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Abstract. We describe polynomials of best uniform approximation to sgn(x)

on the union of two intervals [−A,−1] ∪ [1,B] in terms of special conformal

mappings. This permits us to find the exact asymptotic behavior of the error in

this approximation.

1 Introduction

In [5], we obtained precise asymptotics of the error of the best polynomial ap-

proximation of sgn(x) on two symmetric intervals, [−A,−1] ∪ [1,A]. Paper [11]

contains a somewhat simplified proof, together with generalizations. In this paper,

we generalize the result to the case of two arbitrary intervals. Related problems on

the asymptotics of the error of the best uniform approximation by polynomials of

degree at most n to the functions xn+1 and 1/(x − c), c /∈ I , defined on the union I

of two intervals, were completely solved by N. I. Akhiezer in [2].

Fuchs [6, 7, 8] studied general problems of uniform polynomial approximation

of piecewise analytic functions on finite systems of intervals. For the case of sgn(x)

on two intervals, I = [−A,−1] ∪ [1,B], the result in [6] is

C1n−1/2e−ηn ≤ Ln ≤ C2n−1/2e−ηn.

Here

Ln = inf
p∈Pn

sup
x∈I

|sgn(x) − p(x)|,

where Pn is the set of polynomials of degree at most n, C1 and C2 are postive

constants that depend on A and B , and η is the critical value of the Green’s function

G of the region C\I with pole at infinity. The arguments in [6] do not give optimal

values of C1,C2.
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In the case A = B , we have e−η =
√

(A − 1)/(A + 1), and the result obtained in

[5] is

(1.1) L2m+2 = L2m+1 ∼

√
2(A − 1)√
πA

(2m + 1)−1/2

(

A − 1

A + 1

)m

.

In this paper, we obtain a result of the same precision for arbitrary A and B . In the

case A 6= B , the ratio
√

nenηLn oscillates. Similar oscillating asymptotic behavior

was found by Akhiezer for the polynomials of least deviation from 0, that is, for

the error of the best uniform approximation of xn+1 by polynomials of degree at

most n on two intervals.

To state our main asymptotic result, we introduce certain characteristics of the

region C\I . Let

G(x) = G(x,∞) =

∫ x

−1

C − x
√

(1 − x2)(x + A)(B − x)
dx, −1 < x < 1,

be the Green’s function of C\I with pole at infinity (see, for example, [3]), where

C ∈ (−1, 1) is the unique critical point and is given by

C =

∫ 1

−1
((1 − x2)(x + A)(B − x))−1/2xdx

∫ 1

−1((1 − x2)(x + A)(B − x))−1/2dx
.

We introduce positive constants η = G(C,∞) and

η1 = −
1

2
G′′(C) =

1

2
√

(1 − C2)(C + A)(B − C)
.

The Green’s function G(z,C) satisfies

G(z,C) = − ln |z − C| + η2 + O(z − C), z → C,

and this relation defines the Robin constant η2.

Let ω(x) = ω(x, [−A,−1],C\I ) be the harmonic measure of the interval

[−A,−1]. An explicit formula for ω is

(1.2) ω(z) = Im

∫ z

−1
((x2 − 1)(x + A)(B − x))−1/2dx

∫ 1

−1((x2 − 1)(x + A)(B − x))−1/2dx
.

In our notation related to theta-functions, we follow Akhiezer’s book [3].

Our main result is the following.

Theorem 1.1. The error Ln of the best polynomial approximation of sgn(x)

on I = [−A,−1] ∪ [1,B] satisfies

(1.3) Ln = (c + o(1))n−1/2e−nη

∣

∣

∣

∣

∣

ϑ0

(

1
2
({nω(∞) + ω(C)} − ω(C))| τ

)

ϑ0

(

1
2
({nω(∞) + ω(C)} + ω(C))| τ

)

∣

∣

∣

∣

∣

,
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where

c = 2(πη1)−1/2e−η2,

(1.4) τ = i

∫ B

1
((t2 − 1)(B − t)(A + t))−1/2dt

∫ 1

−1((1 − t2)(B − t)(A + t))−1/2dt
,

and

ϑ0(t|τ) = 1 − 2h cos 2πt + 2h4 cos 4πt − 2h9 cos 6πt + . . . , h = eπiτ

is the theta-function.

In (1.3), {x} denotes the fractional part of x. Our method of proof is somewhat

different from the methods of previous authors. It is based on an exact representa-

tion of the extremal polynomial as a composition of conformal maps of explicitly

described regions. This can be considered as a development of the arguments in

[4, 5]. Our representation of extremal polynomials allows us to find their asymp-

totic behavior in various regimes and their zero distribution.

Actually, the main asymptotic result of this paper is Theorem 7.1, which has

a somewhat technical statement; Theorem 1.1 is a simple corollary. For example,

according to [8], the numbers n1 and n2 of zeros of the extremal polynomial Pn on

[−A,−1] and [1,B] satisfy

lim
n→∞

n1/n = ω(∞) and lim
n→∞

n2/n = 1 − ω(∞),

respectively, while Theorem 7.1 implies a stronger conclusion: n1 = nω(∞)+O(1).

However, in this paper we focus on the error term of the polynomial approxi-

mation and do not explore other corollaries of Theorem 7.1.

A representation of extremal polynomials is described in Sections 2 and 3,

where we use an entire function introduced in [5]. In Section 4, we find an integral

representation of the principal conformal map involved, and then study its asymp-

totics in Sections 5-7. We derive (1.1) as a special case of Theorem 1.1 in Section

8. Finally, in Section 9, we sketch, without proof, the limit case B = ∞. In this

case, instead of approximation by polynomials, one has to consider approximation

by entire functions of order 1/2, normal type.
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Figure 1. Graph of the function S̃(z, a) on the real axis.

2 Preliminaries

We begin by recalling the construction of the entire function S̃(z, a) of exponential

type 1 that gives the best uniform approximation of sgn(x) on the set (−∞,−a] ∪

[a,∞), where a > 0. There is a unique such function for every a > 0; it is odd

and satisfies

(2.1) S̃(a, a) = 1 − L(a), S̃(c̃k, a) = 1 − (−1)kL(a),

where L(a) is the approximation error, and c̃1 < c̃2 < · · · is the sequence of

positive critical points. The graph of this function is shown in Figure 1. We

define the positive number b = b(a) by cosh b = 1/L(a). It is easy to see that

b is a continuous increasing function of a, and the correspondence a 7→ b is a

homeomorphism of the positive ray onto itself.

For every b > 0, we consider the region

� = {x + iy : x > 0, y > 0, x > arccos(cosh b/ cosh y) for y > b}.

This region is shown in Figure 2; it consists of the points in the first quadrant to

the right of the curve

γb := {arccos(cosh b/ cosh t) + it : b ≤ t <∞}.

Let ψ̃ be the conformal map of the first quadrant C++ onto �, normalized by

(2.2) ψ̃(z) = z + . . . , z → ∞ and ψ̃(0) = b.

Set a = ψ̃−1(0).
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Figure 2. Domain � such that S̃(z) = 1 − L(a) cos ψ̃(z), ψ̃ : C++ → �.

In [5], we proved that

(2.3) S̃(z, a) = 1 − L(a) cos ψ̃(z), z ∈ C++ := {z : Re z > 0, Im z > 0}.

As the right hand side of (2.3) takes real values on the positive ray and imaginary

values on the positive imaginary ray, S̃ extends to the whole plane as an odd entire

function.

The following asymptotics hold:

(2.4) lim
a→∞

√
aeaL(a) =

√

2

π
.

Notice that all critical points {±c̃k} of S̃(z, a) are real, and ψ̃(c̃k) = πk.

It is convenient to modify this conformal mapping slightly. We write

S(z, a) := S̃(
√

z2 + a2, a), where z belongs to the upper half-plane C+ with the

slit {it : 0 < t ≤ a}; see Figure 3. The function S is not entire; it is defined only in

the upper half-plane.

Again we have the conformal mapping ψ : C++ → �; but in contrast to (2.2),

(2.5) ψ(z) = z + . . . , z → ∞, ψ(0) = 0,

and therefore ψ(ia) = ib. The full preimage of the real axis under S in the upper

half-plane consists of the curves

(2.6) δk = ψ−1({πk + it : t > 0}), k = ±1,±2, . . .
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Figure 3. Preimage S−1(R, a) in the upper half-plane.

shown in Figure 3. These curves have vertical asymptotes {Re z = πk − π/2}.

Now let Pn(z) be the best approximation of sgn(x) by polynomials of degree

at most n on two intervals I = I− ∪ I+, I± ⊂ R±. Using a linear transforma-

tion, we may always assume that I = [−A,−1] ∪ [1,B]. Our goal is to obtain a

representation of the extremal polynomial in the form of the composition

(2.7) Pn(z) = S(2n(z), an),

where2n is the conformal mapping1 of the upper half-plane on a suitable “curved”

comb-like region, and an is an appropriate value of the parameter a.

First we give typical examples of the representation (2.7) and then show that

these examples exhaust all possibilities.

First example. For n = 4, consider the region 52,3; see Figure 4. Its boundary

consists of the vertical segment [0, ia], the horizontal segment [−c2, c3], and the

curves δ−2 and δ3.

Let 2(z) = 24(z) be the conformal mapping

(2.8) 2 : C+ = {z ∈ C, Im z > 0} → 52,3, 2(±1) = 0, 2(∞) = ∞.

The function P(z) = S(2(z), a) can be extended to the lower half-plane because

of the symmetry principle. Therefore it is an entire function which is, in fact, a

1In what follows, the letters 2 and θ are used to denote conformal maps that have no relation to
theta-functions ϑ.
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Figure 4. Domain 52,3.

polynomial of degree 4, because of its asymptotics at infinity. The graph of this

polynomial on the real axis is of the form given in Figure 5, where φ = 2−1. By

the Chebyshev Theorem (for the two interval version of this theorem, see [1], [2]

[3]), P(z) is the extremal polynomial on the set I with A = −φ(−c2) and B = φ(c3).

Second example. Let us point out that the above polynomial P(z) has 7 points

of alternance instead of 6, as required by the Chebyshev Theorem for a polynomial

of degree 4. Therefore the same polynomial is extremal on two kinds of sets:

(2.9) I = [−A,−1] ∪ [1, φ(c3)], φ(−c2) < −A ≤ φ(−c1)

and

(2.10) I = [φ(−c2),−1] ∪ [1,B], φ(c2) ≤ B ≤ φ(c3).

Third example. From the position I = [φ(−c2),−1] ∪ [1, φ(c2)], we can start

a deformation of the set I and of the extremal polynomial. Namely, consider the

region 5+
2,3(h); see Figure 6. Here, we have added to the boundary a segment of

the curve δ2 that starts at the critical point c2 and has length h ∈ (0,∞). In this

case,

(2.11) 2 : C+ = {z ∈ C, Im z > 0} → 5+
2,3(h), 2(±1) = 0, 2(∞) = ∞,

and P(z) := S(2(z), a) is of the form given in Figure 7. For this new family of

regions, which we parametrized by positive h, the polynomial is extremal on the

set I = [φ(−c2),−1] ∪ [1, φ(c2 − 0)].

In the next section, we show that these examples exhaust all possibilities for

the extremal polynomials.
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Figure 5. Extremal polynomial corresponding to the region52,3.

Figure 6. Domain 5+
2,3(h).
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Figure 7. ...and the corresponding extremal polynomial.

3 Parametrization

We begin with a general description of extremal polynomials. Fix a > 0. This

defines the number L = L(a) and the function S(·, a). Let k1 and k2 be two positive

integers. Consider the region5k1,k2
in the upper half-plane bounded by the curves

δ−k1
and δk2

. Then for h ≥ 0 and k2 ≥ 2, we define the region5+
k1,k2

(h) by making

a slit along δk2−1 in 5k1,k2
starting from ck2−1 and such that the length of its image

under ψ is h. Thus 5±
k1,k2

(0) = 5k1,k2
. Similarly, we define 5−

k1,k2
(h) for k1 ≥ 2 by

making a slit along δ−k1+1.

Let2 be the conformal map of the upper half-plane onto5+
k1,k2

(h), normalized

by 2(±1) = 0, 2(∞) = ∞. Consider the function

(3.1) P(z) = S(2(z), a).

By construction, P is real on the real line, so the symmetry principle implies that

P extends to an entire function. By looking at the asymptotic behavior as z → ∞,

we conclude that P is a polynomial of degree k1 + k2 − 1. All critical points of this

polynomial are real. If h = 0, then all critical values are −1 ± L and 1 ± L on the

negative and positive rays, respectively. If h > 0, either the extreme left critical

value is changed to −1 ± L cosh h, or the extreme right critical value is changed to

1 ± L cosh h.
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We have seen in the previous section that each of these polynomials P is the

extremal polynomial for some A and B . Now we prove that for every A and B , one

of these polynomials is extremal.

Proposition 3.1. All extremal polynomials are of the form (3.1) with 2 de-

fined as above for some k1, k2, a and h.

We give an elementary proof of this proposition, which is based on count-

ing critical points and alternance points. This proof does not extend to the case

of entire functions. We give another proof, which is less elementary but avoids

counting, in Section 9.

Proof. We use the following fact which is well known and easy to prove.

Fact. Let P1 and P2 be two real polynomials having only real and simple

critical points, and suppose that their critical points are listed in increasing order,

respectively, as c1 < c2 < . . . < cn−1 and c′
1 < c′

2 < . . . < c′
n−1. If P1(c j ) = P2(c′

j )

for 1 ≤ j ≤ n − 1. Then P1(z) = P2(cz + b) for some c > 0 and real b.

For a discussion and generalizations of this fact to entire functions, see [10],

[12].

Suppose A > 1, B > 1, and a positive integer n are given. (We deal with the

degenerate case A = 1 or B = 1 later.) Let P be the extremal polynomial of degree

n. By Chebyshev’s Theorem, P exists and is unique. According to Chebyshev’s

“Alternance Theorem”, P is characterized by the following properties. Let Q(x) =

P(x) − sgn(x). Then

(3.2) |Q(x)| ≤ L, x ∈ [−A,−1] ∪ [1,B],

and there exist

(3.3) m ≥ n + 2

points x1 < x2 < . . . < xm in [−A,−1] ∪ [1,B] such that

(3.4) |Q(x j )| = L, 1 ≤ j ≤ m, and Q(x j )Q(x j+1) < 0, 1 ≤ j ≤ m − 1.

These points x j are called the alternance points. Evidently, all alternance points

in (−A,−1) ∪ (1,B) are critical, that is, P′(x) = 0 at all such points. Let K be the

number of critical alternance points and N be the number of non-critical alternance

points. We have the evident inequalities

K ≤ n − 1 and N ≤ 4.
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Combined with (3.3), this gives

n + 2 ≤ m = K + N ≤ n + 3.

So we have three possibilities.

a): m = n + 3, N = 4, K = n − 1. The last two equalities imply that all critical

points of P are real and simple, and each of them is an alternance point which

belongs to (−A,−1) ∪ (1,B). All 4 points −A, −1, 1, and B are non-critical

alternance points. So the graph has the shape shown in Figure 5.

b): m = n + 2, N = 3, K = n − 1. Again, all critical points are real, simple, and

belong to [−A,−1] ∪ [1,B]. Moreover, each critical point is an alternance

point. All endpoints −A, −1, 1, and B , except possibly one, are alternance

points. Let us show that −1 and 1 are alternance points.

The proof is by contradiction. Suppose, for example, that −1 is not an

alternance point. Then 1 cannot be a critical point because N = 3. Thus

P′(x) 6= 0 on [−1, 1], and P(1) ≥ 1 − L > −1 + L ≥ P(−1). We conclude

that P is strictly increasing on an interval (−1 − ε, 1 + ε) for some ε > 0.

This implies that 1 is also not an alternance point, a contradiction.

Thus P is of the type described in (2.9), (2.10).

c): m = n + 2, K = n − 2, N = 4. In this case, we have exactly one simple

critical point z that is not an alternance point. Evidently, this exceptional

critical point is real. We claim that it belongs to R\[−A,B].

First of all, z /∈ {−A,−1, 1,B} because N = 4 implies that all 4 of these

points are non-critical.

Secondly, z cannot be in the interior of one of the intervals (−A,−1)

or (1,B). Indeed, if it is in the interior of one of these intervals, consider

the adjacent alternance points x j and x j+1 on the same interval that satisfy

x j < z < x j+1. Such x j and x j+1 exist because all endpoints of each interval

are alternance points, and z is not an alternance point. Since z is the unique

critical point on (x j , x j+1), we obtain a contradiction with the alternance con-

dition (3.4).

Finally, we prove that z /∈ (−1, 1), Again the proof is by contradiction.

Suppose that z ∈ (−1, 1). Since −1 is an alternance point, P(−1) = −1 ± L.

Suppose first that

(3.5) P(−1) = −1 − L.

Then P′(−1) < 0 because −1 is not critical (N = 4 in the case we consider

now), and (3.2) implies that P′(−1) ≤ 0. Since P′ changes sign exactly once
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on (−1, 1) and the point 1 is also non-critical, we conclude that P′(1) >

0. Since P(1) = 1 ± L, (3.2) implies P(1) = 1 − L. This equality and

(3.5) contradict the alternance condition (3.4). The case P(−1) = −1 + L is

considered similarly.

Let c be the critical point which is outside [A,B]. It is easy to see that

|P(c) + 1| > L if c < 0 and |P(c) − 1| > L if c > 0. This is because N = 4,

and thus A and B are non-critical alternance points.

So we have the graph of the type shown in Figure 7.

To summarize, we proved that in all cases, the critical points are real and simple;

all critical values, with at most one exception at −1±L on the negative ray and 1±L

on the positive ray; and the exceptional critical value, if it exists, corresponds to an

extreme (left or right) critical point. If the exceptional critical point c is positive,

then |P(c) − 1| > L, and if c is negative, then |P(c) + 1| > L.

The polynomials S(2, a) constructed above allow us to match any such critical

value pattern; so we conclude that P(z) = S(2(cz + b), a) with c > 0 and b ∈ R.

Finally, the points −1 and 1 are always non-critical alternance points, and this

implies that c = 1 and b = 0.

It remains to consider the degenerate case. Suppose, for example, that B = 1.

Then only 3 alternance points can be non-critical, so we are in the case b). The

extremal polynomial in this degenerate case can be easily written explicitly as

Pn(x) = LnTn

(

2x + A + 1

A − 1

)

− 1,

where Tn(x) = cos n arccos x, and

Ln =
2

Tn(1 + 4/(A − 1)) + 1
∼ 4 exp

(

−n ch−1

(

1 +
4

A − 1

))

is the approximation error. �

Remarks. It is easy to see that our polynomials depend continuously on h. As

h → ∞, we have 5+
k1,k2

(h) → 5k1,k2−1 and 5−
k1,k2

(h) → 5k1−1,k2
in the sense of

Carathéodory, and the corresponding polynomials converge uniformly on compact

subsets of the plane.

Let us show that A(h) and B(h) depend monotonically on h. Let h > h1,

2(z) = 2(z, h), and 21(z) = 2(z, h1). Then the function w(z) = 2−1
1 ◦2(z) maps

the upper half-plane into itself, and has the properties w(±1) = ±1, w(∞) = ∞.

Thus it has a representation

w(z) = ρ∞(z − 1) + 1 +

∫

z − 1

(x − 1)(x − z)
dρ(x),
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where dρ is positive and supported on a compact set I such that x > B for all x ∈ I

and ρ∞ > 0. Here, we have used w(1) = 1 and w(∞) = ∞. We now use the

condition w(−1) = −1 and obtain

(3.6) ρ∞ = 1 −

∫

1

(x − 1)(x + 1)
dρ(x).

Since w(B) = B1, we have

B1 − B = (ρ∞ − 1)(B − 1) + (B − 1)

∫

1

(x − 1)(x − B)
dρ(x).

Using (3.6), we get

B1 − B = (B − 1)

∫

B + 1

(x − 1)(x − B)(x + 1)
dρ(x) > 0.

Similarly,

−A1 + A = (A + 1)

∫

A − 1

(x − 1)(x + A)(x + 1)
dρ(x) > 0.

4 Integral representations

Asymptotic relations for the extremal polynomials are based on an integral repre-

sentation of the conformal map 2.

Consider the conformal map of C\I onto the annulus in Figure 8. Here we

assume that the upper half-plane is mapped onto the upper part of the annulus

with the boundary correspondence

(4.1) B 7→ −1, −A 7→ −λ, −1 7→ λ, 1 7→ 1.

We denote by G(z, z0) the (real) Green function of the region C̄ \ I with pole at

z0, where I = [−A,−1] ∪ [1,B]. Define G(z) := G(z,∞). Recall that in the

upper half-plane, G(z) can be represented as the imaginary part of the conformal

mapping 8(z) of the upper half-plane onto the region5 of Figure 9;

(4.2) G(z) = Im8(z), Im z > 0, 8(±1) = 0, 8(∞) = ∞.

The map 8(z) defines certain important characteristics of the region: the criti-

cal value

(4.3) η = G(C), C ∈ [−1, 1] such that ∇G(C) = 0,
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Figure 8. The conformally equivalent annulus.

Figure 9. The image 5 of the map 8.
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and the harmonic measure ω(z) of the interval [−A,−1]. We have

(4.4) 8(−A) = −πα, where α = ω(∞).

Now we associate to 8(z) the function

(4.5) g(ζ ) = −i8(z(ζ )),

where ζ belongs to the upper half of the annulus; see Figure 8. This function can

be extended to the upper half-plane by the symmetry principle. We have G(z(ζ )) =

Re g(ζ ). We call g the complex Green’s function.

Let −µ ∈ [−1,−λ] correspond to infinity in the z-plane, −µ = ζ (∞) (see

Figure 8). We define the jump function

(4.6) j (ξ ) =







1, ξ ∈ (−1,−µ),

0, ξ ∈ (−µ,−λ),

and extend it symmetry to the whole negative ray by j (1/ξ ) = j (ξ ), j (λ2ξ ) = j (ξ ).

Since

Im g(ξ ) =















0, ξ > 0,

πα, ξ ∈ (−µ,−λ),

π(α− 1), ξ ∈ (−1,−µ),

we obtain the following integral representation for g(ζ ) in the upper half-plane:

(4.7) g(ζ ) =

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

(α− j (ξ ))dξ.

Remark. In the representation (4.7), the normalization condition 8(1) = 0

was used. The second normalization condition, 8(−1) = 0, gives

α = j :=

∫ 0

−∞

{

1
ξ−λ

− 1
ξ−1

}

j (ξ )dξ

∫ 0

−∞

{

1
ξ−λ

− 1
ξ−1

}

dξ
.

In what follows, we use the bar over a function to denote similar averages.

Naturally, we can simplify (4.7); but the point is that we can write a similar

representation for the conformal mapping 2n(z). Recall that for a given n, there

exists a unique region5(n) = 5±
k1(n),k2(n)(hn) (see Figure 6) such that the conformal

mapping 2n : C+ → 5(n) represents the extremal polynomial (2.7). We define

the function

(4.8) θn(ζ ) = −i2n(z(ζ )), θn(λ2ζ ) = θn(ζ ).
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We write the imaginary part of θn(ξ ), ξ < 0 as a sum

(4.9) Im θn(ξ ) = πk1(n) −
π

2
+ πn j (ξ ) + χn(ξ ),

so that χn(ξ ) is a continuous function, which is normalized by the condition

χn(−µ) = 0. Then

(4.10) θn(ζ ) =
1

π

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

(πk1(n) −
π

2
− πn j (ξ ) + χn(ξ ))dξ.

Theorem 4.1. In the above notation,

(4.11) θn(ζ ) − ng(ζ ) =
1

π

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

(χn(ξ ) − χ̄n)dξ,

where

(4.12) χ̄n =

∫ 0

−∞

{

1
ξ−λ

− 1
ξ−1

}

χn(ξ )dξ

∫ 0

−∞

{

1
ξ−λ

− 1
ξ−1

}

dξ
= πnα− πk1(n) +

π

2
.

Proof. We subtract ng(ζ ) in the form (4.7) from (4.11). Then we use the

second normalization condition, g(λ) = θn(λ) = 0. �

This representation implies Fuchs’ asymptotics once it is shown that χn(ξ ) is

uniformly bounded.

5 Fuchs’ asymptotics

Let us begin with a simple remark.

Lemma 5.1. Let w(z) be a conformal mapping of the upper half-plane onto

a sub-region of the upper half-plane which contains the half-plane Im w > τ0.

Assume the normalization w(z) ∼ z, z → ∞. Then

(5.1) Im w(z) − Im z ∈ (0, τ0).

Proof. Consider the integral representation of Im w(z),

(5.2) Im w(z) = Im z +
1

π

∫ ∞

−∞

P(z, t)v(t)dt,

where P(z, t) is the Poisson kernel. Since 0 ≤ v(t) ≤ τ0, we obtain the desired

inequality. �
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Proposition 5.2. There exist constants C1 and C2 (depending on the given

set of intervals I ) such that

(5.3) C1 ≤ an − nη ≤ C2.

Proof. Recall that the curves in Figure 3 were defined as preimages of vertical

lines in the region� of Figure 2 under a conformal mapping which maps the right

half-plane into a sub-region of the right half-plane. Thus, we can apply Lemma

5.1 to conclude that |χn(ξ )| ≤ 2π. Therefore, |χn(ξ ) − χ̄n| < 2π also. Now an is

the maximum of θn(ξ ) on the interval (λ, 1), and η is the maximum of g(ξ ) on the

same interval. By the integral representation (4.11), the difference between these

two functions is uniformly bounded in this interval. �

Corollary 5.3.

(5.4) lim
n→∞

θn(ζ )

n
= g(ζ ).

In particular,

(5.5) lim
n→∞

k1(n)

n
= α, lim

n→∞

ln(1/Ln)

n
= lim

n→∞

an

n
= η.

Proof. Divide (4.11) by n and pass to the limit as n → ∞. �

Corollary 5.3 has the following geometric interpretation. Rescaling by 1/n

so that 5(n) → 5(n)/n, we obtain the limit conformal mapping onto the re-

gion shown in Figure 9. Let us look more carefully at the limit procedure; see

Figure 10. The distance between the additional cut and one of the infinite cuts

(left or right one) approaches zero; however, the position dn of the end point of

the additional cut influences the asymptotic behavior along various subsequences

{nl}. We define the subsequences by the following condition: there exists a

d = d ({nl}) = liml→∞ dnl
. Taking the point d into account in the next section, we

describe the asymptotic behavior of Ln more precisely.

6 The limit density χ(ξ )

We have fixed a subsequence {nl} such that the limit d = liml→∞ dnl
exists. Our

main goal in this section is to show that the limit density

(6.1) χ(ξ ) = lim
l→∞

χnl
(ξ )

exists and to find this limit.
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Figure 10. The rescaled region 5(n)/n for a large n.

We start with the following general lemma. Let f : (0,∞) → R be a bounded

increasing differentiable function, and suppose that f (x) = 0 in (0, b] for some

b > 0. We consider the region

(6.2) �̃ f = {z = x + iy : x > 0, y > f (x)}

(it looks like the region � in Figure 2 reflected through the line x = y). Let w be

the conformal map from the first quadrant C++ onto �̃ f with the normalization

(6.3) w(z) ∼ z, z → ∞, w(0) = 0.

Let a be the point such that w(a) = b.

Lemma 6.1. Let w(x) = u(x) + iv(x), x ≥ a. Then f (x) ≤ v(x).

Proof. We extend w by the symmetry principle to the map of the upper half-

plane into itself (the extended map is still denoted by w), and use the integral

representation

(6.4) w(z) = z +
1

π

∫ ∞

a

{

1

t − z
−

1

t + z

}

v(t)dt.
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For x ≥ a, we have

(6.5) w(x) = x +
1

π

∫ ∞

a

2x

t + x

v(t) − v(x)

t − x
dt +

v(x)

π
ln

x + a

x − a
+ iv(x).

Therefore

(6.6) u(x) = x +
1

π

∫ ∞

a

2x

t + x

v(t) − v(x)

t − x
dt +

v(x)

π
ln

x + a

x − a
> x.

Since f (x) is increasing, we obtain

(6.7) f (x) < f (u(x)) = v(x).

We apply Lemma 6.1 to obtain the limit density for the conformal map of the

first quadrant onto the region � in Figure 2. Namely, as before, we consider the

conformal map w(z) = −iψ(−iz), where ψ is defined in (2.5) and extended by

symmetry to the right half-plane. We also consider the integral representation

(6.4) for w. Observe that in our case, we have the exact formula

(6.8) f (x) = arccos
cosh b

cosh x
, x ≥ b.

Between the values a and b, f gives a one-to-one correspondence. Moreover,

b ∼ a + 1/2 ln a. Thus we have the density v(x) = v(x, a) in (6.4) as a function of

the parameter a. We are interested in the limit density ṽ(x) := lima→∞ v(ax, a).

Lemma 6.2. The following limit exists:

(6.9) ṽ(x) := lim
a→∞

v(ax, a) =







0, x < 1

π
2
, x > 1.

Proof. It is evident that ṽ(x) = 0 for x ∈ (0, 1). For x > 1, we use Lemma 6.1

and the asymptotic relation between a and b:

(6.10) v(ax, a) ≥ arccos
cosh b

cosh ax
∼ arccos

√
a

e(x−1)a
.

On the other hand, v(ax, a) ≤ π/2. �

Now we are in position to evaluate the limit density (6.1).

Theorem 6.1. Let {nk} be a subsequence such that lim dnk
= d. Without loss

of generality, we assume that Re d = π(1 − α) (alternatively, Re d = −πα). The

relation

(6.11) d = 8(D) = ig(−κ)
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Figure 11. The preimage of the level line Im w = τ.

uniquely defines D ∈ [B,∞] and −κ ∈ [−1,−µ]. Then

(6.12)

χ(ξ ) = lim
l→∞

χnl
(ξ ) =































1

2

∫

|t|<η

πα

(t − y)2 + (πα)2
dt, −µ < ξ < −λ,

1

2

∫

|t|<η

π(α− 1)

(t − y)2 + (π(α− 1))2
dt, −κ < ξ < −µ,

1

2

∫

|t|<η

π(α− 1)

(t − y)2 + (π(α− 1))2
dt + π, −1 < ξ < −κ,

where y = Re g(ξ ).

Proof. First we assume that −µ < ξ < −λ. Let zl = θnl
(ξ ). For sufficiently

large l, we have, by (6.4),

(6.13) Im wl = Im zl +
1

π

∫

|t|>anl

Im zl

(t − Re zl)2 + Im z2
l

v(t, anl
)dt.

Substituting Im zl = πk1(nl) − π
2

+ χnl
(ξ ) and Im wl = πk1(nl) into (6.13) (see

Figure 11),we obtain

π/2 − χnl
(ξ ) =

1

π

∫

|t|>anl

(πk1(nl) − π/2 + χnl
(ξ ))v(t, anl

)

(t − yl(ξ ))2 + (πk1(nl) − π/2 + χnl
(ξ ))2

dt

=
1

π

∫

|t|>1

(πk1(nl) − π/2 + χnl
(ξ ))anl

v(anl
t, anl

)

(anl
t − yl(ξ ))2 + (πk1(nl) − π/2 + χnl

(ξ ))2
dt.

(6.14)



BEST UNIFORM APPROXIMATION TO SGN(x) 21

By the leading term asymptotics, Corollary 5.3, we have

(6.15) lim
l→∞

k1(nl)

nl

= α, lim
l→∞

anl

nl

= η, lim
l→∞

yl(ξ )

nl

= y(ξ ).

Passing to the limit as l → ∞ in (6.14), we get

(6.16) π/2 − χ(ξ ) =
1

π

∫

|t|>1

ηπα

(ηt − y)2 + (πα)2
ṽ(t)dt.

By Lemma 6.2, after trivial simplifications, we obtain the first equation in (6.12).

In the second case, −κ < ξ < −µ, for sufficiently large l, the point zl corre-

sponds to a point wl on the line Im wl = πk2(nl). Thus we can repeat the previous

arguments with α replaced with 1 −α (let us mention that χnl
(ξ ) is negative here).

In the last case, Im wl = π(k2(nl) − 1). This leads to the shift of the limit value

by π. �

7 Simplifying the result

In this section, we prove the following theorem, which is our main result, and

which implies Theorem 1.1.

Theorem 7.1. Let ν be the point in the interval (λ, 1) such that g(ν) = η. Fix

a subsequence {nl} such that liml→∞ dnl
= d = ig(−κ). Let g(ζ, ν) and g(ζ,−κ)

be the corresponding complex Green’s functions. Then

(7.1) lim
l→∞

{θnl
(ζ ) − nlg(ζ )} =

1

2
ln
η− g(ζ )

η + g(ζ )
+ g(ζ, ν) − g(ζ,−κ).

Proof. First of all, we split χ(ξ ) into the sum of a continuous function χc(ξ )

and the jump function

(7.2) j1(ξ ) =







1, ξ ∈ (−1,−κ),

0, ξ ∈ (−κ,−λ).

As usual, the jump function is extended to the negative ray by the reflections

j1(1/ξ ) = j1(ξ ), j1(λ2ξ ) = j1(ξ ).

Note that the jump function is related to the Green’s function G(z,D); compare

(4.6) and (4.7). Since

Im g(ξ,−κ) =















0, ξ > 0,

πω(D), ξ ∈ (−κ,−λ),

π(ω(D) − 1), ξ ∈ (−1,−κ),
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we obtain for g(ζ,−κ) in the upper half-plane, the integral representation

(7.3) g(ζ,−κ) =

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

( j̄1 − j1(ξ ))dξ,

where we have used the notation j̄1 introduced in the Remark in Section 4. Notice

that G(z(ζ ),D) = Re g(ζ,−κ), and

(7.4) j̄1 = ω(D).

Because of the chosen normalization χ(−µ) = 0, we have

(7.5) χ(ξ ) =







χc(ξ ) + π j1(ξ ), −κ < −µ,

χc(ξ ) + π j1(ξ ) − π, −µ < −κ.

The main point is to evaluate the Cauchy transform of the continuous part,

χc(ξ ).

Lemma 7.1. Let ν ∈ (λ, 1) be such that g(ν) = η, that is, ν corresponds to

the critical point C ∈ (−1, 1). Let g(ζ, ν) be the corresponding complex Green’s

function. Then

(7.6)
1

π

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

(χc(ξ ) − χ̄c)dξ =
1

2
ln
η− g(ζ )

η + g(ζ )
+ g(ζ, ν).

Proof. Using (6.12), we have for z = y(ξ ) + iα = g(ξ ), ξ ∈ (−µ,−λ),

(7.7) χc(ξ ) =
1

2
Im

∫ η

−η

1

t − z
dt =

1

2
Im ln

η− z

−η− z
.

Consider the function

(7.8) f (ζ ) :=
1

2
ln

η− g(ζ )

−η− g(ζ )
.

The image of the function g(ζ ) is shown in Figure 12; the image of the fractional

linear transformation is shown in Figure 13. Let us point out that for ζ in the upper

half of the ring in Figure 8, we obtain the values of g(ζ ) in the right half-plane and

for (η− g(ζ ))/(−η− g(ζ )) in the unit disk. Thus

(7.9) ρ(ξ ) := Im f (ξ ) =







π/2, λ < ξ < ν,

−π/2, ν < ξ < 1.

Here, ν is such that g(ν) = η.
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Figure 12. The image of the Green’s function.

Figure 13. The image of (η− g(ζ ))/(−η− g(ζ )).
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We use the integral representation of f (ζ ) + iπ/2,

(7.10)
1

2
ln
η− g(ζ )

η + g(ζ )
= f (ζ ) +

π

2
i =

1

π

∫ ∞

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

(

ρ(ξ ) +
π

2

)

dξ.

We still normalize the complex Green’s function related to the critical point

C ∈ (−1, 1) by the condition g(1, ν) = 0. Therefore,

Im g(ξ, ν) =















−π, ξ ∈ (λ, ν),

−π(1 − ω(C)), ξ < 0,

0, ξ ∈ (ν, 1).

According to (7.9), we can represent g(ζ, ν) as

g(ζ, ν) = − (1 − ω(C))

∫ 0

−∞

{

1

ξ − ζ
−

1

ξ − 1

}

dξ

−
1

π

∫ ∞

0

{

1

ξ − ζ
−

1

ξ − 1

}

(

ρ(ξ ) +
π

2

)

dξ.

(7.11)

Recall that on the negative ray, ρ(ξ ) = χc(ξ ); see (7.7). Adding (7.11) and

(7.10), we obtain (7.6); moreover,

(7.12) χ̄c = π(
1

2
− ω(C)).

�

Theorem 7.1 follows from Lemma 7.1, (4.11) and (7.3).

Completion of the proof of Theorem1.1 The error term Ln satisfies

(7.13) Ln ∼
√

2/π a−1/2
n e−an,

where an = max{θn(ξ ) : λ < ξ < 1}. This follows from (2.4) and our explicit

representation of the extremal polynomial, (2.7).

The necessary constants C, η, η1, η2, and α, which depend only on A and

B , and the harmonic measure ω(x) = ω(x, [−A,−1],C\I ) were defined in the

Introduction.

According to (7.4), (7.12), and (7.5), we have

(7.14)
χ̄

π
=







1/2 − ω(C) + ω(D), −κ < −µ,

−1/2 − ω(C) + ω(D), −µ < −κ.

Notice that ω is a strictly increasing function on R\(−A,B) and the image of this

set (together with the infinite point) equals [0, 1]. Therefore for every integer n,

there exists a unique solution Dn of the equation

(7.15) ω(Dn) = {αn + ω(C)},



BEST UNIFORM APPROXIMATION TO SGN(x) 25

where {·} stands for the fractional part.

Equations (4.12) and (7.14), and the fact that dnl
→ d imply that

(7.16) ω(Dnl
) → ω(D).

Let −κn ∈ (−1,−λ) be the point in ζ -plane that corresponds to Dn in z-plane; see

Figure 8. Then g(ζ,−κnl
) → g(ζ,−κ). Now (7.1) gives

(7.17) lim
nl→∞

(θnl
(ζ ) − nlg(ζ ) + g(ζ,−κnl

)) =
1

2
ln
η− g(ζ )

η + g(ζ )
+ g(ζ, ν).

The right hand side is independent of the subsequence {nl}, so the limit as n → ∞

on the left hand side exists as n → ∞. In the resulting formula, we let ζ tend to ν

and obtain

(7.18) lim
n→∞

(θn(ν) − ng(ν) + g(ν,−κn)) = −
1

2
ln

2η

η1

+ η2.

The functions g(ζ,−κn) are uniformly bounded and have bounded derivatives on

(λ, 1). Therefore,

an = max{θn(ξ ) : λ < ξ < 1} = θn(ν) + o(1), n → ∞.

Thus

(7.19) an = ηn − G(Dn,C) −
1

2
ln

2η

η1

+ η2 + o(1).

To obtain the final result, this expression for an has to be substituted into (7.13).

We can simplify the expression eG(Dn,C) in the resulting formula in the follow-

ing way and thus avoid having to solve equation (7.15). Let F be the conformal

map of the upper half-plane onto a rectangle (0, p, p + i, i), where p > 0 and the

vertices of the rectangle correspond to (1,B,−A,−1) in that order. It is easy to

see that ω = Im F . Thus

(7.20) F (C) = iω(C),

and, in view of (7.15),

(7.21) F (Dn) = p + iω(Dn) = p + i{αn + ω(C)}.

The Christoffel–Schwarz formula gives (1.2), and p = τ/i, where τ is defined by

(1.4). We reflect our rectangle with respect to the imaginary axis and apply the

map z 7→ (iπ/p)z to obtain the new rectangle

R = {x + iy : −π/p < x < 0, |y| < π}.
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The map z → ez then maps R onto a ring e−π/p < |w| < 1. We use the expression

for the Green’s function of this ring [3, §55 (4)], substituting into this formula2

lnw = iπ− (π/p)ω(D), ln c = (π/p)ω(C) and using τ instead of −1/τ. The result

is simplified using Table VIII in [3]. We obtain

eG(Dn,C) =

∣

∣

∣

∣

∣

ϑ0

(

1
2
({nω(∞) + ω(C)} − ω(C))| τ

)

ϑ0

(

1
2
({nω(∞) + ω(C)} + ω(C))| τ

)

∣

∣

∣

∣

∣

,

where τ = ip is given by (1.4). Combining this with (7.13) and (7.19) yields

Theorem 1.1. �

8 Example: the symmetric case

We consider the case I = [−A,−1] ∪ [1,A]. In this case,

(8.1) G(z,∞) =

∫ z

A

xdx
√

(x2 − 1)(x2 − A2)
.

Therefore,

(8.2) η =

∫ 1

0

xdx
√

(x2 − 1)(x2 − A2)
=

1

2

∫ A2+1

A2−1

1

dt√
t2 − 1

=
1

2
ln

A + 1

A − 1

and

(8.3) η1 = −
1

2
G′′(0,∞) =

1

2A
.

Also,

(8.4) G(z, 0) =

∫ z

−1

Adx

x
√

(x2 − 1)(x2 − A2)
∼ ln

1

z
+ ln

2A√
A2 − 1

.

Notice that ω(∞) = 1/2, C = 0, and ω(C) = 1/2. Therefore, for n = 2m + 2, we

have Dn = ∞, so L2m+2 = L2m+1.

For n = 2m + 1, we get

√

(2m + 1)η

√

η1

2η
e(2m+1)η+η2 L2m+1

=

√

2m + 1

4A

(

A + 1

A − 1

)m
√

A + 1

A − 1

2A√
A2 − 1

L2m+1.

(8.5)

2In the English edition of 1990, this formula contains two misprints: an extra vertical line and
missing subscript 1 in the theta-function in the denominator.
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Finally,

(8.6) lim
m→∞

√
2m + 1

(

A + 1

A − 1

)m
√

A

A − 1
L2m+1 =

√

2

π
,

as is proved in [5].

9 Approximation of sgn(x) by entire functions on
[−A,−1] ∪ [1,+∞)

Only a minor variation of our method is needed to investigate the following prob-

lem.

Problem. Minimize

(9.1) sup{| f (x) − sgn(x)| : x ∈ [−A,−1] ∪ [1,+∞)}

among all entire functions f of order 1/2, type σ.

Let E(σ) be the infimum (9.1). Using normal families arguments, it is easy to

prove the existence of an extremal function.

We now describe a construction of extremal functions. We take the error E

as an independent parameter. Let a > 0 be the unique solution of the equation

L(a) = E , where L(a) is defined in the beginning of Section 2. For h ≥ 0 and

an integer k ≥ 2, let 5k(h) = 5−
k,∞(h), that is, the region in the upper half-

plane whose boundary with respect to the upper half-plane consists of the segment

[0, ia] and the curve δ−k , as in (2.6). Let 2k,h : C+ → 5k(h) be the conformal

map normalized by 2k,h(±1) = 0,2k,h(∞) = ∞.

Proposition 9.1. If h = 0, then S(2k,0, a) is the unique extremal function of

(9.2) A ∈ [2−1
k,0(−ck),2−1

k,0(−ck−1)].

If h > 0, then S(2k,h, a) is the unique extremal function of

A = 2k,h(−ck−1 + 0).

The proof of this theorem is similar to the proof of Theorem 3 in [5]. We recall

the argument for the reader’s convenience.

Proof. Let f (z) = S(2(z), a). Let x1 < x2, . . . → +∞ be the sequence of

all alternance points. Let σ > 0 be the same type as f with respect to the order

1/2. Let g be an entire function of the same type σ, order 1/2. Without loss
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of generality, we may assume that g is real. Then there exists a sequence {yk}

interlaced with {xk}, that is,

x1 ≤ y1 ≤ x2 ≤ y2 ≤ . . . ,

such that f (yk) = g(yk). Consider the product

F (z) =

∞
∏

k =1

1 − z/xk

1 − z/yk

.

This product converges uniformly on compact subsets of the plane and has imagi-

nary part of a constant sign in the upper half-plane and of the opposite sign in the

lower half-plane [9, VII, Thm1]. This implies that

(9.3) F (reit) = O(r), r → ∞

uniformly with respect to t in ε < t < 2π− ε for every ε > 0. Since f (yk) = g(yk),

we have

(9.4)
f (z) − g(z)

f ′(z)
=

P(z)

(z − c)F (z)
,

where c is the critical point of f which is outside the set [−A,−1] ∪ [1,∞). If

there is no such point c, then the factor (z − c) in (9.4) has to be omitted. Thus P

is an entire function of order 1/2.

We now observe that the left hand side of (9.4) is bounded for |Im z| > 1. In-

deed, g and f −g are at most of type σ, order 1/2, while f ′ has indicator σ sin(t/2),

0 < t < 2π; so the ratio has zero type in C\R+ and thus is bounded, by the

Phragmén–Lindelöf Theorem.

Combining this with (9.3), we conclude that P is a polynomial, and

(9.5) P(z)/(z − c) = O(z), z → ∞

if the point c exists, and

(9.6) P(z) = O(z), z → ∞

if the point c does not exist.

On the other hand, P(x) = 0 for each non-critical alternance point x. From our

construction of f = S(2, a), it follows that when c exists, there are three non-

critical alternance points, namely, −A, −1, and 1; while when c is absent, there

are at least two non-critical alternance points, namely, −1 and 1. Together with

(9.5) and (9.6), this implies that P = 0, that is, f = g. �
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Proposition 9.2. For every E and A, there exist k, h and a such that

S(2k,h, a) is an extremal function for the set [−A,−1] ∪ [1,+∞).

Proof. For given E , we can choose a such that L(a) = E . To prove the ex-

istence of k and h, we use a monotonicity argument as in the Remarks in Sec-

tion 3. Namely, we introduce the following order relation on the pairs (k, h):

(k, h) ≺ (k′, h′) if k < k′, or k = k′ and h > h′. With this order, the set of pairs

(k, h) becomes isomorphic to the positive ray, and the correspondence (k, h) 7→ A

becomes monotone increasing. This function is continuous for h 6= 0 and has a

jump at each point (k, 0) (this jump is seen in the right hand side of (9.2)). Thus

we can obtain any A > 1 from some pair (k, h). �

Theorem 9.1. For every A and σ, there exists a unique extremal function f

of type σ, and f = S(2k,h, a) for some positive integer k, h ≥ 0 and a > 0.

Proof. Let σ(A,E) be the type (with respect to order 1/2) of the extremal

function defined in Proposition 9.2. Then Proposition 9.1 implies that for every A,

the function E 7→ σ(A,E) is strictly decreasing. It is easy to check that σ(A, 1) = 0

and σ(A, 0+) = +∞. Moreover, E 7→ σ(A,E) is continuous. Thus there exists a

unique E = E(A, σ) that is the error of the best approximation for given A and σ.

From this E and A, we define k and h using Proposition 9.2. �

To state the asymptotic result, we introduce the Martin function M (x) of the re-

gion C\I , where I = [−A,−1]∪[1,+∞), replacing the Green’s function which we

used before. The Martin function is characterized by being positive and harmonic

in C\I , vanishing on I , and having the asymptotic behavior

M (−x) ∼
√

x, x → +∞.

We have M (z) = Im M(z), where M is the conformal map of the upper half-plane

onto the region {x + iy : x > −πα, y > 0}\[0, iη] such that

M(±1) = 0, M(−A) = −πα, M(−x) ∼ i
√

x, x → +∞.

These relations define α and η uniquely.

The Martin function has a single critical point C ∈ (−1, 1) and we write η =

M (C) and η1 = −M ′′(C)/2, as before. The Green’s function G(x,C) satisfies

G(x,C) = − ln |x − C| + η2 + O(x − C), x → C,

and this defines η2. We also introduce the harmonic measure

ω(z) = ω(z, [−A,−1],C\I ).
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Then ω(x) is continuous and strictly increasing on [−∞,−A), and maps this ray

onto [0, 1). Thus the equation

ω(Dσ) = {ασ + ω(C)} ,

where {x} is the fractional part of x, has a unique solution for every σ > 0.

Theorem 9.2. The error of the best uniform approximation of the function

sgn(x) on [−A,−1] ∪ [1,+∞) by entire functions of order 1/2, type σ, satisfies

E(σ) ∼

√

2

π
(a(σ))−1/2e−a(σ),

where

(9.7) a(σ) = ησ− G(Dσ,C) −
1

2
ln

2η

η1

+ η2.

Equation (9.7) is analogous to (7.19). One can simplify eG(Dσ,C), as was done

in Section 7, by using an expression for the Green’s function in terms of theta-

functions.
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