
Polynomials in the Nation’s Service:
Using Algebra to Design the Advanced

Encryption Standard

Susan Landau

1. INTRODUCTION. Cryptography, the science of transforming communications
so that only the intended recipient can understand them, should be a mathematician’s
playground. Certain aspects of cryptography are indeed quite mathematical. Public-
key cryptography, in which the encryption key is public but only the intended recipient
holds the decryption key, is an excellent demonstration of this. Both Diffie-Hellman
key exchange and the RSA encryption algorithm rely on elementary number theory,
while elliptic curves power more advanced public-key systems [21], [4].

But while public key has captured mathematicians’ attention, such cryptography is
in fact a show horse, far too slow for most needs. Public key is typically used only
for key exchange. Once a key is established, the workhorses of encryption, private-
or symmetric-key cryptosystems, take over. While Boolean functions are the mainstay
of private-key cryptosystems, until recently most private-key cryptosystems were an
odd collection of tricks, lacking an overarching mathematical theory. That changed
in 2001, with the U.S. government’s choice of Rijndael1 as the Advanced Encryption
Standard. Polynomials provide Rijndael’s structure and yield proofs of security. Cryp-
tographic design may not yet fully be a science, but Rijndael’s polynomials brought to
cryptographic design “more matter, with less art” (Hamlet, act 2, scene 2, 97).

Rijndael is a “block-structured cryptosystem,” encrypting 128-bit blocks of data
using a 128-, 192-, or 256-bit key. Rijndael variously uses x−1, x7 + x6 + x2 + x ,
x7 + x6 + x5 + x4 + 1, x4 + 1, 3x3 + x2 + x + 2, and x8 + 1 to provide cryptographic
security. (Of course, x−1 is not strictly a polynomial, but in the finite field GF(28)

x−1 = x254 and so we will consider it one.)
In this paper I will show how polynomials came to play a critical role in what may

become the most widely-used algorithm of the new century. To set the stage, I will
begin with a discussion of a decidedly nonalgebraic algorithm, the 1975 U.S. Data En-
cryption Standard (DES), which, aside from RC4 in web browsers and relatively inse-
cure cable-TV signal encryption, is the most widely-used cryptosystem in the world.2

I will concentrate on attacks on DES, showing how they shaped future ciphers, and
explain the reasoning that led to Rijndael, and explain the role that each of Rijndael’s
polynomials play. I will end by discussing how the algebraic structure that promises
security may also introduce vulnerabilities.

Cryptosystems consist of two pieces: the algorithm, or method, for encryption, and
a secret piece of information, called the key. In the nineteenth century, Auguste Kerck-
hoffs observed that any cryptosystem used by more than a very small group of people
will eventually leak the encryption technique. Thus the secrecy of a system must reside
in the key.

1“Rijndael” is pronounced “Rhine Dahl” and is a combination of the names of the algorithm’s two design-
ers, Joan (pronounced Jo han) Daemen and Vincent Rijmen.

2Both DES and Rijndael were made into Federal Information Processing Standards, which means that the
systems were approved for sale to the Federal government. The government’s purchasing power causes many
FIPS to become de facto commercial standards.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 89

Susan Banta
Copyright 2004, The Mathematical Association of America. All rights reserved.
First published in the American Mathematical Monthly. Reprinted by permission.

An algorithm is considered well designed if the expected workfactor to decode an
encrypted message is approximately equal to the time it takes to search the key space.
Thus one can expect that, if the key length is k bits, the time to decrypt is approximately
2k−1. Addition of a single bit to key length doubles the size of the search space.

What is considered secure depends on mathematics and technology. Current pro-
cessors do about a billion (or approximately 230) instructions a second; doing a billion
encryptions or decryptions, which are more complex operations, is a matter of minutes
or hours. Thus, no matter how good the mathematics behind it, a 30-bit cryptosystem
is insecure. DES has a 56-bit key; doing a billion billion computations is approxi-
mately what it takes to break DES and is well within the capability of current tech-
nology. If we up the ante to a billion billion billion computations, or approximately
290 computations, we are talking about a billion processors working for a billion sec-
onds (approximately thirty years). With a 128-bit key, Rijndael is one step beyond
this.

Attacks on cryptosystems vary widely. Attackers hope to determine the unencrypted
form of the message from captured encrypted versions. From the point of view of the
attacker, an even more successful attack is one that determines the key. Recent exploits,
including the brute-force search of the keyspace that enabled decryption of encrypted
Al Qaeda files [9] and the placement of an FBI “key-logging system” on the computer
of an alleged loan shark [41], achieved exactly that.

In this paper I am interested in mathematical attacks on cryptosystems, not physical
ones. I distinguish between passive attacks, in which the adversary monitors the com-
munication channel, and active ones, in which the adversary may transmit messages
in order to obtain information (e.g., the encrypted version of a particular message).
Passive attacks are safer to mount, but typically they yield less information. However,
if a cryptosystem can be shown to be secure against a chosen-text attack, in which
the adversary chooses the plaintext to be encrypted or the plaintext to be encrypted
depends on previously encrypted messages, then the cryptosystem is deemed to be
quite secure. Chosen-text attacks are largely used to simplify analysis of cryptosys-
tems, but because of such devices as “smart cards” (credit-card sized objects equipped
with small processors), such attacks can actually occur.

I assume that the unencrypted message—the plaintext—is a string of bits that is to
be transformed into an encrypted string, or ciphertext. Cryptosystems have to satisfy
several rules. Given the key, they should be fast to compute, they must be invertible
(though hard to invert without the key), and they must not use too much memory
or key. The rules arise from a combination of theoretical and practical requirements.
Invertibility is needed to enable the intended recipient to read the message. Low-power
devices must be able to encrypt and decrypt; thus memory requirements must be low.
Since the secret communication of the key bits is expensive, the key cannot be too
large.

Techniques for encryption date almost from the beginning of human writing.
Substitution—using one fixed set of symbols for another—and transposition—per-
muting a set of symbols—are the oldest as well as the simplest ways of transforming a
block of letters. In 1500 B.C.E., a Mesopotamian scribe used substitution of cuneiform
signs that had differing syllabic interpretations (much as “ghoti” can be an alternate
spelling of “fish”3) to disguise a formula for pottery glazes.

Neither substitution nor transposition works well by itself. Frequency analysis, us-
ing the relative occurrence of letters, pairs, triples, and so forth, is a strong tool against

3This example is due to George Bernard Shaw. Pronounce “gh” as in “tough,” “o” as in “women,” and “ti”
as in “nation.”

90 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

both.4 The fifteenth-century Arabic encyclopedia Subh al-a ’sha included a sophisti-
cated discussion on using frequency distributions for cryptanalysis [20, p. 95]. Any
message of reasonable length that is encrypted using a substitution or moderate-length
transposition cipher (that is, short with respect to the length of the message) can be
quickly deciphered by frequency analysis. Indeed, a trained cryptanalyst can break a
simple single-alphabet substitution cipher given only twenty-five characters of cipher-
text.

Despite this apparent weakness, substitution and transposition ciphers are too use-
ful to be ignored. The information theorist Claude Shannon observed that the two
fundamental techniques for encryption are confusion—obscuring the relationship be-
tween plaintext and ciphertext—and diffusion—spreading the change throughout the
ciphertext. Substitution is the simplest type of confusion, and transposition the sim-
plest method of diffusion.

Cryptanalysis can be viewed as an approximation problem: given ciphertext, de-
termine the plaintext by approximating the decryption function. Linear functions of
the input and key make poor choices for encryption functions because such systems
can always be broken by solving small sets of linear equations. But because crypto-
graphic functions must be invertible, must be fast to compute, and should have small
key size and memory requirements, linear functions are irresistible. Simple operations
such as XOR (exclusive or—also written⊕—bitwise addition modulo 2), substitution,
and permutation are ingredients the combination of which can produce a cryptosystem
whose strength is greater than the sum of its parts. Typically such instructions are com-
bined and used in an iterative block cipher, a cryptosystem that operates on a block
of data and sequentially repeats a set of primitives; each repetition is a round of the
function. DES is such a block cipher.

2. THE DATA ENCRYPTION STANDARD (DES). DES was developed in the
mid-1970s after members of the National Security Agency (NSA) and the National
Bureau of Standards (NBS, later renamed the National Institute of Standards and Tech-
nology, or NIST) recognized that the government’s increasing use of computers for
civilian data would require new privacy-protection technology. Although NSA was
the traditional designer of Federal cryptosystems, the agency was reluctant to develop
a system that would be available for public scrutiny, feeling that to do so would give
outsiders insight into the agency’s design philosophy.

NBS put out a request for proposals for an algorithm to encrypt 64-bit blocks of
data. The short version of the story is that IBM responded and submitted the algo-
rithm that was approved in 1977 as the Data Encryption Standard. The long version
is somewhat more complicated and best left to another venue (see, for example, [44]).
Most controversial was DES’s key length; already in 1977, many considered this too
short.

At the time of the NBS request, IBM was at work developing automated teller
machines for Lloyds Bank, London. One member of the IBM group, Horst Feistel,
had participated in the development of IFF (“Identify Friend or Foe”) systems for the
Air Force. Feistel had proposed a general scheme design for block-structured cryp-
tosystems that enabled self-invertibility. Self-invertibility is important in cryptosystem
design, for it enables a single object (a chip, a piece of software) to both encrypt and
decrypt.

4The letter “e” appears in 13 percent of English text; the letters “t, r, n, i, o, a, s” are the next most frequent
letters. Similarly, there is data on the frequency of various letters appearing at the beginning and end of words,
etc.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 91

DES specifications. Assume that there is a 2t-bit block to be encrypted using r rounds
of a block cipher. Split the block in half: left, L0, and right, R0; the two parts will be
operated on independently. In each round, the right half Ri becomes the new left half
Li+1. The new right half Ri+1 is a function of the old right and left halves, Ri and Li

respectively, and the portion of the key Ki+1 used in that round. In round i :

Li ← Ri−1,

Ri ← Li−1 ⊕ f (Ri−1, Ki).

Inversion is easy, since

Ri−1 = Li ,

Li−1 = Li−1 ⊕ f (Ri−1, Ki)⊕ f (Ri−1, Ki)

= Ri ⊕ f (Li , Ki).

That decryption is the algorithm run in reverse, with subkeys used in the opposite
order, is mathematically elegant and practical. In order to make decryption a genuine
inverse of encryption, the final round of a Feistel cipher switches the two halves.

DES is a 16-round Feistel cipher (see Figure 1). DES begins with P , a permutation
that efficiently distributes data, and ends with P−1. In between are the sixteen Feistel
rounds. The permutations P and P−1 are not cryptographically important, but they are
part of the DES standard. Implementations without them are not DES.

The DES round function is where the interesting cryptographic work occurs, so I
will examine it in some detail. It consists of:

Li ← Ri−1,

Ri ← Li−1 ⊕ P
(

S
(
E(Ri−1)⊕ Ki

))
.

The function E expands the 32-bit right half to 48 bits by repeating certain bits, S
is the S-box function (to be described shortly), and P permutes the output from the
S-boxes to achieve diffusion. In each round 48 bits of the key are selected according to
a key schedule, which dictates the way key bits are supplied to the algorithm, ensuring
that a different subset of key bits is used in each DES round.

Since P, E, P , and P−1 are all linear functions, the nonlinearity—and cryptograph-
ically interesting aspect—of DES must come from the S-boxes. There are eight S-
boxes, each mapping six bits to four. Writing the input bits as b1, . . . , b6, one can
view b1 and b6 as “instruction bits” operating on “data bits” b2, b3, b4 and b5. Each
DES S-box is a 4× 16 table, with instruction bits determining the row and data bits
determining the column; the output is the table entry.

Figure 2 shows S-box 3. Note that instruction bits have four possible values
(00, 01, 10, 11), data bits sixteen (0000, 0001, . . . , 1111). Although table entries
are written 0, . . . , 15, that is simply shorthand for 0000, . . . , 1111. Also note that each
row of the table has all possible entries (which therefore appear exactly once each).
This is no accident.

Other than the fact that each row of the table includes all values between 0 to 15 in-
clusive, the entries in S-box 3 appear more or less random; the crucial word is “appear”
(more on that later).

Attacks on DES. There were many objections to DES when it was proposed as a
Federal Information Standard. Almost all were about key length, but some researchers

92 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

f

K1

f

f

m m m 1 2 64

input

permutation
initial

K

K16

2

L 0 R 0

L 1 R 1

L 15 R15

irregular swap

1 2 64

output
c c c

-1
permutation
inverse

16 16LR

P

P

Figure 1. Data Encryption Standard.




10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12




Figure 2. S-box 3.

expressed concern about the DES S-boxes. Did they have any “trapdoors,” secret infor-
mation that would enable those who knew them to decrypt more easily, even without a
key? Little information about the S-boxes was forthcoming until the early 1990s, when
two Israeli researchers, Eli Biham and Adi Shamir, discovered differential cryptanaly-
sis, an attack that exploits the nonlinearity of DES.

Using a chosen-plaintext attack, Biham and Shamir sought to find information about
the key bits being used in a particular DES-encryption session. Let P1 and P2 be two
64-bit plaintexts. DES’s nonlinearity means that

DES(P1 ⊕ P2) �= DES(P1)⊕DES(P2).

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 93

Because DES’s only nonlinearity lies in the S-boxes, the difference between the left-
and right-hand sides of the equation must come from the S-box actions. For each S-
box create a “difference distribution table,” a table of the distribution of all input XORs
(there are sixty-four of these) and output XORs (there are sixteen of these) pairs. The
entries in the table are the number of pairs with particular input and output differences.
Differential cryptanalysis exploits the variance in the output differences.

Take S-box S3. Figure 3 shows the first few rows of the difference distribution
table [3] for S3; the reader can fill in the rest of the table using the description of
S-box S3 given in Figure 2. Though the entries of the table are in decimal, notation
along the rows and columns (denoting the S-box entries) is in hexadecimal. (Hexadec-
imal is standard notation for numbers expressed in base 16. The hexadecimal digits
are: 0, 1, . . . , 9, A, B, . . . , F .)

Output XORInput
XOR 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 4 2 12 0 14 0 4 8 2 6 10
2 0 0 0 2 0 2 0 8 0 4 12 10 4 6 8 8
3 8 6 10 4 8 6 0 6 4 4 0 0 0 4 2 2
4 0 0 0 4 0 2 4 2 0 12 8 4 6 8 10 4
5 6 2 4 8 6 10 6 2 2 8 2 0 2 0 4 2
6 0 10 6 6 10 0 4 12 2 4 0 0 6 4 0 0
7 2 0 0 4 4 4 4 2 10 4 4 8 4 4 4 6
8 0 0 0 10 0 4 4 6 0 6 6 6 6 0 8 8
· · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · ·
3F 2 6 4 0 0 10 8 2 2 8 6 4 6 2 0 4

Figure 3. Difference distribution for S-box 3.

To be sure, there are some patterns. By symmetry, all entries in the table are even.
The sum of all elements in a row is 64. What is more interesting is the lack of patterns:
the average value of an entry is 4, but the entries exhibit wide variance.

Consider the row where the input difference of P1 and P2 to S3 is 8. The output
difference has no chance of being 0, 1, 2, 4, 8, or D, 4/64 chance of being 5 or 6, 6/64
chance for each of 7, 9, A, B, or C , 8/64 chance for each of E or F , and 10/64 chance
of being 3.

Now consider the input difference 1 in S3 with output difference D. There are
two pairs of inputs that satisfy this particular pair of input/output XORs. These pairs
must be duals: (P1, P2) and (P2, P1). And indeed (1C, 1D)(= (011100, 011101)) and
(1D, 1C) are the only pairs that have input difference 1 and output difference D in
S-box 3.

Now I do not actually know the input to the S-box; I only know the input to the
algorithm. For a moment, I will confine my analysis to a single round of DES. Of
course, I know the input difference to the round rather than to the S-boxes, but the
linearity of the remaining round operations—E ,⊕, and P—means that I can calculate
the one from the other.

I will first focus on a single S-box, say S3. Suppose the input difference �P =
1, and we try P1 = A, then P2 = B. The linearity means that �P = 1 = E(A)⊕
E(B) = (E(A)⊕ Ki)⊕ (E(B)⊕ Ki). Thus A and B are possible input candidates

94 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

for an input/output pair for the round. Let �C be the XOR of the output of this round.
I can work backwards from the difference distribution table to determine which key
bits would give the output �C .

This does not determine the key bits completely. But I can start with another in-
put/output pair, and this one, too, will also identify potential key bits. As Biham and
Shamir observed, the right key must occur as a possibility for both input/output pairs.

The values �P and �C impose restrictions on the key bits of the DES round; we
say that the pair (�P,�C) suggests subkey values compatible with these restrictions.
Some pairs suggest many key bits, some none, some a few. This is the crux of differ-
ential cryptanalysis.

For each suggested key value, the corresponding entry in a frequency table is in-
creased. Differential cryptanalysis succeeds if the correct subkey is suggested more
often than other values. Now the wrong subkey may also be suggested as well as the
right subkey. Experimental work with DES shows that to have a 50 percent chance
of getting the right subkey, computing with between 20 and 40 “right” pairs (pairs
(�P,�C) with conditional probability P(�C | �P) �= 0) is sufficient.

It is time for the analysis to go from one round to many and from one S-box to eight.
This takes us to the second crucial idea in differential cryptanalysis: characteristics.
Characteristics are differences in plaintext pairs that have a high probability of causing
certain differences in ciphertext pairs. A trivial characteristic is input �P = 0 = �C
(that is, begin and end with the same string). This occurs, of course, with probability 1.
A more interesting one-round characteristic has 0 as the input difference to seven S-
boxes, while the input to the remaining S-box is nonzero and is chosen by picking
one whose output difference distribution has the roughest distribution, preferably with
one large value. (Since several of the input bits to this remaining box also affect two
neighboring S-boxes, these must be zero.) One high-probability way to do this is:

S1 : C → E with probability 14/64,

S2, . . . , S8 : 00→ 0 with probability 1.

One can now concatenate the two one-round characteristics described in the previous
paragraph to get a two-round characteristic that has probability 14/64. Indeed, one can
put these together to have a three-round characteristic with probability (14/64)2 ≈ .05
[3, p. 26].

An iterative characteristic is one that can be concatenated with itself. Biham and
Shamir developed what they believe is an optimal set. Their differential cryptanalysis
attack on DES is [3, p. 21]:

1. Pick an appropriate input difference �P .
2. Create an appropriate number of plaintext pairs with this �P , encrypt with DES,

and store the ciphertext pairs.

3. For each pair, from the plaintext �P and the ciphertext pair determine the ex-
pected output difference of as many S boxes in the last round as possible.

4. For each possible key value, count the number of pairs that result with the ex-
pected output change using the value in the last DES round.

5. The right key value is the one suggested by all the key pairs.

Biham and Shamir found a 13-round characteristic that requires encryption of 247

chosen plaintexts. The algorithm finds 48 bits of the key used in round 16 and then
determines the other 8 bits by exhaustive search (a relatively fast process in this case).
The time to perform this attack is essentially bounded by the 247 encryptions.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 95

Biham and Shamir tried variations on DES—no permutation P , reordering the S-
boxes—and each variation produced a weaker algorithm than the original. IBM nod-
ded in agreement. After the Biham-Shamir attack, a member of the IBM team, Don
Coppersmith, described how the IBM group had designed DES to prevent differential
cryptanalysis [6]. While the S-boxes were generated randomly, potential candidates
were checked against a set of criteria designed to thwart differential cryptanalysis [7],
[18], [45].

Call an S-box active if the input difference is nonzero, and inactive otherwise. Dif-
ferential cryptanalysis works particularly well if exactly one S-box is active. So the
IBM rules required [6]:

• If two inputs to an S-box differ in exactly one bit, their outputs should differ in at
least two bits.

• If two inputs to an S-box differ exactly in the middle two bits, their outputs must
differ by at least two bits.

• If two inputs to an S-box differ in their first two bits and agree on their last two, the
two outputs must differ.

• For any nonzero 6-bit difference between inputs, no more than eight of the thirty-two
pairs of inputs exhibiting that difference may result in the same output difference.

There were several more rules. No cryptographic algorithm should be a linear func-
tion. But neither the IBM researchers—nor anyone else at the time—had considered
the natural generalization that no linear combination of the output bits should be
a linear function of the input bits. In 1993 Mitsuru Matsui used this for a linear-
cryptanalysis attack on DES [27].5

Linear cryptanalysis seeks linear relations between the input and output bits of
DES. For example, the parity of the first, second, third, fourth, and sixth input bits
of the third S-box agrees with the parity of all of the output bits 38 of 64 times. If
the S-box were truly random, you would expect that agreement half the time. That
little difference—6 more than the expected 32—tips the balance, and probabilistically
reveals information about the key bits.

Linear cryptanalysis works by chaining together relations such as the one just men-
tioned. More formally, let B[i] denote the i th bit of an array B of any length, and
define

B[i1, i2, . . . , ik] = B[i1] ⊕ B[i2] ⊕ . . . B[ik].
Linear cryptanalysis is based on the tendency of some equations

Li [i1, i2, . . . , ia] ⊕ Ri [j1, j2, . . . , jb] = Ki [k1, k2, . . . , kc]
to hold with probability bounded away from 1/2. Another way to say this is is that the
probability that equations hold—or don’t hold—is strictly less than 1/2.

I must take a brief digression. In the context of Boolean functions, the equation:

a ⊕ b = 0

is a linear equation and is equivalent to a = b. The equation

a ⊕ b = 1
5In 1985 Adi Shamir observed some interesting correlations between bits in S-boxes [43]; these can be

expressed by Matsui’s linear approximations.

96 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

is an affine equation and is equivalent to a �= b. Yet these two formulations are, in
some sense, two ways of representing the same relationship—“NOT a ⊕ b = 0” has
the same meaning as “a ⊕ b = 1.” Because of the essential equivalence between linear
and affine functions, I will freely go back and forth between the two types of functions,
using whichever formulation is most convenient.

Matsui observed that a particular linear relationship

L1[i1, i2, . . . , ia] ⊕ R15[j1, j2, . . . , jb] = K [k1, k2, . . . , kc]
holds with probability p = 1/2− 1.19× 2−21 for random plaintexts and their associ-
ated ciphertexts. For m plaintext-ciphertext pairs, one counts the number of plaintext-
ciphertext pairs for which this equation holds. If the guess on the subkey bits is correct,
the expected value of this sum will be pm or (1− p)m. If one performs this compu-
tation for more than |p − 1/2|−2 pairs, there is a high likelihood of correct subkey
guesses. The attack uses 243 plaintext-ciphertext pairs. (For more details on differen-
tial or linear cryptanalysis, see [3] or [27], respectively.)

In theory, differential and linear cryptanalysis represented serious attacks on DES,
both breaking the algorithm faster than a brute-force search of the key space. In prac-
tice, these attacks were not serious threats to the algorithm. The 247 and 243 DES
encryptions needed by differential and linear cryptanalysis, respectively, each take suf-
ficiently much time that neither attack was faster than a simple brute-force search of
the 56-bit key space.

Chip speeds were increasing, chip prices were decreasing; DES’s security could not
last. In the summer of 1998 DES met its match. A specially-built two-hundred-and-
fifty thousand dollar computer, the DES-Cracker, decrypted a DES-encoded message
in fifty-six hours using a simple brute force search of the key space. (By contrast, a
1994 linear cryptanalysis attack using twelve networked computers took fifty days to
break a DES-encoded message.) Six months later, 100,000 networked PCs and the
DES-cracker dropped the time to twenty-two hours. DES was no longer an effective
long-term security solution.

But I am running ahead of our story. Even if linear and differential cryptanalysis
were not practical attacks on DES, they were mathematically important. Any future
cryptosystem would have to take them into account.

Designing block ciphers. The near-simultaneous development of DES and public-
key cryptography in the mid 1970s sparked great interest in cryptography, which pre-
viously had been almost exclusively the domain of intelligence agencies. In 1981 the
first public cryptographic research meeting in Santa Barbara attracted fewer than fifty
researchers. By the late 1990s, there were a number of annual meetings (including
CRYPTO, Eurocrypt, Asiacrypt, and Fast Software Encryption) and a large interna-
tional community of researchers. The research had many strands.

Some found their way into Rijndael. Willi Meier and Othmar Staffelbach suggested
that certain nonlinearity measures used by mathematicians would be appropriate for
cryptographic system design [28]. From these ideas, Josef Pieprzyk proposed algebraic
methods for constructing nonlinear functions [37], [38]. Kaisa Nyberg explored S-
boxes and applied some of Pieprzyk’s ideas in S-box design [34]. Joan Daemen studied
round functions from the point of view of differential and linear cryptanalysis and
proposed a new paradigm, the wide-trail approach [10]. With others, he used wide
trail and Nyberg’s S-boxes in the cryptosystem SHARK [40]. Thomas Jakobsen and
Lars Knudsen found an “interpolation attack” against simple algebraic ciphers, such
as those used in SHARK [19]. Two SHARK designers, Daemen and Vincent Rijmen,

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 97

countered with the cryptosystem Square [11]. Knudsen broke Square using a different
attack method [11]. Rijndael rose from Square’s ashes. I will trace how these threads
were woven into Rijndael.

Abstract approaches to S-box design. Meier and Staffelbach observed that certain
nonlinearity properties (in particular, distance of nonlinear functions to affine func-
tions) were preserved under affine transformations [28]. I need some formalism to
explain what that means.

Boolean functions are maps from {0, 1}n to {0, 1} or, more generally, to {0, 1}m .
The parity function, a mapping from {0, 1}n to {0, 1}, is an example of the first type of
Boolean function; it computes the sum modulo 2 of the inputs: parity(x1, x2, . . . , xn) =
x1 ⊕ x2 ⊕ . . .⊕ xn . Complementation of an n-bit Boolean vector of 0s and 1s, in which
all 0s are changed to 1s, all 1s to 0s, is an example of a Boolean function from {0, 1}n
to {0, 1}n .

Definition. The Hamming distance d(u, v) between two n-bit Boolean vectors u and
v is the number of bits at which the two vectors differ. Let f and g be two Boolean
functions from {0, 1}n to {0, 1}m . Then the Hamming distance d(f, g) is the number
of input values at which f and g differ.

For example, the distance between the n-bit vector of all 0s and the n-bit vector
of all 1s is n. If f : Z2 × Z2 × Z2 → Z2 × Z2 × Z2 is given by f ((x1, x2, x3)) =
(x1 + 1, x2 + 1, x3 + 1), with all sums taken modulo 2, then the Hamming distance
between f (x) and the identity map on Z2 × Z2 × Z2 is 8, since these two functions
differ at all inputs.

Let Fn denote the set of all Boolean functions of n variables taking values in Z2.
Let Ln signify the set of all linear functions from binary strings of length n into Z2,
and consider a Boolean function f in Fn . Pieprzyk suggested the following means for
quantifying the nonlinearity of f .

Definition. The nonlinearity N f is the Hamming distance between f and the set of
all linear functions Ln in Fn , that is [38]:

N f = d(f,Ln) = minα∈Ln d(f, α).

The simplest view of cryptographic functions is that they are maps from {0, 1}n
to {0, 1}m . A richer viewpoint is to view them as functions from GF(2n), the finite
field (also called the Galois field) of 2n elements, to GF(2m). Then in constructing
cryptographic functions, one one can build upon the underlying algebraic structure
already present in GF(2n).

The field GF(2n) is an extension of degree n over Z2, the finite field of two elements.
Thus it can be written as Z2[y]/(r(y)), where r(y) is an irreducible polynomial of
degree n over Z2. It is not hard to show—but I will not—that for every positive value
of n there is a field of 2n elements and that this field is unique up to isomorphism. (This
is also true for every prime power pn .) Note that a finite field GF(2n) is a vector space
of dimension n over Z2.

Typically one denotes elements in GF(2n) as polynomials, that is, as elements in
Z2[y]/(r(y)), where r(y) is a generator for the ideal in this quotient ring representa-
tion. For example, y3 + y + 1 is irreducible over Z2; elements in Z2[y]/(y3 + y + 1)

are polynomials in y of degree 2 or less with coefficients in Z2.

98 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

As there is only one irreducible polynomial of degree 2 over Z2, there is a
single way to denote a field of 22 elements in the form Z2[y]/(r(y)), namely, as
Z2[y]/(y2 + y + 1). There are two irreducible polynomials of degree 3 over Z2 :
x3 + x + 1 and x3 + x2 + 1. Thus there are two ways to denote the field of 23 ele-
ments as polynomial extensions of Z2: Z2[z]/(z3 + z + 1) and Z2[y]/(y3 + y2 + 1).
Isomorphisms between the two fields are not difficult to find. Since the polynomial
z3 + z + 1 factors into (z + y2 + y)(z + y2 + 1)(z + y + 1) in Z2[z, y]/(y3 + y + 1),
the isomorphisms betweeen Z2[z]/(z3 + z + 1) and Z2[y]/(y3 + y2 + 1) are

f1 : a2z2 + a1z + a0 �→ a2(y2 + y)2 + a1(y2 + y)+ a0

= a2(y + 1)+ a1(y2 + y)+ a0

= a1 y2 + (a2 + a1)y + (a2 + a0),

f2 : a2z2 + a1z + a0 �→ a2(y2 + 1)2 + a1(y2 + 1)+ a0

= (a2 + a1)y2 + a2 y + (a1 + a0),

f3 : a2z2 + a1z + a0 �→ a2(y + 1)2 + a1(y + 1)+ a0

= a2 y2 + a1 y + (a2 + a1 + a0),

where a2, a1, and a0 are in Z2.
In constructing cryptographic functions, Pieprzyk adopted the perspective of

GF(2n) and viewed maps f = (f1, f2, . . . , fn) as permutations of GF(2n), where
the maps work separately on the n components of GF(2n) (the components are the
coefficients of an element written as a polynomial in GF(2n) ≈ Z2[y]/(r(y)), in
which r(y) is some specified irreducible polynomial of degree n over Z2). Pieprzyk
suggested the following:

Definition. If f = (f1, f2, . . . , fn) is a permutation of GF(2n), then the nonlinearity
of f is defined by

N f = mini(N fi ,N f −1
i

),

where, in an abuse of notation, f −1 is defined as (f −1
1 , f −1

2 , . . . , f −1
n).

The viewpoint of GF(2n) led Piepryzk to propose two functions—x3 and, more gen-
erally, x2k+1 for k > 2—as possible cryptographic functions. This presents a difficulty:
the definition of nonlinearity means the function is determined component-wise, but
how would one easily determine the nonlinearity measure of exponentiation, which
does not operate component-wise? Piepryzk turned to the trace function. Let α be an
element in K , a finite extension of a finite field F .

Definition. The trace TrK/F(α) of an element α in K relative to F is the sum of the
conjugates of α with respect to K .

Thus TrK/F(α) is the sum of the members of the orbit of α under the Galois group
of K over F . Consider the field extension K = Z2[y]/(y3 + y2 + 1) over F = Z2.
Now x3 + x2 + 1 factors into (x − y2)(x − y)(x − (y2 + y + 1)) in K [x]. Thus the
conjugates of y in K are y2 + y + 1 and y2. That means that TrK/F(y2) = (y2) +
(y)+ (y2 + y + 1) = 1. That is exactly what we should expect, since y2 is a root of
y3 + y2 + 1 and the constant term of a minimal polynomial is the sum of the roots of
the polynomial.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 99

Using the trace, Pieprzyk showed that all components of the functions x3 and x2k+1

in GF(2n), with n odd, achieve maximum nonlinearity; this is independent of the basis
chosen [38]. But Piepryzk’s definition of nonlinearity was not quite what was needed.

Matsui’s linear cryptanalysis attack on DES had showed that it was important that
no linear combination of the output bits of a cryptographic function be a linear com-
bination of the input bits. Kaisa Nyberg formalized this, providing a more general
condition for nonlinearity than Pieprzyk’s.

Definition. Let f : Fn → F be a function. Then the Hamming distance N (f) of f
from the set of affine functions is [33]:

N (f) = minu∈Fn ,v∈F

∣∣{x ∈ Fn | f (x) �= uT x + v
}∣∣.

This can extended to f : Fn → Fm by

N (f) = minu∈Fn ,w∈Fm ,v∈F,u �=0,w �=0

∣∣{x ∈ Fn | wt f (x) �= uT x + v
}∣∣.

Nyberg’s definition of nonlinearity is preserved under the taking of inverses [33]:

Proposition 1. If f : Fn → Fn is a permutation, then N (f −1) = N (f).

DES used one way to construct S-boxes: randomly, subject to some preconditions.
Nyberg sought a more systematic approach to S-box construction. S-boxes should
be highly nonlinear. There were other important criteria. Every Boolean function
f (x1, . . . , xn) can be written uniquely as a sum modulo 2 of distinct r th order prod-
ucts, where 0 ≤ r ≤ n. The maximum order that occurs is called the nonlinear order
of f . For example, f (x1, x2, x3) = x1 + x3 + x2x3 has nonlinear order 2. If the S-box
had low nonlinear order, then the cryptographic function would not be sufficiently
algebraically complex (recall that the only nonlinear piece of the round function is the
S-box). Nyberg also suggested that the S-boxes should have efficient construction and
computability [33].

The way to thwart differential cryptanalysis is to design the system so that the dif-
ferences from the round functions do not “pile up.” Nyberg proposed:

Definition. Let G1 and G2 be finite Abelian groups. A mapping f : G1 → G2 is
differentially δ-uniform if for all nonzero α in G1 and for all β in G2∣∣{z ∈ G1 | f (z + α)− f (z) = β

}∣∣ ≤ δ.

From the point of view of differential cryptanalysis, it would be best if a mapping f
from n-bit strings to n-bit strings were differentially c-uniform, for a small constant c.
But that is rather much to expect. Nyberg showed that Pieprzyk’s polynomial functions
had good differential properties [33].6

Theorem 2. Let f (x) = x2k+1 be a polynomial in GF(2n), and let s = gcd(k, n). Then
f (x) is differentially 2s -uniform.

Pieprzyk’s functions also do well in regard to distance from linear functions. One
should be able to compose a function f with linear maps without affecting the func-
tion’s distance from linear functions. It is well known that all linear transformations

6Thomas Beth and Cunsheng Ding proved related results [2].

100 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

from K into F can be written as maps β �→ TrK/F(βα) for some fixed α in F (see,
for example, [25, p. 52]). (When the fields involved are clear, TrK/F is often abbrevi-
ated Tr.) Nyberg showed that the following is true in [33]:

Proposition 3. Let f (x) = x2k+1 be a permutation of GF(2n), where gcd(k, n) = s.
Then for nonzero ω in GF(2n) the Hamming distance of Tr(ω f (x)) from the set of
linear Boolean functions is 2n−1 − 2((n+s)/2)−1 whenever ω �= 0.

Unfortunately Pieprzyk’s x2k+1 polynomials fail another of Nyberg’s criteria. The
following is well known [5, p. 97]:

Theorem 4. Let η be a nonzero element of GF(2n), and let f (x) = xe be a permuta-
tion of GF(2n). Then

deg
(

Tr(ηxe)
) = w(e),

where w(e) is the Hamming weight of e (the number of nonzero bits in e).

The Hamming weight of 2k + 1 = 10 . . . 01 is 2. Thus Pieprzyk’s polynomials do
not make the cut. But perhaps they can be transformed? Recall that inverse functions
preserve properties of nonlinearity. Nyberg observed [33]:

Proposition 5. If f : G1 → G2 is a differentially δ-uniform bijection, then so is f −1.

If f (x) = x2k+1 with gcd(k, n) = 1, then f −1(x) = xe with e = (2k(n+1)−1)/(22k − 1).
This function has good Hamming weight, (n + 1)/2. Nyberg investigated an even bet-
ter function: f (x) = x−1. Now f (0) is undefined, but in cryptography there are free-
doms that are lacking in mathematics. If at certain values a function is undefined, a
cryptographer can strike out on her own and define the function value at such points in
whatever way is convenient. For example, in the case at hand one can define f (0) = 0.
That is what Nyberg did.

With the aid of Propositions 1 and 3, it is easy to see that the distance of f from
linear functions is at least 2n−1 − 2n/2. And Proposition 4 shows that the degree of f
is w(2n − 2) = n − 1.

As Nyberg demonstrated in [33], the map x �→ x−1 is also differentially 4-uniform.
Let F be a field and consider the equation

(x + α)−1 − x−1 = β,

where x is not equal to 0 or −α. This equation can be rewritten as

βx2 + αβx + α = 0

which, since F is a field, has at most two solutions. The equation can have two more so-
lutions if x = −α or x = 0. Thus Nyberg’s inverse function is differentially 4-uniform.
Inverses can be computed efficiently using the Euclidean algorithm.7 This inverse
function satisfies all of Nyberg’s requirements for a round function.

The wide-trail strategy. Meanwhile very different threads were forming the warp
of Rijndael. S-boxes do not provide diffusion; other steps of the round function must

7This is not, however, used in the Rijndael’s S-boxes, which rely on table look-up rather than computing
inverses.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 101

do that. Joan Daemen, a Ph.D. student at the Katholieke Universiteit in Leuven, Bel-
gium, had proposed a new model for understanding round functions. Daemen’s idea,
a natural one in the context of differential and linear cryptanalysis, was to analyze the
round function pieces—the S-box substitution and the linear maps—separately, and in
particular, to ensure that a cryptanalytic attack cannot “bypass” the nonlinear aspects
of the algorithm. Daemen named this approach the wide-trail strategy. I will sketch its
main ideas, concentrating on its role in introducing polynomials into Rijndael. A fuller
discussion of the wide-trail strategy appears in [14] and [15].

In the wide-trail strategy, the round transformation ρ is considered as two separate
parts γ and λ [11]:

• γ is a nonlinear transformation that manipulates bits locally (where locally means
that an output bit depends on a small set of input bits, and nearby output bits depend
upon neighboring input bits);

• λ is a linear mixing transformation with high diffusion; λ can be identified with an
nm × nm matrix M: λ(a) = b if and only if M · a = b.

Each round consists of three parts: first γ , then λ, and finally a key addition σ [k(r)],
where k(r) is the round subkey for the r th round (see Figure 4).

γ

λ

σ (r)[k]

Figure 4. The wide-trail strategy: bricklaying.

These parts are analyzed separately. Let E = ρr ◦ ρr−1 ◦ · · · ◦ ρ1 be an r -round
Boolean mapping on n-bit vectors to n-bit vectors. A differential trail is a series of
r + 1 difference patterns: a′, d1, . . . , dr−1, b′. The selection pattern of a Boolean vector
is the set of places at which the vector has a “1.” A linear trail U over E is a sequence of
r + 1 selection patterns, U = (u0, u1, . . . , ur). In the wide-trail approach, all S-boxes
are identical.

The wide-trail strategy is to operate as follows:

• Choose an S-box for which both the maximum probability of any differential trail
and the maximum correlation of linear combinations of input and output bits are as
small as possible.

• Choose the linear transformations so that there are no trails with few active S-boxes.

The latter is the “wideness” of the wide-trail strategy. The strategy is designed to
spread diffusion broadly, to develop diffusion according to mathematical principles,
and to perform diffusion in a mathematically analyzable way. This contrasts with DES
diffusion, which is statistically analyzable but lacks any apparent structure.

In DES, diffusion occurs at the bit level. Daemen and Rijmen proposed a different
model. They ignored the diffusion that occurs within the S-boxes and concentrated on
the diffusion provided by λ, the “linear-mixing” part of the transformation.

Call equal-sized subsets of bits bundles, and let a bricklayer function be a map-
ping that is decomposable into several Boolean functions operating independently on

102 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

bundles. Each S-box will be an m-bit-to-m-bit box, and there will be n S-boxes (thus
the cipher works on an nm-bit block). Analyzing diffusion in terms of subsets of bits
may not be intuitive, but by using the bundle formalism, Daemen and Rijmen con-
structed functions with provably good diffusion. From now on, mappings will be dis-
cussed in terms of bundles.

As in the terminology used for S-boxes, a bundle is active if it has nonzero input
difference. In both differential and linear cryptanalysis, one is interested in the bits
that are “on.” Define the parity of a Boolean vector b to be eT b, where e is a “selec-
tion vector” consisting of zeros and ones (e selects which bits of b to XOR together).
Following Daemen and Rijmen, the bundle weight of a configuration (a configura-
tion registers the settings of all the bits at a particular point) is the number of active
bundles. Applied to a difference pattern a′, wb(a′) is the number of active bundles in
a′; applied to a selection pattern v, wb(v) is the number of active bundles in v. Daemen
and Rijmen introduced the following definitions for quantifying the diffusion in λ, the
linear-mixing part of the round:

Definition. The differential branch number of a transformation θ : {0, 1}n → {0, 1}n
is

Bd(θ) = mina �=b

{
wb(a ⊕ b)+wb

(
θ(a)⊕ θ(b)

)}
,

where wb is the number of active bundles.

Definition. The linear branch number of a linear transformation λ : {0, 1}n → {0, 1}n
is

Bl(λ) = minα �=0

{
wb(α)+wb(MT α)

}
,

where α is the bundle partition and M is the matrix such that λ(x) = M · x .

Daemen and Rijmen observed the following properties of branch numbers:

1. the branch number of a permutation and its inverse are equal;
2. branch numbers are unaffected by key addition; and
3. a bricklayer permutation operating on individual bundles does not change active

bundles into inactive ones, or vice versa.

Thus if a cipher E consists of two transformations θ1 and θ2, with θ2 being a bricklayer
function operating on bundles, the branch numbers of θ2 ◦ θ1 and θ1 are equal.

For the cryptanalyst analysis is easiest when just a single S-box is active. Thus
the designer of a cryptographic algorithm seeks to avoid worst-case diffusion, which
occurs with a single active bundle. Clearly, the best that can be done from a designer’s
point of view is for the upper bound for branch numbers B to be n + 1, where n is
the number of bundles (each bundle will have m bits). An invertible linear mapping
that achieves this is called optimal. Maximal distance separable codes provide a way
of constructing such optimal linear maps.

Definition. A k-dimensional subspace of the vector space GF(2m)n that satisfies the
condition that any pair of distinct vectors of the subspace have Hamming distance at
least d, and d is the largest number with such a property, is a linear (n, k, d)-code over
GF(2m).

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 103

Codes with d = n − k + 1 are maximal distance separable codes; Reed-Solomon
codes are a well-known example. These can have length up to q + 1, where q is the
size of the finite field over which the codes are defined. A linear code C of length
n and dimension k can be represented by a k × n generator matrix G. Then C is
formed by the subspace of dimension k spanned by the rows of G. There are various
representations for C ; namely, if T is a k × k matrix of full rank, then T G is also a
generator matrix for C . The matrix Ge = T G of the type [I | B], where I is the k × k
identity matrix and B is a k × (n − k) matrix, is called the echelon form of G. Daemen
and Rijmen proved [40, p. 103]:

Theorem 6. Let C be a (2n, n, n + 1)-code over GF(2m), and let Ge = [I |B] be the
generator matrix for C in echelon form. Then C defines an optimal invertible linear
mapping γ : GF(2m)n → GF(2m)n via

γ : X �→ Y = B X.

This gives a straightforward way to create a bricklayer map. “Bricks” can be n
m-bit-to-m-bit S-boxes, while the diffusion layer is a linear map corresponding to a
(2n, n, n + 1)-code over GF(2m). Rijmen, Daemen, and colleagues from Katholieke
Universiteit built the first instantiation of the wide-trail method: SHARK.

Putting the pieces together: SHARK and Square. SHARK was a 6-round cipher
operating on 64-bit blocks that combined the wide-trail linear diffusion approach with
Nyberg’s S-boxes [40]. SHARK(n, m, r) consisted of r rounds, with n m-bit S-boxes.
Each round consisted of three steps:

• one added in the key;
• one transformed the bundles;
• one was a linear map on the bundles (designed as indicated earlier).

The algorithm ended with one extra key addition and an inverse diffusion operation.
(The inverse diffusion was employed to simplify inversion.)

But not all was well. The simple function f (x) = x−1 presented a problem. Jakob-
sen and Knudsen found an attack on the simple function [19]; the attack was not ac-
tually applicable to SHARK itself, which was already using a more complex S-box
function than x−1. I follow [19], beginning my explanation of the Jakobsen-Knudsen
attack with SHARK(1, m, r), SHARK with a single S-box.

With a single S-box, the linear mapping is multiplication by a constant. In each
round, the key is added, and the result is inverted and then multiplied by an element in
GF(2m). Regardless of the number r of rounds the ciphertext C can be expressed as a
simple fraction of the plaintext P ,

C = P ⊕ a

bP ⊕ c
,

with key-dependent constants a, b, and c. Using only three plaintext/ciphertext pairs,
one can determine a, b, and c. The key is not revealed; one is able to encrypt and
decrypt without it.

With two S-boxes (SHARK(2, m, r)), the situation gets more complicated. One
views the input plaintext P DES-fashion as P = PL PR (PL is the left half of the
plaintext, PR is the right half). Let Li be the left half after i rounds, Ri the right half.

104 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

Then:

Li = pi(PL, PR)
/

qi (PL, PR),

Ri = ri(PL, PR)
/

si(PL, PR),

with pi , qi , ri , and si in GF(232)[PL, PR].
Now we know that

Li = a1

Li−1 ⊕ ki L
⊕ a2

Ri−1 ⊕ ki R
,

where ki L and ki R are the keys for the left and right halves, respectively, of round i ,
and a1 and a2 are constants. This simplifies to

Li = pi (PL, PR)

(Li−1 ⊕ ki L)(Ri−1 ⊕ ki R)
.

If ei signifies the degree of qi , then it is clear that ei ≤ 2ei−1. Since e1 = 1, this shows
that ei ≤ 2i−1. The degrees of pi , ri , and si are similarly bounded by 2i−1.

After r rounds, the number of coefficients in pr and qr is (2r−1 + 1)+ (2r−1 + 1) =
2(2r−1 + 1). Note that knowing these pairs will also determine ri and si . Thus comput-
ing 2(2r−1 + 1) plaintext/ciphertext pairs would break SHARK(2, m, r) with a simpli-
fied S-box. Since the value proposed for r was 6, this attack is quite feasible.

There is nothing special about the choice of 2 in the preceeding argument. If
one attempts the same attack on SHARK(n, m, r), a similar argument shows that
2(nr−2 + 1)n plaintext/ciphertext pairs are needed to determine the coefficients of the
interpolation polynomials. (Actually, since SHARK uses an “inverse” diffusion layer,
there are only r − 1 diffusions and thus only 2(nr−2 + 1) plaintext/ciphertext pairs are
required.) This number is independent of the size of the S-box.

The weakness in the cryptosystem is that the S-box function can be expressed as a
rational function of low degree, and thus coefficients can be determined from a small
number of plaintext/ciphertext pairs. A more complex S-box function is necessary. To
paraphrase Einstein, S-boxes “should be as simple as possible, but no simpler.”

Daemen and Rijmen wanted to preserve the properties for which Nyberg had cho-
sen x−1 (high nonlinearity, high nonlinear order, resistance against differential crypt-
analysis, efficient construction and computability). An obvious choice was to take x−1

and compose it with a simple function that would add sufficient algebraic complexity.
Daemen and Rijmen chose an affine function.

In the composition, each input byte b is first viewed as an element of

GF(28) � Z2[x]/(x8 + x4 + x3 + x + 1);
the mapping is the natural embedding b = b7b6 . . . b0 �→ b7x7 + b6x6 + · · · + b0 =
b(x). The first mapping sends the polynomial b(x) to (b(x))−1 in the field Z2[x]/
(x8 + x4 + x3 + 1) (with b(x) = 0 being sent to 0). The resulting byte is then mapped
to (x7 + x6 + x3 + x2)+ (x7 + x6 + x5 + x4 + 1)b(x) and reduced modulo (x8 + 1).

Daemen and Rijmen picked x8 + 1 as the modulus polynomial because it was
simple—as simple as one could get. The affine multiplier x7 + x6 + x3 + x2 is the
simplest among those polynomials coprime to x8 + 1 [12].

The resulting S-box has no fixed points (S-box(a) = a) and no “opposite” fixed
points (S-box(a) = a, the complement of a). Although there are no known attacks

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 105

against S-boxes with fixed points or opposite fixed points, the more simplicities and
potential points of attack one can eliminate in a cryptographic algorithm, the better.

SHARK was defined with a simple S-box, but an efficient implementation on a PC
would require large lookup tables. In their next cipher, Daemen and Rijmen traded S-
box complexity for a more complex array layout. Now diffusion had to proceed “up”
and “across,” but this extra step was compensated for by simpler S-boxes. This system,
Square, a 128-bit block cipher with 128-bit key, placed the data into a 4× 4 array of
bytes.

There was a third change: a simpler implementation of row diffusion. In SHARK
diffusion was accomplished by way of a Reed-Solomon maximal distance separable
code defined by the echelon form B of the generation matrix of a (2n, n, n + 1)-code.
From an implementation viewpoint, the SHARK diffusion matrix was less than opti-
mal: matrix entries were in GF(28) and each row of the matrix had different entries.
Multiplication time would be faster if the coefficients were from a smaller field, while
storage would be simplified if the matrix rows were the same. To accomplish either of
these is impossible if the matrix is to be of full rank. But through the use of circulant
matrices Daemen and Rijmen found a way to come close to meeting both of these
objectives. A circulant matrix is one where each row is a circular shift one over of the
previous row: bi j = b0, j−i(mod n). Combinatorics furnishes the connection [26]:

Theorem 7. An (n, k, d)-code C with generator matrix Ge = [I | B] is maximal dis-
tance separable if and only if each square submatrix of B is nonsingular.

A probabilistic analysis shows that there are many 4 × 4 maximal distance sepa-
rable circulant matrices; Daemen and Rijmen choose a matrix C with “small” coeffi-
cients in GF(28) (entries are in hexadecimal), namely,

C =



2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


 .

Bytes of the row are viewed as coefficients of a polynomial in GF(28)[x]/(x4 + 1).
The column mapping is multiplication in GF(28) by the polynomial 3x3 + x2 + x + 2
modulo x4 + 1. For example, the first row of C corresponds to the polynomial 2x3 +
3x2 + x + 1.

Square has four simple steps in each round:

• one transforms the rows;
• one transforms the bytes;
• one transposes the array;
• one adds in the key.

Square begins with an inverse row transformation (or alternatively, the first round of
Square omits the row transformation). The byte transformation is Nyberg’s x−1 func-
tion followed by the aforementioned affine map.

Knudsen discovered an attack on the 6-round version of Square. I follow [11] but
present only a simplified version of Knudsen’s attack on five rounds of Square. The
attack focusses on the byte-oriented nature of the algorithm.

Let � be a set of 256 states that are all different in specified bytes and are the same
in the remaining bytes; call these active and inactive bytes, respectively. Consider

106 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

how Square’s mappings affect active and inactive bytes. The S-box transformation
does not alter the configuration of which bytes are active and which are inactive. The
transposition mapping effects a change in the status of bytes, but the number of active
bytes remains the same. In contrast, the row mapping affects the number of active
bytes: what was a single active byte becomes an active row.

Let λ index the active bytes, that is, for x and y in �

{
xi j �= yi j for (i, j) ∈ λ,

xi j = yi j for (i, j) �∈ λ.

Now let us construct a set � in which only a single byte is active. Note that this byte
cycles through all possible 28 = 256 values. Since the first round of Square does not
include the row diffusion, at the end of the first round only one byte is active. During
the second round of Square, the row operation transforms this to an active row; the
transpostion operation transforms this into an active column. Now there are four bytes
that cycle through all 256 values while the remaining twelve bytes are constant. During
the third round, each of the bytes in the active column is transformed into an active row;
by the end of the third round, all bytes are active and cycle through all values.

We call � balanced if its entries range over all possible values. At the end of the
third round, the output bytes are balanced over the �-set. Let al

i j be the bytes at the
input of the fourth round, let bl

i j be the bytes at the output of the fourth round, and let
θ be the row operation. At the output of the fourth round, we find:

⊕l∈�bl
i j = ⊕(2 · al

i j ⊕ 3 · al
i+1, j ⊕ 1 · al

i+2, j ⊕ 1 · al
i+3, j)

= (2⊕l al
i j)⊕ (3 · ⊕la

l
i+1, j)⊕l (1 · ⊕al

i+2, j)⊕ (1 · ⊕la
l
i+3, j)

= 0+ 0+ 0+ 0

= 0.

Thus the bytes at the output of the fourth round are balanced. However, the next step,
the S-box operation of the fifth round, destroys that balance.

As in all other rounds, an output byte in the fourth round is a function of an inter-
mediate state and the key byte. We can guess a key value for the fourth key and from
this calculate the intermediate states in the fourth round. If the value of this byte is
not balanced over �, then the guessed key byte was incorrect. We can try doing this
for all possible key bytes. All but one should be wrong. Knudsen implemented this at-
tack and found that two �-sets were sufficient to guess the key with an overwhelming
probability of success. The attack takes 29 time using 29 plaintexts.

In the attack of five rounds of Square, we assume a value for four bytes of the
fifth round key. As before, wrong key assumptions are determined by verifying that
the bytes in the fifth round are not balanced. This attack needs 240 key values to be
checked.

Knudsen showed how to extend this to an attack on six rounds that took 272 steps.
Square needed a better security margin, a good ratio between the number of rounds
for which there is a known attack and the actual number of rounds of the algorithm.
Daemen and Rijmen recommended that Square be implemented with at least eight
rounds.

3. THE ADVANCED ENCRYPTION STANDARD. Activity was simultaneously
proceeding on another front. Although the U.S. Government had long resisted the idea,

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 107

by the mid-1990s it was clear that DES needed replacing. In 1997 the National Insti-
tute of Standards and Technology (NIST) announced a competition for an Advanced
Encryption Standard (AES). The process by which DES had become a Federal en-
cryption standard had been less than transparent, and there had been significant public
distrust of DES. This time NIST wanted an open process.

NIST sought public comment on proposed requirements for the Advanced Encryp-
tion Standard. Cryptographers responded. NIST listened, modifying technical and le-
gal requirements. In January 1997 NIST announced a competition for a symmetric-
key algorithm running on 128-bit blocks of data using 128-, 192-, or 256-bit keys.
Designers would be required to give up proprietary rights; the algorithm would be
internationally available without royalties.

Cryptographers from around the world submitted candidates; fifteen met NIST’s
requirements. NIST organized conferences in California and Rome. Attacks were pre-
sented. NIST encouraged public discussion on its AES Web pages (aes.nist.gov). After
nineteen months of evaluation, NIST announced five finalists: MARS, RC6, Rijndael,
Serpent, and Twofish. For the most part, the public community agreed with NIST’s
choices. So did the NSA, which advised NIST that its choices were “appropriate.”

There was another year of study. In October 2000, NIST announced that Rijndael
was “the best overall algorithm for the AES . . . [the algorithm’s] combination of secu-
rity, performance, efficiency, implementability, and flexibility make it an appropriate
selection for the AES.” After an additional year of evaluation, in November 2001 the
Department of Commerce officially declared Rijndael the Advanced Encryption Stan-
dard.

The very public evaluation effort has led to widespread acceptance of AES. The
cryptography community is a rather contentious lot, but it has been virtually unani-
mous in its praise of NIST’s AES effort and the choice of Rijndael as the Advanced
Encryption Standard. This is high praise indeed.

Rijndael Specifications. Daemen and Rijmen said their goal was an algorithm that
would be resistant to known attacks, would exhibit speed and compactness on a variety
of platforms, and would have a simple design. The latter is one way Rijndael stood out
from the competition.

I will present the 128-bit key Rijndael; the other versions differ only in number of
rounds and data array size. The algorithm should look very familiar.

In the 128-bit key version, data are placed in a 4× 4 array and the algorithm has
ten rounds. As required by NIST, Rijndael operates on a 128-bit block of data. The
algorithm divides the block into sixteen 8-bit bytes and all operations occur on the
bytes of the array. Each Rijndael round consists of four operations:

• one transforms the bytes;
• one tranforms the rows;
• one transforms the columns;
• one adds in the key.

Rijndael begins with a key addition, and the last round of Rijndael omits the column
transformation. The byte substitution is the same as Square’s and is the only nonlinear
aspect of Rijndael. In the row mixing, the i th row is circularly shifted i − 1 columns
to the right. The column mixing is identical to Square’s. The last operation is an XOR
of the key bits with the elements of the array. The 128-bit key is put into a linear array
of 4-byte words (exactly like the 4× 4 block array of the data in Square).

108 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

Key bytes are XORed with the data in the obvious way. Although I have not empha-
sized key schedules in my discussion, proper key schedules are critical in algorithm
design. Rijndael’s consists of the original 128-bit key, followed by pieces 128 bits
long that have several simple transformations applied to them. Each 128-bit section
consists of four 4-byte words with each word being the XOR of the preceeding 4-byte
word and, except for the first word in the 4-byte section, the corresponding word in
the previous piece. For the first word in the 4-byte section, the word is first rotated
one byte to the left, then the bytes are transformed by the Rijndael S-box. Finally a
round-dependent constant (see [12] for details) is XORed with these bytes.

Symmetry is broadly employed in Rijndael’s design, but symmetry does not appear
in the key schedule. That is to avoid any chance of equivalent keys, a pair of keys
giving the same encryption.

Is Rijndael secure? The choice of Rijndael did not please everyone. Several well-
known cryptographers objected to the algorithm’s algebraic simplicity, fearing this
would enable attacks. In their submission to NIST, Daemen and Rijmen had observed
that the action of the S-box on the bytes bi j could be written:

S(bi j) = λ8 +�7
d=0λdb255−2d

i j

for certain constants λ0, . . . , λ8 [12]. That simplicity looked enticing to cryptanalysts.
In comments to NIST, Richard Schroeppel expressed concerns about the byte-

structure of Rijndael and the fact that the algorithm was mostly linear. But Schroep-
pel’s biggest worry was that the only nonlinear aspect of Rijndael was x−1, which he
felt was too simple given that the underlying field was of characteristic 2 [42]. By
moving the constant λ8 into the key addition step, Daemen and Rijmen’s equation
becomes

S(bi j) = �7
d=0λdb−2d

i j ,

where the arithmetic is in GF[28].
Other steps of Rijndael have simpler algebraic expressions. Niels Ferguson, Doug

Whiting, and Schroeppel proposed the following method of attack on Rijndael [17].
Let kr

i j be the key at the (i, j)th position in round r and, as before, let the arithmetic be
in GF[28]. Then:

br+1
i j = k(r)

i j +�er∈ε,dr∈Dλi,er ,dr (b
(r)
er ,er+ j

)−2dr
,

with ε = {0, 1, 2, 3} and D = {0, . . . , 7}. Note that this can be rewritten as

br+1
i j = k(r)

i j +�er∈ε,dr∈D
λi,er ,dr

(b(r)
er ,er+ j)

2dr
.

Consider what happens with 128-bit Rijndael, that is, when r = 10. In general,
each round of the computation is likely to double the number of terms, running into
“intermediate value swell.” But characteristic 2 changes that. Raising elements to a
power of 2 in a field of characteristic 2 causes intermediate terms to disappear. Thus

b(3)

i j = k(2)

i j +�e2∈ε,d2∈D
λi,e2,d2(

ke2,e2+ j +�e1∈ε,d1∈D
λe2,e1,d1

(be1,e1+e2+ j)
2d1

)2d2
.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 109

Another way to put this is:

b(3)

i j = k(2)

i j +�e2∈ε,d2∈D
λi,e2,d2

(k(1)

e2,e2+ j)
2d2 +�e1∈ε,d1∈D

(λe2,e1,d1)2d2

(b(1)
e1,e1+e2+ j)

2d1+d2

.

Cut to essentials and replace expanded key bytes with K , constants with C , and
subscripts and exponents with asterisks, understanding that these K ∗ and C∗ represent
different values. This will give a sense of the formulas. After six rounds, the expression
takes the form

b(6)

i j = K ∗ +�e5∈ε,d5∈D
C∗

K ∗ +�e4∈εd4∈D
C∗

K ∗+···

After six rounds, there are 235 terms of the form C∗/(K ∗ + p∗∗). After ten rounds of
Rijndael, there are 250 such terms. If we could efficiently solve these 250 equations, we
could break Rijndael. There are points to note, however. The first is that the equations
are an oversimplification, since the C∗, K ∗, and p∗∗ represent different values each time
they appear. The key word here is efficiently. Ferguson et al. claim that a symbolic
equation program that worked in O(n7) steps, where n is the number of terms, would
enable an attack on Rijndael faster than a brute-force search of the key space. But this
is a strong claim for a proposed attack with so many simplifying assumptions built
into it.

Sean Murphy and Matt Robshaw of Royal Holloway College took a different tack
to the same general approach [31]. In [29], they pulled Rijndael apart, but unlike the
king’s horses and the king’s men, Murphy and Robshaw were able to put the algorithm
back together again. The revision showed a possible direction for attack.

Since the same constant is added to each byte in the S-box, while the rest of the
round function consists of row shifts, multiplication by a matrix in GF(28), and key
addition, Murphy and Robshaw suggested that Rijndael’s round operations could be
regrouped by putting the addition, appropriately modified, into the key-addition step.
They argued that this arrangement was more “natural”: with it, the S-box linear diffu-
sion step can be part of the linear-diffusion layer.

Murphy and Robshaw considered the entire linear-diffusion layer as a GF(2)-linear
map, given by a 128× 128 matrix M over GF(2). They noticed two surprising things
about M. First, its characteristic polynomial, c(x) = (x + 1)128 = x128 + 1, and its
minimal polynomial, m(x) = (x + 1)15, were both remarkably simple. Second, m(x)

was of small degree. They noted that sixteen iterations of M give the identity permu-
tation.

Yes, replied Daemen and Rijmen, one can play such games with the linear does the
fact that M16 = I really mean? If you combine key addition with itself, you get back
the identity. So what? We opted for simplicity, Daemen and Rijmen continued, and
so the fact that M16 = I is no surprise. That does not mean that Rijndael is insecure.
One could view DES through the same type of glasses and discover, for example, that
by reordering the output bits of the S-boxes and appropriately modifying the round
permutation P , one still gets DES, but now the diffusion layer will give the identity
after only twelve applications [39], rather than the sixty one gets with the usual ver-
sion of P . Daemen and Rijmen argued that, while looking at the separate pieces of a
cryptographic round function is a useful and important exercise, the round function as
a whole is greater than the sum of its parts.

110 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

The volley returned to Murphy and Robshaw [30]. Their main point remained
“whether the cryptanalyst can find a more novel way to combine the rich structure
in the diffusion layer of Rijndael with the highly structured inverse map” [29]. Two
years later Murphy and Robshaw proposed one [31].

Two aspects of Rijndael add to the complexity of analyzing the algorithm: the non-
linear S-box operation and the S-box addition, which is linear over GF(2); all other
steps are linear over GF(28). Murphy and Robshaw saw a way to embed AES in a
larger system that, except for the inversion, would have all steps linear over GF(28).

View the state space A of the 128-bit version of AES as a vector space over GF(28).
Define two sets: B, a cipher with a 128-byte message and key space that is a 128-
dimensional vector space over GF(28), and BA, a subset of B that corresponds to A.
The set B will be the state space of the Big Encryption System, or BES.

Let F be a field, and let a = (a0, a1, . . . , an−1) be a vector in Fn (F will be GF(28)

and n will be 8 and 64 for AES and BES, respectively). With 0 being mapped to 0,
inversion is done componentwise: a−1 = (a−1

0 , a−1
1 , . . . , a−1

n−1). For any a in F , de-

fine the vector conjugate ã to be (a20
, a21

, a22
, . . . , a27

). This gives a natural vector
conjugate mapping φ from Fn to F8n: namely, for n = 1 we let

φ(a) = ã = (a20
, a21

, a22
, . . . , a27

),

and extend this definition in the obvious way by setting

φ(a) = (
φ(a0), φ(a1), . . . , φ(an−1)

)
for a = (a0, a1, . . . , an−1) in Fn . Because the underlying field has characteristic 2,

φ(a+ a′) = φ(a)+ φ(a′),

φ(a−1) = φ(a)−1.

The set BA is defined so that BA = φ(A), a subset of B, is the AES subset of BES.
Murphy and Robshaw view the state vector in AES as a column vector

a = (a00, a10, . . . , a30, a01, . . . , a33)
T .

Similarly the state vector

b = (b000, . . . , b007, b100, . . . , b107, . . . , b777)
T

is written as a column vector. Then BES is defined so that the diagram in Figure 5
commutes:

B

A A

A

φ(k)k

φ

φ-1 A

BES

B

AES

Figure 5. The relationship between AES and BES.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 111

Using the same technique as in [29], the BES S-box is limited to inversion and all
linear-diffusion steps are combined into one step. The addition step of the S-box, suit-
ably modified, becomes part of key addition. The BES S-box is inversion performed
componentwise (with 0 mapped to 0).

The BES linear-diffusion step is a natural combination of the three pieces of AES
linear diffusion: the multiplication step of the S-box, the row operation, and the column
multiplication. Because of space constraints, I do not include details, but note that the
only complex piece of this step is the column multiplication. Since the BES states
are: a20

00(= a00), a21

00, . . . , a27

00, a20

01, a21

01, . . . , a27

33 , the column multiplication in BES is
done by using powers of the circulant matrix generated by 2, 3, 1, and 1 (elements in
GF(28)) to build a 128× 128 matrix over GF(28).

The AES S-box addition is a GF(2)-linear operation, so there is no natural way to
represent it as a matrix multiplication. Murphy and Robshaw honed in on the same
equation that Ferguson et al. had found useful:8

f (a) = �7
k=0λka2k

for a in F with λ0, λ1, . . . , λ7 = 5, 9, F9, 25, F4, 1, B5, 8F , respectively (coeffi-
cients are in hexadecimal) [15, p. 212], [31, p. 7].

The conjugates are in BES, so it is a simple matter to determine the matrix that
replicates the AES addition action in BES. If L B = (λ2 j

i) then as Murphy and Rob-
shaw observed [31, p. 8], “the entire set of GF(2)-linear operations in AES [can be
represented] with a 128× 128 matrix in the BES LinB ,” a block diagonal matrix with
sixteen identical blocks L B .

Murphy and Robshaw’s key observation is that BES’s round function can be written
as [31, p. 8]:

b �→ MBb−1 + kBi ,

where kBi is the i th round subkey for BES. Thus, a round of AES is “simply com-
ponentwise inversion and an affine transformation with respect to the same field F =
GF(28)” [31, p. 9].

Murphy and Robshaw noted a number of “interesting” facts about BES:

• The linear diffusion matrix MB of BES is sparse, with minimal polynomial (x + 1)15.
This means that MB is, in some sense, no more complicated than the equiv-
alent matrix for AES. The matrix MB can be put into Jordan canonical form
RB = P−1

B MB PB , where RB has 112 rows with two ones and sixteen rows with
a single one (all other entries are zeros). But the most important issue is that the
properties of MB are properties over GF(28), not over GF(2).

• This new “version” of AES did not show particular vulnerabilities to differential or
linear cryptanalysis, but an interesting parity relationship was exposed.

Define a parity equation as a row vector eT . The matrix MB fixes a subspace of
B of dimension 16; the set of parity equations fixed by MB forms a 16-dimensional
vector subspace over GF(28).

Suppose the vector p has parity pe = eT · p, so t · p has parity tpe for any t in F .
Murphy and Robshaw found related subkeys ki and tki such that the encryptions
under BES of pe and tpe are ce and tce, respectively. This holds with probability 1.
Thus with the right set of related keys k0, . . . , k10 and tk0, . . . , tk10, if the plaintext

8The constant term has been folded into the key addition.

112 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

difference parity of eT (p0 + p1) is pe and of eT (tp0 + tp1) is tpe, then the ciphertext
difference parities are ce and tce, respectively.

This is not quite as disturbing as it sounds. As Murphy and Robshaw note, these
observations do not actually hold when the specifics of Rijndael’s key schedule are
taken into account. But they are interesting—and surprising.

• The encryption algorithm “preserves” algebraic curves. If one thinks about it, this is
no surprise. Cryptographic functions are polynomial functions, so of course curves
are preserved. What is interesting is that the curves are simple, that is, their equations
do not involve many terms.

What this tells us is that recovering an AES key is equivalent to solving a sys-
tem of extremely sparse multivariate quadratic equations by expressing BES (and
thus AES) as such a system. Murphy and Robshaw’s analysis shows that, modulo
the simplifying assumption that neither the key bytes nor the plaintext bytes are 0
(these assumptions are true for 53 percent of encryptions and 85 percent of 128-bit
keys9), an AES encryption consists of an overdetermined multivariate system of
2,688 equations over GF(28), of which 1,280 are sparse quadratics; the remainder
are linear. The sparseness of the quadratics is what is important here. There are also
a large number of equations that arise from the key schedule.

Before the reader jumps to her favorite symbolic computation system in an effort to
crack an AES-encrypted message, she should note some facts:

• No current symbolic computation system can handle such a large system of equa-
tions. The algorithm by Faugere, Gianni, Lazard, and Mora for Grobner bases is the
current best technique for such type of simplifications [16]. But in practice Grobner-
basis techniques cannot currently solve systems with more than fifteen variables [8,
p. 392].

• The general problem of solving large systems of simultaneous equations of degree
greater than one is NP-complete. Thus solving the general problem is polynomial-
time equivalent to a large number of problems for which no polynomial-time solu-
tion is known (including the traveling salesman problem, satisfiability of Boolean
formulas, etc.). Is this version of equation solving as hard as the general one? No
one knows. In 2000, Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi
Shamir showed how to solve randomly-generated systems of polynomial equations
in expected subexponential time when the number of equations m is greater than
εn2, where 0 < ε < 1/2 and n is the number of variables. There is also strong ev-
idence that randomly-generated sets of equations can be solved in subexponential
time when m > Bn for a number B that grows slowly with n.

But—as the first sentence in the previous paragraph should suggest to the
reader—perturb an easily solved discrete computational problem and one may
end up with a computationally infeasible one instead. For example, solving xk = a
in GF(pn) for a prime p can be done in O(k log4 q) steps [1, p. 161]. Solving
xk ≡ a(mod pq) for distinct unknown primes p and q whose product pq is known
is much harder (it is equivalent to decrypting a message that is encrypted under the
RSA system).

Does Rijndael’s algebraic formulation make the algorithm easier to crack than other
cryptosystems not designed this way? I believe not. Rijndael’s structure means that the
algorithm lends itself to the type of analysis proposed by Ferguson et al., but we could
attempt this analysis on other algorithms.

9If the assumption is false, some of the equations are incorrect.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 113

A natural one to examine is DES. Here the randomness of the S-boxes and the P
permutation works against us. The Boolean expressions for the S-boxes are compli-
cated: on average each input bit is used at least sixteen times in the expression for the
output bits [22]. The full DES formula has 1616(= 264) terms, and there are no “neat”
structures to exploit.

Skipjack, the 80-bit encryption algorithm developed in the early 1990s by NSA for
use in “Clipper” chips, is perhaps a better comparison. Skipjack has an 8-bit-to-8-bit
S-box, and thus is closer in structure to Rijndael than DES is. Skipjack’s S-boxes have
a nice, regular structure. Discovering the complexity of Skipjack’s S-box expressions
might lend insight into both Skipjack and Rijndael.

The design goals for Rijndael. For Rijndael’s designers, security was the primary
concern, efficiency a close second. But Daemen and Rijmen sought simplicity—
simplicity of specification and simplicity of analysis [15, p. 65]. Not every cryptog-
rapher sees simplicity as an important goal—two AES finalists, MARS and Twofish,
have far more complex designs. (Some observers felt that this complexity was part of
the reason the two algorithms were not chosen as the Advanced Encryption Standard,
as their round functions were simply too difficult to analyze fully.) The wide-trail
strategy is a simple paradigm to protect against differential and linear cryptanaly-
sis. Through the various algorithms that employed the strategy—SHARK, Square,
and Rijndael—Daemen and Rijmen used simple primitives. Thus Square’s step that
proved to be not quite good enough, the transposition, was a natural and simple way
to implement column mixing. In Rijndael, the next instantiation of wide trail, this step
was replaced by row shifting, an only-slightly-more complex function that appears to
have achieved its goal.

Simplicity begets other criteria, including symmetry. Rijndael exhibits symmetry
across the rounds, and within them.

Daemen and Rijmen had an unstated goal in their algorithm design: transparency.
The two designers wanted no suspicion of trapdoors. The polynomial defining the field
is the first entry in Lidl and Niederreiter’s table of irreducible polynomials of GF(28)

[25]. In using a public list to pick their parameters, Rijndael’s designers showed there
was nothing up their sleeves. The simplicity of x8 + 1 and x4 + 1 is another demon-
stration of the lack of hidden parameters.

Daemen and Rijmen wanted column mixing to be invertible, to be linear in GF(2),
to diffuse well, and to be fast on 8-bit processors. Polynomial multiplication satis-
fies invertibility, linearity in GF(2), and is simple to describe, so it was a natural
choice. The simpler the multiplicative coefficients are—recall that though the poly-
nomial coefficients appear to be integers they are actually elements in GF(28)—the
faster they are on 8-bit processors. Accordingly, 3x3 + x2 + x + 2 works well. While
x7 + x6 + x2 + x , x7 + x6 + x5 + x4 + 1, and 3x3 + x2 + x + 2 do not have the
elegance of x8 + 1 and x4 + 1, the explanations for selecting those polynomials—
“simplest among those polynomials coprime to the modulus” and “linear in GF(2),
diffuse well, fast on 8-bit processors”—makes clear that there is nothing hiding there
either.

Rijndael’s designers achieved efficiency. The algorithm was significantly faster than
all other finalists in key set-up, and was in the middle of the pack for encryption.
Decryption is slower because the key set-up takes longer, but the slowdown is not
excessive. And NSA’s analysis of hardware implementations showed that Rijndael was
reasonable in its layout size and had excellent “throughput” (the amount of work done
in a given period) [46].

114 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

Did the designers achieve security? Only time will give us an answer to that ques-
tion. It is worth remembering that, despite many fears and statements to the contrary,
DES proved to be a robust and secure cryptosystem. Rijndael was vetted in an open
and international forum, with input from at least one national-security agency.10 The
U.S. government believes in AES: in June 2003, the U.S. government approved the use
of 128-bit AES for the protection of all documents classified SECRET, and 192- and
256-bit AES for documents classified at the TOP SECRET level [32]. But when DES
was put forth, neither the industrial and academic community nor NSA had anticipated
linear cryptanalysis. Might there be a “linear cryptanalysis” lurking in AES’s future?
AES has been built with a significant margin of safety. The 128-bit version of AES
does not need to be 128 bits secure; 125, 120, or even 112 would suffice. Check in
after another half-century, and we will know whether AES has stood the test of time.

ACKNOWLEDGMENTS. This paper is adopted from an invited MAA lecture at the Joint Mathematics
Meetings held in San Diego in January 2002. Some of the material originally appeared in “Standing the Test
of Time: The Data Encryption Standard,” Notices of the American Mathematical Society, March 2000, pp.
341–349, by the same author.

I appreciate the help of Bart Preneel, John Cremona, Whitfield Diffie, Neil Immerman, Hilarie Orman,
Michael Quisquater, and Ann Trenk who commented on an earlier version of this paper. I am particularly
grateful to Vincent Rijmen for his trenchant comments. I am also very grateful for the careful reading and
valuable editorial comments this paper received from Dan Velleman.

REFERENCES

1. E. Bach and J. Shallit, Algorithmic Number Theory: Volume 1, Efficient Algorithms, MIT Press, Boston,
1996.

2. T. Beth and C. Ding, On almost perfect nonlinear permutations, in Advances in Cryptology: Eurocrypt
’93, Springer-Verlag, Berlin, 1993, pp. 65–76.

3. E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer-Verlag,
New York, 1993.

4. I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, Cambridge University Press, Cam-
bridge, 1999.

5. C. Carlet, Codes de Reed-Mueller, codes de Kerdock et de Preparata, Ph.D. thesis, publication of LITP,
Institut Blaise Pascal, Université Paris 6, 1990.

6. D. Coppersmith, The Data Encryption Standard (DES) and its strength against attacks, in IBM Journal
of Research and Development 30 (1993) 243–250.

7. , personal communication.
8. N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient algorithms for solving overdefined systems of

multivariate polynomial equations, in Advances in Cryptology: Eurocrypt ’00, B. Preneel, ed., Springer-
Verlag, Berlin, 2000, pp. 392–407.

9. A. Cullinson, A computer in Kabul yields a chilling array of Al Qaeda memos, Wall Street Journal
(December 31, 2001) A1–A3.

10. J. Daemen, Cipher and Hash Function Design Strategies Based on Linear and Differential Cryptanalysis,
Ph.D. thesis, Katholieke Universiteit, Leuven, Belgium, 1995.

11. J. Daemen, L. Knudsen, and V. Rijmen, The Block Cipher Square, in Fast Software Encryption, E. Biham
ed., LNCS 1267, Springer-Verlag, Berlin, 1997.

12. J. Daemen and V. Rijmen, AES Proposal: Rijndael; available at http://csrc.nist.gov/encryption/aes/
rijndael.

13. , Answer to “New Observations on Rijndael,” in NIST Second Round Comment, NIST AES web-
site (csrc.nist.gov/encryption/aes), 2000.

14. , The wide trail design strategy, in Cryptography and Coding, 8th IMA International Conference,
B. Honary, ed., Springer-Verlag 2001, Berlin, pp. 222–238.

15. , The Design of Rijndael: AES—the Advanced Encryption Standard, Springer-Verlag, Berlin,
2002.

10It is probably safe to assume that there was actually input from two. Had GCHQ, the British equivalent of
NSA, discovered a serious flaw in Rijndael, NIST would have been informed.

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 115

16. J. Faugere, P. Gianni, D. Lazard, and T. Mora, Efficient computations of zerodimensional Groebner bases
by changes of ordering, J. Symb. Comput. 16 (1993) 329–344.

17. N. Ferguson, R. Schroeppel, and D. Whiting, A simple algebraic representation of Rijndael, in Selected
Areas of Cryptography 2001, S. Vaudenay and A. Youssef, eds., Springer-Verlag, Berlin, 2001, pp. 103–
111.

18. E. Grossman, personal communication.
19. T. Jakobsen and L. Knudsen, Attacks on block ciphers of low algebraic degree, J. Cryptology 14 (2001)

197–210.
20. D. Kahn, The Codebreakers, Scribner, New York, 1996.
21. N. Koblitz, Algebraic Aspects of Cryptography, Springer-Verlag, Berlin, 1998.
22. M. Kwan, Reducing the Gate Count of Bitslice DES, Cryptology ePrint Archive, Report 2000/051, 2000;

available at http://eprint.iacr.org.
23. S. Landau, Standing the test of time: the Data Encryption Standard, Notices Amer. Math. Soc. 47 (2000)

341–349.
24. , Communications security for the twenty-first century: the Advanced Encryption Standard, No-

tices Amer. Math. Soc. 47 (2000) 450–459.
25. R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University

Press, Cambridge, 1986.
26. F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, North-Holland., Amsterdam,

1978.
27. M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology: Eurocrypt ’93, T.

Helleseth, ed., Springer-Verlag, Berlin, 1994, pp. 386–397.
28. W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions, in Advances in Cryptol-

ogy: Eurocrypt ’89, J.-J Quisquater and J. Vandewalle, eds., Springer-Verlag, Berlin, 1989.
29. S. Murphy and M. Robshaw, New observations on Rijndael, in NIST Second Round Comment, NIST AES

website (csrc.nist.gov/encryption/aes), 2000.
30. , Further comments on the structure of Rijndael, in NIST Second Round Comment, NIST AES

website (csrc.nist.gov/encryption/aes), 2000.
31. , Essential algebraic structure within the AES, Advances in Cryptology: CRYPTO ’02, Moti Yung,

ed., Springer-Verlag, Berlin, 2002, pp. 1–16.
32. National Security Agency, Committee on National Security Systems, National Policy on the Use of the

Advanced Encryption Standard (AES) to Protect National Security Systems and National Security Infor-
mation, CNSS Policy No. 15, Fact Sheet 1, June 2003.

33. K. Nyberg, On the construction of highly nonlinear permutations, in Advances in Cryptology: Eurocrypt
’92, R. Rueppel, ed., Springer-Verlag, Berlin, 1993, pp. 92–98.

34. , Differentially uniform mappings for cryptography, in Advances in Cryptology: Eurocrypt ’93,
T. Helleseth, ed., Springer-Verlag, Berlin, 1994, pp. 53–64.

35. , S-boxes and round functions with controllable linearity and differential uniformity, in Fast Soft-
ware Encryption: Second International Workshop 1994, B. Preneel, ed., Springer-Verlag, Berlin, 1995,
pp. 111–130.

36. K. Nyberg and L. Knudsen, Provable security against a differential attack, J. Cryptology 8 (1995) 27–38.
37. J. Pieprzyk, Nonlinearity of exponent permutations, in Advances in Cryptology: Eurocrypt ’89, J.-J

Quisquater and J. Vandewalle, eds., Springer-Verlag, Berlin, 1990, pp. 89–92.
38. , On Bent Permutations, Technical Report CS91/11, Department of Computer Science, Univer-

sity of New South Wales; presented at International Conference on Finite Fields, Coding Theory, and
Advances in Communications and Computing, Las Vegas, 1991.

39. V. Rijmen, personal communication.
40. V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, The cipher SHARK, in Fast Software

Encryption: Third International Workshop, D. Gollman, ed., Springer-Verlag, Berlin, 1996, pp. 99–112.
41. United States v. Nicodemo S. Scarfo, et al., Criminal Action No. 00-404 (NHP), United States District

Court, District of New Jersey.
42. R. Schroeppel, Second Round Comments to NIST, in NIST Second Round Comment, NIST AES website

(csrc.nist.gov/encryption/aes), 2000.
43. A. Shamir, On the security of DES, in Advances in Cryptology: CRYPTO ’85, Hugh Williams, ed.,

Springer-Verlag, Berlin, 1985, pp. 280–281.
44. M. Smid and D. Branstad, The Data Encryption Standard: past and future, in Contemporary Cryptology,

G. Simmons, ed., IEEE Press, New York, 1991.
45. W. Tuchman, personal communication.
46. B. Weeks, M. Bean, T. Rozylowicz, and C. Ficke, Hardware Performance Simulation of Round 2 Ad-

vanced Encryption Standard Algorithms (May 15, 2000); available at http://csrc.nist.gov/encryption/aes/
round2/r2anlsys.htm.

116 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111

47. G. Xiao and J. Massey, A spectral characterization of correlation-immune combining functions, IEEE
Trans. Inform. Theory 34 (1988) 569–571.

SUSAN LANDAU (B.A. Princeton, M.S. Cornell, Ph.D. M.I.T.) is Senior Staff Engineer at Sun Microsystems
Laboratories. Her mathematical interests include symbolic computation and algebraic algorithms: she has dis-
covered several polynomial-time algorithms for problems whose previous best solutions took exponential time.
Prior to her employment at Sun, Landau had been a faculty member at the University of Massachusetts and
Wesleyan University, and she held visiting positions at Yale, Cornell, and the Mathematical Sciences Research
Institute at Berkeley. Landau also spent many summers teaching at the Hampshire College Summer Studies in
Mathematics, a mathematics program for high-ability high school students. Landau and Whitfield Diffie have
written Privacy on the Line: The Politics of Wiretapping and Encryption (MIT Press, 1998).
Sun Microsystems Inc., MS UBUR02-311, P.O. Box 4002, Burlington, MA 01803-0902
susan.landau@sun.com

February 2004] POLYNOMIALS IN THE NATION’S SERVICE 117

