∈X λxx | λx ≥ 0 ∀x ∈ X} and the inte-
ger cone as int.cone(X) := {∑x∈X λxx | λx ∈ Z≥0 ∀x ∈
X}. For a polytope P = {x ∈ R

d | Ax ≤ b}, we define
enc(P ) as the number of bits that it takes to write down
the inequalities defining P . Note that enc(P ) is polyno-
mially related to max{m, log∆} where m is the number
of inequalities and ∆ is the largest number appearing in
an integral inequality representation of P .

2 Our contributions

In this paper, we resolve the question of whether bin
packing with a fixed number of item types can be solved
in polynomial time.

Theorem 2.1. For any Bin Packing instance (s, a)
with s ∈ [0, 1]d and a ∈ Z

d
≥0, an optimum integral

solution can be computed in time (log∆)2
O(d)

where ∆
is the largest integer appearing in a denominator si or
in a multiplicity ai.

This answers an open question posed by McCormick,
Smallwood and Spieksma [MSS97] as well as by Eisen-
brand and Shmonin [ES06]. In fact, the first paper even
conjectured this problem to be NP-hard for d = 3.
Moreover the polynomial solvability for general d was
called a ”hard open problem” by Filippi [Fil07].

In fact, we derive Theorem 2.1 via the following
general theorem for finding conic integer combinations
in fixed dimension.

Theorem 2.2. Given polytopes P,Q ⊆ R
d, one can

find a vector y ∈ int.cone(P ∩ Z
d) ∩ Q and a vector

λ ∈ Z
P∩Z

d

≥0 such that y =
∑

x∈P∩Zd λxx in time

enc(P )2
O(d) ·enc(Q)O(1), or decide that no such y exists.

Moreover, the support of λ is always bounded by 22d+1.

In fact, by choosing P = {
(
x
1

)
∈ R

d+1
≥0 | sTx ≤ 1} and

Q = {a} × [0, b], we can decide in polynomial time,
whether b bins suffice. Theorem 2.1 then follows using
binary search.

For the sake of a simple presentation, we assume
that P is a bounded polytope. Our main insight to prove

Theorem 2.2 lies in the following structure theorem
which says that, for fixed d, there is a pre-computable
polynomial size set X ⊆ P ∩ Z

d of special vectors
that are independent of the target polytope Q with the
property that, for any y ∈ int.cone(P ∩ Z

d) ∩ Q, there
is always a conic integer combination that has all but
a constant amount of weight on a constant number of
vectors in X.

Theorem 2.3. (Structure Theorem) Let
P = {x ∈ R

d | Ax ≤ b} be a polytope with
A ∈ Z

m×d, b ∈ Z
m such that all coefficients are

bounded by ∆ in absolute value. Then there exists a
set X ⊆ P ∩ Z

d of size |X| ≤ N := mddO(d)(log∆)d

that can be computed in time NO(1) with the follow-
ing property: For any vector a ∈ int.cone(P ∩ Z

d)

there exists an integral vector λ ∈ Z
P∩Z

d

≥0 such that
∑

x∈P∩Zd λxx = a and

(1) λx ∈ {0, 1} ∀x ∈ (P ∩ Z
d)\X

(2) |supp(λ) ∩X| ≤ 22d

(3) |supp(λ)\X| ≤ 22d.

With this structure theorem one can obtain Theo-
rem 2.2 simply by computing X, guessing supp(λ) ∩X
and finding the corresponding values of λ and the vec-
tors in supp(λ)\X with an integer program with a con-
stant number of variables.

Bin packing can also be considered as a scheduling
problem where the processing times correspond to the
item sizes and the number of machines should be
minimized, given a bound on the makespan. A variety
of scheduling problems in the so-called high multiplicity
setting can also be tackled using Theorem 2.2. Some of
these scheduling applications are described in Section 7.
For example we can solve in polynomial time the
high multiplicity variant of minimizing the makespan
for unrelated machines with machine-dependent release
dates for a fixed number of job types and machine types.

3 Preliminaries

In this section we are going to review some known
tools that we are going to use in our algorithm. The
first one is Lenstra’s well known algorithm for integer
progamming, that runs in polynomial time as long as d
is fixed2.

Theorem 3.1. (Lenstra [Len83], Kannan [Kan87])
Given A ∈ Z

m×d and b ∈ Z
m with ∆ :=

max{‖A‖∞, ‖b‖∞}. Then one can find an x ∈ Z
d

2Here, the original dependence of [Len83] was 2O(d3) which

was then improved by Kannan [Kan87] to dO(d).
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with Ax ≤ b (or decide that none exists) in time
dO(d) ·mO(1) · (log∆)O(1).

For a polytope P ⊆ R
d, the integral hull is the

convex hull of the integral points, abbreviated with
PI := conv(P ∩ Z

d) and the extreme points of P are
denoted by vert(P ). If we consider a low dimensional
polytope P , then P can indeed contain an exponential
number of integral points — but only few of those can
be extreme points of PI .

Theorem 3.2. (Cook et al. [CHKM92, Har88])
Consider any polytope P = {x ∈ R

d | Ax ≤ b} with m
constraints with ∆ := max{‖A‖∞, ‖b‖∞} ≥ 2. Then
PI = conv(P ∩ Z

d) has at most md · (O(log∆))d many
extreme points. In fact a list of extreme points can be
computed in time dO(d)(m · log(∆))O(d).

We will later refer to the coefficients λx as the weight
given to x. For a vector a ∈ cone(X) we know
by Carathéodory’s Theorem that there is always a
corresponding vector λ ≥ 0 with at most d non-zero
entries and a =

∑

x∈X λxx. One may wonder how many
points x are actually needed to generate some point in
the integer cone. In fact, at least under the additional
assumption that X is the set of integral points in a
convex set, one can show that 2d points suffice3. The
arguments are crucial for our proofs, so we replicate the
proof of [ES06] to be selfcontained.

Lemma 3.1. (Eisenbrand and Shmonin [ES06])
For any polytope P ⊆ R

d and any integral vector

λ ∈ Z
P∩Z

d

≥0 there exists a µ ∈ Z
P∩Z

d

≥0 such that

|supp(µ)| ≤ 2d and
∑

x µxx =
∑

x λxx. Moreover
supp(µ) ⊆ conv(supp(λ)).

Proof. For the sake of simplicity we can replace the
original P with P := conv(x | λx > 0) without changing
the claim. Let f : R

d → R be any strictly convex
function, i.e. in particular we will use that

f( 12x+ 1
2y) <

1

2
(f(x) + f(y)).

For example f(x) = ‖(1, x)‖2 does the job. Let
(µx)x∈P∩Zd be an integral vector with

∑

x∈P∩Zd λxx =
∑

x∈P∩Zd µxx that minimizes the potential function
∑

x∈P∩Zd µx · f(x) (note that there is at least one such
solution, namely λ). In other words, we somewhat
prefer points that are more in the “center” of the
polytope. We claim that indeed |supp(µ)| ≤ 2d.

For the sake of contradiction suppose that
|supp(µ)| > 2d. Then there must be two points x, y

3For arbitrary X ⊆ Z
d, one can show that a support of at

most O(d log(d∆)) suffices, where ∆ is the largest coefficient in a
vector in X [ES06].

with µx > 0 and µy > 0 that have the same parity,
meaning that xi ≡ yi mod 2 for all i = 1, . . . , d. Then
z := 1

2 (x + y) is an integral vector and z ∈ P . Now we
remove one unit of weight from both x and y and add
2 units to z.

x

z

y

−1

+2

−1

This gives us another feasible vector µ′. But the change
in the potential function is +2f(z)−f(x)−f(y) < 0 by
strict convexity of f , contradicting the minimality of µ.
�

In fact, the bound is tight up to a constant factor. As it
seems that this has not been observed in the literature
before, we describe a construction in Section 8 where a
support of size 2d−1 is actually needed.

A family of versatile and well-behaved polytopes is
those of parallelepipeds. Recall that

Π =

{

v0 +
k∑

i=1

µivi | −1 ≤ µi ≤ 1 ∀i = 1, . . . , k

}

is a parallelepiped with center v0 ∈ R
d and directions

v1, . . . , vk ∈ R
d. Usually one requires that the directions

are linearly independent, that means k ≤ d and Π is k-
dimensional. We say that the parallelepiped is integral
if all its 2k many vertices are integral.

4 Proof of the structure theorem

In this section we are going to prove the structure
theorem. The proof outline is as follows: we can show
that the integral points in a polytope P can be covered
with polynomially many integral parallelepipeds. The
choice for X is then simply the set of vertices of those
parallelepipeds. Now consider any vector a which is
a conic integer combination of points in P . Then by
Lemma 3.1 we can assume that a is combined by using
only a constant number of points in P ∩ Z

d. Consider
such a point x∗ and say it is used λ∗ times. We will show
that the weight λ∗ can be almost entirely redistributed
to the vertices of one of the parallelepipeds containing
x∗.

Let us make these arguments more formal. We
begin by showing that all the integer points in a
polytope P can indeed be covered with polynomially
many integral parallelepipeds as visualized in Figure 2.
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Figure 2: Covering the integer points of a polytope with
integral parallelepipeds.

Lemma 4.1. Let P = {x ∈ R
d | Ax ≤ b} be a polytope

described by m inequalities with integral coefficients of
absolute value at most ∆. Then there exists a set Π

of at most |Π| ≤ N := mddO(d)(log∆)d many integral
parallelepipeds such that

P ∩ Z
d ⊆

⋃

Π∈Π

Π ⊆ P.

Moreover the set Π can be computed in time NO(1).

Proof. First of all, remember that every point x ∈ P has
‖x‖∞ ≤ d! ·∆d and hence |Aix−bi| ≤ (d+1)∆ ·d! ·∆d ≤
(d + 1)! · ∆d+1. We want to partition the interval
[0, (d+ 1)! ·∆d+1] into smaller intervals [αj , αj+1] such
that for any integer values p, q ∈ [αj , αj+1] ∩ Z one has
p
q ≤ 1 + 1

d2 . For this we can choose αj := (1 + 1
d2 )

j−2

for j = 1, . . . ,K and α0 := 0. It is not difficult to see
that K ≤ O(d3(log∆ + log d)) such intervals suffice.

Our next step is to partition P into cells such that
points in the same cell have roughly the same slacks
for all the constraints. For each sequence j1, . . . , jm ∈
{1, . . . ,K} we define a cell C = C(j1, . . . , jm) as

{
x ∈ R

d | αji ≤ bi −Aix ≤ αji+1 ∀i ∈ [m]
}
.

In other words, we partition the polytope P using at
most M := m ·K many hyperplanes. By a perturbation
argument our number of non-empty cells is bounded
by the number of full dimensional cells in a hyperplane
arrangement with M hyperplanes. It is a well-known
result that the latter quantity is at most

(
M
0

)
+ . . . +

(
M
d

)
≤ mddO(d)(log∆)d, see e.g. Matousek [Mat02].
Fix one of those non-empty cells C ⊆ P . We will

show that there are only dO(d) parallelepipeds necessary
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Figure 3: Visualization of covering the integer points in
a cell CI : Start by obtaining the symmetric closure Q.
Then compute the contact points of a minimum volume
ellipsoid containing Q. Scale those points with

√
d to

obtain a polytopeQ′ with onlyO(d2) vertices containing
CI . Then extend a triangulation of Q′ to dO(d) many
parallelepipeds.

to cover the integer points of this cell (we assume that
C ∩ Z

d 6= ∅, otherwise there is nothing to do). Next,
fix any integral point x0 ∈ C ∩ Z

d and define a slightly
larger polytope Q := conv(x0 ± (x0 − x) | x ∈ CI), see
Figure 3. In words, Q is a centrally symmetric polytope
with integral vertices containing CI such that also the
center x0 is integral. The reason why we consider a
symmetric polytope is the following classical theorem
which is paraphrased from John:

Theorem 4.1. (John [Joh48]) For any centrally
symmetric polytope P̃ ⊆ R

d, there are k ≤ 1
2d(d + 3)

many extreme points x1, . . . , xk ∈ vert(P̃ ) such that
P̃ ⊆ conv(

√
d · xj | j ∈ [k]).

The original statement says that there is in fact an
ellipsoid E with center 0 with 1√

d
E ⊆ P̃ ⊆ E. But

additionally John’s Theorem provides a set of contact
points in ∂P ∩ ∂E whose convex hull already contains
the scaled ellipsoid 1√

d
E. Moreover, the number of

necessary contact points is at most d
2 (d + 3), implying

the above statement.
So we apply Theorem 4.1 to Q (with center x0

instead of 0) and obtain a list of points x1, . . . , xk ∈
vert(CI) with k ≤ 1

2d(d+ 3) such that

CI ⊆ Q ⊆ conv(x0 ± ⌈
√
d⌉ · (x0 − xj) | j ∈ [k]) =: Q′.

Now it is not difficult to cover CI with parallelepipeds
of the form

Π(J) :=
{

x0 +
∑

j∈J

µj(xj − x0) | |µj | ≤ ⌈
√
d⌉ ∀j ∈ J

}
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with J ⊆ [k] and {xj−x0 | j ∈ J} linearly independent.
To see this take any point x ∈ Q′. By Carathéodory’s
Theorem, x lies already in the convex hull of x0 plus at
most d affinely independent vertices of Q′, thus there
is a subset of indices J ⊆ [k] of size |J | ≤ d and signs
εj ∈ {±1} with x ∈ conv({x0}∪{x0+εj⌈

√
d⌉·(xj−x0) |

j ∈ J}). Then clearly x ∈ Π(J).
Finally it remains to show that all parallelepipeds

Π(J) are still in P . Let x = x0+
∑

j∈J µj(xj −x0) with

|µj | ≤ ⌈
√
d⌉, then for any constraint i ∈ [m], we have

bi−Aix ≥ bi −Aix0
︸ ︷︷ ︸

≥αji

−
∑

j∈J

|µj |
︸︷︷︸

≤⌈
√
d⌉

· |Aixj −Aix0|
︸ ︷︷ ︸

≤αji+1−αji
≤

αji

d2

≥ 0.

Finally observe that the number of subsets J of size at
most d is ( 12d(d + 3))d = dO(d) which then gives the
desired bound.

Now let us argue how to make this constructive
in time NO(1). For each cell C, we list the vertices
of the integer hull CI in time dO(d)mO(d)(log∆)O(d)

by Theorem 3.2. Computing the minimum volume
ellipsoid containing all those vertices can be done using
semidefinite programming in time polynomial in the
encoding length of the vertices of CI . The contact points
can be inferred from the dual solution of this SDP and
the associated parallelepipeds can be easily computed.
�

Note that one could have used the following simpler
arguments to obtain a weaker, but still polynomial
bound: every cell CI has polynomially many vertices,
hence it can be partitioned into polynomially many
simplices. Then each simplex can be extended to a
parallelepiped, whose union again covers CI .

As a side remark, the partitioning with shifted
hyperplanes was used before e.g. in [CHKM92] to bound
the number of extreme points of conv(P ∩ Z

d).
The next lemma says why parallelepipeds are so

useful. Namely the weight of any point in it can be
almost completely redistributed to its vertices.

Lemma 4.2. Given an integral parallelepiped Π with
vertices X := vert(Π). Then for any x∗ ∈ Π ∩ Z

d and

λ∗ ∈ Z≥0 there is an integral vector µ ∈ Z
Π∩Z

d

≥0 such
that

(1) λ∗x∗ =
∑

x∈Π∩Zd µxx

(2) |supp(µ)\X| ≤ 2d

(3) µx ∈ {0, 1} ∀x /∈ X.

Proof. Let Π = {v0+
∑k

i=1 αivi | |αi| ≤ 1 ∀i = 1, . . . , k}
where v0 is the (not necessarily integral) center of Π.

Π

y

x

z

Figure 4: Weight of y is redistributed to vertex in
parallelepiped.

Consider a vector µ that satisfies (1) and minimizes the
potential function

∑

x/∈X µx (i.e. the weight that lies on
non-vertices of Π). We claim that µ also satisfies (2)
and (3).

First consider the case that there is some point
x that is not a vertex and has µx ≥ 2. We write
x = v0 +

∑k
i=1 αivi with |αi| ≤ 1. Let4 y := v0 +

∑k
i=1 sign(αi) · vi be the vertex of Π that we obtain by

rounding αi to ±1, see Figure 4. Note that the mirrored
point z = x + (x − y) = v0 +

∑k
i=1(2αi − sign(αi)) · vi

lies in Π as well and is also integral. As x = 1
2 (y + z),

we can reduce the weight on x by 2 and add 1 to µy and
µz. We obtain again a vector that satisfies (1), but the
weight

∑

x/∈X µx has decreased.
So it remains to see what happens when all vectors

in (Π ∩ Z
d)\X carry weight at most 1. Well, if these

are at most 2d, then we are done. Otherwise, we can
reiterate the arguments from Lemma 3.1. There will
be 2 points of the same parity, which can be joined to
create a new point carrying weight at least 2 and part of
this weight can be redistributed to a vertex. This shows
the claim. �

Now we simply combine Lemmas 4.1, 3.1 and 4.2.

Proof. [Proof of Structure Theorem 2.3] We choose
X as the N = mddO(d)(log∆)d many vertices of
parallelepipeds Π that are constructed in Lemma 4.1
in running time NO(1) (there is an extra 2d factor,
that accounts for the maximum number of vertices per
parallelepiped; this is absorbed by the O-notation).
Now consider any vector a ∈ int.cone(P ∩ Z

d). By

Lemma 3.1 there is a vector µ ∈ Z
P∩Z

d

≥0 with |supp(µ)| ≤
2d and a =

∑

x µx · x. For every x with λx > 0 we
consider a parallelepiped Π ∈ Π with x ∈ Π∩Z

d. Then
we use Lemma 4.2 to redistribute the weight from x to
the vertices of Π. For each parallelepiped, there are at
most 2d non-vertices with a weight of 1. In the case

4Recall that sign(α) =

{

1 α ≥ 0

−1 α < 0
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in which a vector is used by several parallelepipeds, we
can further redistribute its weight to the vertices of one
of the involved parallelepipeds. This process terminates
as the total weight on X keeps increasing. We denote
the new solution by λ. As we are using at most 2d

parallelepipeds, we have |supp(λ) ∩ X| ≤ 2d · 2d and
|supp(λ)\X| ≤ 2d · 2d. �

5 Proof of the main theorem

Now that we have the Structure Theorem, the claim of
Theorem 2.2 is easy to show.

Proof. [Proof of Main Theorem 2.2] Let P = {x ∈ R
d |

Ax ≤ b} and Q = {x ∈ R
d | Ãx ≤ b̃} be the given

polytopes. Here we assume that the coefficients in the
inequality description are integral and the numbers in
A, b and Ã, b̃ are bounded in absolute value by ∆ and
∆̃, respectively.

We compute the set X of size at most N :=
mddO(d)(log∆)d from Theorem 2.3 for the polytope
P in time NO(1). Now let y∗ ∈ int.cone(P ∩ Z

d) ∩
Q be an unkown target vector. Then we know by

Theorem 2.3 that there is a vector λ∗ ∈ Z
P∩Z

d

≥0

such that
∑

x∈P∩Zd λxx = y∗, |supp(λ∗) ∩ X| ≤ 2d,

|supp(λ∗)\X| ≤ 2d and λ∗
x ∈ {0, 1} for x ∈ (P ∩Z

d)\X.

At the expense of a factor N22d we guess the subset
X ′ = X ∩ supp(λ∗)5. At the expense of another
factor 22d + 1 we guess the number k =

∑

x/∈X′ λ∗
x ∈

{0, . . . , 22d} of extra points. Now we can set up an
integer program with few variables. We use variables λx

for x ∈ X ′ to determine the correct multiplicities of the
points in X. Moreover, we have variables x1, . . . , xk ∈
Z
d
≥0 to determine which extra points to take with unit

weight. Additionally we use a variable y ∈ Z
d to denote

the target vector in polytope Q. The ILP is then of the
form

Axi ≤ b ∀i = 1, . . . , k

∑

x∈X′

λxx+
k∑

i=1

xi = y

Ãy ≤ b̃

λx ∈ Z≥0 ∀x ∈ X ′

xi ∈ Z
d ∀i = 1, . . . , k

and given that we made the guessing correctly, this
system has a solution. The number of variables is
|X ′| + (k + 1)d ≤ 2O(d) and the number of constraints

5Actually we know that X′ consists of the vertices of at most

2d parallelepipeds, thus it suffices to incorporate a factor of N2d ,

but the improvement would be absorbed by the O-notation later,
anyway.

is km+ d+ m̃+ |X ′|d = 2O(d)m+ m̃ as well. Note that
the largest coefficient is at most ∆′ := max{d! ·∆d, ∆̃}.
Hence the system can be solved in time (2O(d))2

O(d) ·
(2O(d)m + m̃)O(1) · (log∆′)O(1) via Theorem 3.1. The

total running time is hence of the form enc(P )2
O(d) ·

enc(Q)O(1). �

Note that it is crucial that the integer combination
is taken w.r.t. a set X = P ∩ Z

d that is closed under
taking convex combinations. Without this assumption,
even for d = 1 andQ = {a}, the test int.cone(X)∩Q 6= ∅
is NP-hard as one could define X as the set of numbers
in a partition instance.

We can easily generalize this theorem to the case
that we can select points from several polytopes. In
fact, it even works if we can select from sets that are
integer projections of convex sets, which will turn out
to be very useful for our scheduling applications.

Corollary 5.1. Let P1, . . . , Pn with Pi ⊆ R
d+di be

polytopes in inequality form, c ∈ Z
n be a cost vector

and Q ⊆ R
d be a target polytope. Define Xi := {x ∈

Z
d | ∃y ∈ Z

di : (x, y) ∈ Pi}. Then the optimization
problem

min
∑

i∈[n]

ci
∑

x∈Xi

λi,x

s.t.
∑

i∈[n]

∑

x∈Xi

λi,xx ∈ Q

λi,x ∈ Z≥0 ∀i ∈ [n] ∀x ∈ Xi

can be solved in time (m̃+ log∆)2
O(d̃+n)

where ∆ is the
largest coefficient appearing in the input, d̃ := d + n +
∑n

i=1 di + 1 and m̃ is the total number of inequalities
describing P1, . . . , Pn.

Proof. We can assume that Pi ∩ Z
d+di 6= ∅, otherwise

the polytope can be removed from the list. Moreover, by
binary search it suffices to find a solution of cost at most
δ, given that there is one. Simply define the polytope

P̃ as all vectors (x, γ, x1, y1, z1, . . . , xn, yn, zn) ∈ R
d̃

satisfying

(xi, yi) ∈ Pi ∀i ∈ [n]
(
x
γ

)

{≤≥}
(
xi

ci

)

{+−}∆(1− zi) · 1 ∀i ∈ [n]

n∑

i=1

zi = 1; z ≥ 0

Observe that P̃ has dimension d̃ and O(m̃ + dn) con-
straints. The set of integer vectors (x, γ) that are integer
projections of P̃ is exactly

⋃n
i=1(Xi × {ci}). We apply

Theorem 2.2 to P̃ and Q̃ := Q × [0, δ] ⊆ R
d̃−d−1 and

the solution satisfies the claim. �

835 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
o

w
n
lo

ad
ed

 0
3
/1

6
/1

5
 t

o
 1

2
9
.1

3
2
.5

8
.1

1
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



6 Bin Packing and Cutting Stock

In the cutting stock problem, we have again a bin
packing instance with sizes s1, . . . , sd ∈ [0, 1] and
multiplicity ai of item i. Additionally we have a list
of m bin types, where bin type j ∈ [m] has capacity wj

and cost cj . The study of this problem goes back at
least to the 1960’s to the classical paper of Gilmore and
Gomory [GG61].

Corollary 6.1. The cutting stock problem with d dif-
ferent item types and m different bin types can be solved

in time (log∆)2
O(d+m)

where ∆ is the largest number in
the input.

Proof. Simply define Pj := {x ∈ R
d
≥0 | sTx ≤ wj} for

j ∈ {1, . . . ,m} and Q = {a} and apply Corollary 5.1.
�

Recall that a polynomial algorithm was unknown even
for m = 1 and d = 3.

7 Applications to scheduling

In the following we consider a scheduling instance of
d different job types and m different machine types. A
copy of job j ∈ [d] has a machine type dependent release
time of rij on machine type i, as well as a deadline
dij and a processing time pij . We have aj ∈ N many
copies of job type j and each machine type i has a cost
ci. Again we assume that all input data is integral.
Our goal is to assign all jobs to machines such that
all jobs meet their deadline and the cumulated cost of
used machines is minimized. We will show that for
constant d andm, this assignment problem is solvable in
polynomial time. In fact this holds for non-preemptive
scheduling as well as for scheduling with preemption
(but without migration).

Note that the case of just m = 1 machine type
and jobs with identical release times rj = 0 and
deadlines dj = B is equivalent to bin packing (for both,
preemptive and non-preemptive scheduling). It seems
clear, how to handle the extension of non-trivial release
times and deadlines: We simply write down a polytope
P such that the vectors x ∈ P ∩ Z

d define precisely
the multi-set of jobs that can be scheduled on a single
machine. In fact, it turns out that this is not difficult
to do for preemptive scheduling, but more tricky for the
setting without preemption.

7.1 Preemptive scheduling. First, let us focus on
preemptive scheduling without migration. Note that
once the assignment to machines is done, the Earliest-
Deadline First policy (EDF) gives an optimum sched-
ule [Der74].

Consider a single machine of type i and a vector
x ∈ Z

d
≥0 of jobs and we wonder how to determine

whether the jobs in x can be scheduled on a single
machine, i.e. how to test if the EDF schedule of a set
of jobs containing xj copies of job j will meet all the
deadlines. If we consider a time interval [t1, t2] then
it is clear that the total running time of all jobs that
have both, release time and deadline in [t1, t2] cannot
be larger than the length t2− t1, otherwise the schedule
must be infeasible. In fact, for the EDF-scheduling
policy, this is also a sufficient condition6. Moreover,
it is clear that one does not need to consider all time
intervals, but just those whose end points lie in the set
T := {rij , dij | j ∈ [d]} of critical points. Thus we can
define Pi as the set of vectors x ∈ R

d
≥0 such that

(7.2)
∑

j∈[d]:
rij ,dij∈[t1,t2]

xjpij ≤ t2 − t1 ∀t1, t2 ∈ T : t1 ≤ t2.

Observe that a job vector x ∈ Z
d
≥0 can be scheduled on

a single machine of type i if and only if x ∈ Pi.

Theorem 7.1. Given a vector a ∈ Z
d
≥0 of d different

job types with release times rij, deadlines dij and run-
ning times pij on m different machine types with cost
ci for a machine of type i ∈ [m]. Then one can find an
optimum job assignment minimizing the total machine

cost under preemptive scheduling in time (log∆)2
O(d+m)

where ∆ is the largest number in the input.

Proof. We choose polytopes P1, . . . , Pm as defined in
(7.2), each one with d dimensions and described by
O(d2) many constraints, hence we have O(md2) con-
straints in total. Then we use Cor. 5.1 to compute the

optimum solution in time (O(md2) + log∆)2
O(d+m)

=

(log∆)2
O(d+m)

. �

Note that the number of different processor schedules
returned by the algorithm is bounded by 2O(d+m).

7.2 Non-preemptive scheduling. Next, we con-
sider scheduling without preemption. In contrast to the
preemptive case, even in the single machine case (i.e.
OPT = m = c1 = 1) finding a feasible non-preemptive
schedule is NP-hard [GJ79] (for general d, but aj = 1).
Again, we want to first investigate the case that we have
a job vector x ∈ Z

d
≥0 and a single machine of some

type to schedule all these jobs. For the moment, let us
abbreviate the release times, deadlines and processing

6This can be easily derived from Hall’s condition for the exis-

tence of perfect matchings in bipartite graphs and the optimality
of EDF.
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times with rj , dj and pj . We will see that for fixed d
a schedule can be found in polynomial time. For nota-
tional convinience we add a dummy job with running
time p0 = 1, r0 = 0 and d0 := ∆ and multiplicity
x0 := ∆−∑d

j=1 pjxj . Now we can assume that there is
no idle time in the schedule.

Let T := {rj , dj | j ∈ [d]} = {t1, . . . , t2d} be the
2d critical points sorted so that t1 ≤ . . . ≤ t2d. The
crucial observation is that in a feasible schedule, we
can arbitrarily permute jobs that have both start and
end time in an interval [tk, tk+1]. Let us imagine that
the schedule is cyclic in the sense that the schedule
processes first some copies of job type 0, then some jobs
of type 1, and so on until type d; then the scheduler
starts again with jobs of type 0. The interval from a
job 0 interval to the beginning of the next job 0 interval
is called a cycle. Note that the number of copies of job
j that are scheduled in a cycle can very well be 0, so
indeed such a cyclic schedule trivially exists. Moreover,
we want to restrict that a job of type j is only allowed to
be scheduled in a cycle if the complete cycle is contained
in [rj , dj ]. But again this restriction is achievable as we
could split cycles if needed.

Now consider the schedule with the least number
of cycles. Following our earlier observation it is clear
that whenever 2 cycles are completely contained in
some interval [tk, tk+1] of consecutive points, then we
could also join them. Thus we can assume that the
schedule contains exactly 4d many cycles (maybe some
have length 0).

We introduce an auxiliary variable yjk which tells
us how many copies of job j are processed in the kth
cycle. Additionally we have a binary variable zjk telling
us whether jobs of type j can be processed in the kth
cycle. Moreover, the kth cycle runs in [τk−1, τk] (with
τ0 := 0). Then the polytope P whose integral points
correspond to feasible schedules can be defined as
(7.3)

xj =
∑4d

k=1 yjk ∀j ∈ {0, . . . , d}
τk =

∑

ℓ≤k

∑d
j=0 pjyjℓ ∀k ∈ [4d]

yjk ≤ ∆ · zjk ∀j ∈ [d] ∀k ∈ [4d]
τk−1 ≥ rj −∆(1− zjk) ∀j ∈ [d] ∀k ∈ [4d]

τk ≤ dj +∆(1− zjk) ∀j ∈ [d] ∀k ∈ [4d]

x0 = ∆−∑d
j=1 xjpj

yjk, τk ≥ 0 ∀j ∈ {0, . . . , d}
∀k ∈ [4d]

zjk ∈ [0, 1] ∀j ∈ [d] ∀k ∈ [4d].

A vector x ∈ Z
d
≥0 can be non-preemptively scheduled

if and only if there are integral x0, τ, y, z such that
(x, x0, τ, y, z) ∈ P .

Theorem 7.2. Given is a vector a ∈ Z
d
≥0 of d different

job types with release times rij, deadlines dij and run-

ning times pij on m different machine types with cost
ci. Suppose all numbers are integral and bounded by ∆.
Then one can compute an optimum non–preemptive job
assignment minimizing the total machine cost in time

(log∆)2
O(d2m)

.

Proof. We define the polytopes P1, . . . , Pm according to
(7.3) and apply Cor. 5.1 in order to compute an opti-
mum solution. As each of the m polytopes has O(d2)
many variables and constraints, hence the running time
is bounded by (log∆)O(d2m). �

One might be tempted to wonder whether the number
of variables could be reduced at the expensive of more
constraints, which might still improve the running time.
But for non-preemptive scheduling we run into the
problem that the set of vectors x that can be scheduled
on a single machine is not closed under taking convex
combinations7. In fact, some additional variables are
necessary to write those vectors as integer projection of
a convex set.

7.3 Minimizing the number of tardy jobs. So far
we have considered the case that we have to schedule all
jobs and our objective function has been to minimize the
number of machines, weighted by cost. Of course, one
can also consider the dual setting in which the number of
available machines is given and as many jobs as possible
should be scheduled in time.

Our input consists again of d job types, where for
each job type j, we have a number aj of copies and a
penalty cost cj . Moreover, we have m machine types
with Mi copies of machine type i ∈ [m]. A job of type j
has a machine type dependent release time pij , deadline
dij and running time pij . The goal is to schedule the
jobs on the machines non-preemptively and we have to
pay a penalty cj for each copy of type j that does not
finish in time (which for us means it is not scheduled at
all).

We saw in (7.3) that we can define a polytope Pi

such that the vectors x that are integer projections are
exactly those multisets of jobs that can be scheduled on
a single machine of type i.

We can slightly change the polytope so that a multi-
set of jobs represented by x ∈ Z

d
≥0 can be scheduled on a

single machine of type i if and only if there is some vec-
tor ȳ ∈ Z

d̄ (d̄ ≤ O(d2)) with (x, cTx, ei, ȳ) ∈ Pi where

7A simple example is the following: consider a set of
d = 3 job types with {(rj , dj , pj) | j = 1, 2, 3} =
{(0, 300, 150), (100, 102, 1), (200, 202, 1)}. The vectors x′ =
(2, 0, 0) and x′′ = (0, 2, 2) can both be scheduled in a non-

preemptive way. But the convex combination 1
2
(x′ + x′′) =

(1, 1, 1) cannot be scheduled.
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ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
m. The polytope Pi has

O(d2 + m) many variables and constraints. We define
Xi = {(x, cTx, ei) | ∃ȳ ∈ Z

d̄ : (x, cTx, ei, ȳ) ∈ Pi} and
choose a target polytope

Q = [0, a1]× . . .× [0, ad]× [δ,∞]×{M1}× . . .×{Mm}.

Then we apply Cor. 5.1 and obtain a solution λi,x with
∑

i∈[m]

∑

x∈Xi
λi,xx ∈ [0, a] using exactly Mi copies of

machine i and the penalty of the scheduled jobs is at
least δ. If we perform a binary search on δ, we can
maximize the penalties and jobs that are scheduled in
time (and hence minimize the penalty of those that are
not scheduled).

Theorem 7.3. Suppose we are given d job types with
aj copies of job i and m machines with Mi copies of
machine i. Moreover each job type j has release time,
deadline and running time rij, dij and pij on a machine
of type i ∈ [m] and each job has a penalty cj for each job
that does not meet the deadline. Then an optimum job
assignment and schedule that minimize the penalty paid

for tardy jobs can be found in time (log∆)2
O(d2m+m2)

.

8 The Eisenbrand-Shmonin Theorem is tight

In this section, we want to describe an example that
shows that the Eisenbrand-Shmonin result described in
Lemma 3.1 is tight up to a factor of 2. Fix a dimension
d ≥ 2 and let k := 2d−1. Let’s define a set X ⊂ Z

d of k
points as

{

(1 + x1, . . . , 1 + xd−1, (4k)
1+

∑d−1
i=1 2i−1xi) | xi ∈ {0, 1}

}

.

For example, for d = 3 we obtain





1
1

(4k)



 ,





2
1

(4k)2



 ,





1
2

(4k)3



 ,





2
2

(4k)4



 .

We sort X = {a1, . . . , ak} according to their length, i.e.
‖ai‖∞ = (4k)i and define P := conv(X).

Lemma 8.1. The integer conic combination y := a1 +
. . .+ ak is unique, thus there are 2d−1 points necessary
to obtain y as an integer conic combination of points in
P ∩ Z

d.

Proof. First, we observe that there is no other integer
point in the convex hull P because of the first d − 1
coordinates of the ai’s. In other words P ∩Z

d = X. We
want to argue that due to the enormous growth of the
last coordinate, each ai has to be used exactly once in
order to obtain y.

For this sake, consider any integer conic combina-
tion

y =

k∑

i=1

λiai.

Note that yj = 3 · 2d−2 for j ∈ {1, . . . , d − 1}, thus
λi ∈ {0, . . . , 3 · 2d−2} for i = 1, . . . , k. We want to argue
that λ1 = . . . = λk = 1 is the only possibility. Suppose
this is not the case and let i∗ be the largest index with
λi∗ 6= 1. We claim that if λi∗ = 0, then the combined
vector is too short and if λi∗ ≥ 2, then it is too long.
Formally, we consider the difference

‖
k∑

i=1

(λi − 1)ai‖∞

≥ |λi∗ − 1| · ‖ai∗‖∞ −
i∗−1∑

i=1

λi
︸︷︷︸

≤2k

‖ai‖∞
︸ ︷︷ ︸

=(4k)i

≥ |λi∗ − 1| · (4k)i∗ −
i∗−1∑

i=1

2k(4k)i

≥ (4k)i
∗

(

|λi∗ − 1| − 1

2

(∑

j≥0

(4k)−j
)

︸ ︷︷ ︸

≤3/2

)

≥ (|λi∗ − 1| − 3

4
) · (4k)i∗

using the reverse triangle inequality and the fact that
2k ≥ 4. But if λi∗ 6= 1, then the length of this vector is
strictly larger than 0, hence λ does not correspond to a
valid integer conic combination for y. �

Note that ‖ak‖∞ = (4k)k = 2Θ(d2d), hence our con-
struction uses numbers that are doubly-exponentional
in d. But an alternative argument of [ES06] based
on the pigeonhole principle shows that the support of
an integer conic combination can also be bounded by
O(d · log(dmax{‖x‖∞ | x ∈ X})). In other words, any
construction with minimal conic support of size Ω(2d)
must contain integer points with coordinates as large as

2Ω(2d), so the doubly exponentially large numbers are
necessary.
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