
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 274, Number 2, December 1982 

POLYNOMIALS ON AFFINE MANIFOLDS 
BY 

DAVID FRIEoI 

ABSTRACT. For a closed affine manifold M of dimension m the developing map 
defines an open subset D(M) C Rm. We show that D(M) cannot lie between 
parallel hyperplanes. When m .;;; 3 we show that any nonconstant polynomial p: 
Rm --> R is unbounded on D( M). If D( M) lies in a half-space we show M has zero 
Euler characteristic. Under various special conditions on M we show that M has no 
nonconstant functions given by polynomials in affine coordinates. 

An affine n-manifold is a manifold modelled on affine n-space An (see [FGH, NY 
or Th] for more details). From the viewpoint of algebraic geometry, one should study 
those real valued functions on M which are polynomials in local coordinates, which 
we shall call polynomial maps on M. Since bounded polynomials on An are constant, 
the only polynomial maps on a complete closed affine manifold are constants. 

The main consequence of our investigation (Theorem 4) is that the developing 
image D(M) of a closed affine three-manifold is large, in the sense that it isn't 
confined between the level surfaces of a polynomial on An. Here M denotes the 
universal cover of M and D: M ..... An is the developing map (D is characterized up 
to an affine automorphism of An as a local diffeomorphism preserving the affine 
structure [FGH, §2)). The method of proof is to pass from nonconstant polynomials 
bounded on D(M) to nonconstant polynomials on M (Theorem 1) and then to show 
that closed affine manifolds of dimension';;; 3 admit only constant polynomial 
maps. At the end of the paper we extend this result somewhat in the setting of affine 
foliations and syndetic actions. 

In higher dimensions the corresponding question is unresolved. We show (Theo-
rem 2) that the developing image of a closed affine manifold cannot lie between 
parallel hyperplanes, but we don't know whether polynomial maps of high degree 
can exist on some high dimensional affine manifolds. 

In a different vein, we use Theorem 2 to prove that the Euler characteristic of a 
closed affine manifold vanishes whenever the developing image lies in a half-space 
(Theorem 3). 

We thank Moe Hirsch for some helpful conversations and particularly for drawing 
attention to Proposition 1 below. 

1. General results. We collect here a number of results concerning polynomials on 
closed affine manifolds that are valid in all dimensions. 
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For some geometrical insight into the general arguments that follows, we describe 
an interesting special case. Suppose the developing image of a closed affine three-
manifold M is an unbounded region contained in an infinite cylinder, D(M) C D2 
X R. Then the direction of the axis of this cylinder is well defined, since cylinders 
with nonparallel axes have bounded intersection. Passing to the quotient affine space 
by II: A 3 ~ A2, where II collapses lines parallel to the axis to a point, we obtain a 
bounded open region IID(M) C A2. This region is mapped to itself by an affine 
action f' induced from the affine holomomy f of M (f is the image of the 
holonomy representation '/TI( M) ~ Aff(3), as in [FGH, §2]), since f preserves the 
family of lines parallel to the axis. We may find an inner product on A2 preserved by 
f', since f' preserves the bounded open region IID(M). The barycenter b E A2 of 
the convex hull is also preserved by f'. The function II x - b 112 on A 2 induces a 
f-equivariant function on D(M) and hence a map f: M ~ R. But, using local 
coordinates, f has no local maximum. As M is closed, this is a contradiction and 
gives a special case of Theorem 2 below. 

Certain arguments of the preceding paragraph are generalized in our first theorem. 

THEOREM 1. Suppose M is a closed affine manifold with developing image D(M) C 
An. Then there exists a nonconstant polynomial with bounded values on D(M) if and 
only if there is a nonconstant polynomial on M. 

PROOF. If we let f denote the affine holonomy of M and X denote D(M), we 
reduce to 

LEMMA 1. Let f be a subgroup of Aff( n) and X a Zariski-dense f -invariant subset of 
An. If there is a nonconstant polynomial bounded on X then some such polynomial is 
f-invariant as well. 

PROOF OF LEMMA 1. Let Vd be the finite dimensional real vector space consisting 
of all polynomials on A n of degree ,,;;;;; d that are bounded on X. By assumption, we 
may choose d so that Vd =1= Vo. 

Let B be the affine mapping from An to the dual vector space V: given by 
B( x)( p) = p( x), x E An, p E Vd . Then B takes values in the affine subspace 
We V: consisting of all L with L(I) = 1. Note that f acts by affine transforma-
tions on Vd , V: and Wand that B is f -equivariant. 

Since X is Zariski-dense, the image B( X) doesn't lie in a proper affine subspace of 
W. The subgroup H of Aff(W) determined by the action of f preserves the bounded 
set B( X) C W. If we denote by C the interior of the convex hull of B( X), we see 
that C is bounded, convex, open and nonempty and C is preserved by H C Aff( W). 

It follows that H preserves the barycenter Wo of C and that H is relatively compact 
in Aff(W). Regarding Was a vector space with origin wo, we can find a f-invariant 
inner product on W. The map (B(x), B(x» is a nonconstant f-invariant poly-
nomial which is bounded on X. Q.E.D. 

We remark that the nonconstant polynomial just constructed has degree";;;;; 2d, 
where d is the degree of a nonconstant polynomial bounded on D(M). 

We will use the following lemma and its corollary in both propositions of this 
section. 
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LEMMA 2. Suppose M is decomposable, that is there is a f-equivariant affine 
retraction of An onto an affine subspace F =1= An, r: An ---> F. Let V = ker(Dr) be the 
vector space complementary to F and write An = F X V. If p is a polynomial map on 
M then, in local coordinates, p( f, v) depends only on f. 

PROOF. As in [FGH, Theorem 3.3] there is a flow on M induced by the flow 
(f, etv) on An. Since M is closed, p must be bounded on DUt/), hence p(f, etv) is 
bounded in t for fixed (f, v) E D( M). 

Thus the polynomial p( f, sv) in the variable s is constant. Since D( M) is open, we 
see that p is independent of v. Q.E.D. 

In case F has dimension zero, we obtain 

COROLLARY 1. If M is a radiant closed affine manifold, that is f fixes a point 
ao E An, then M has no nonconstant polynomial maps. 

We can now show 

PROPOSITION 1 (HIRSCH). If P is a nonconstant polynomial on a closed affine 
manifold M then p must have a non isolated local maximum and a non isolated local 
minimum. In particular, p cannot have degree 1 or 2. 

PROOF OF PROPOSITION 1. As M is closed, p attains its maximum and minimum 
values somewhere on M. Assume some such extremum is isolated. Then, in D( M), p 
has a level set C for which some component is a point. Let c I' ... , C k E C be all the 
point components of C (note that k is finite because algebraic sets have only finitely 
many components). Then f permutes {c 1, ••• , cd and preserves its barycenter ao, 
contradicting Corollary 1. 

For polynomials of degree 1 there are no critical points whereas for polynomials 
of degree 2 one can't have both local maxima and local minima. Q.E.D. 

Note. We have actually shown that p cannot have an isolated local extremum. 
More generally, if p determines a bounded set in affine space in some manner then 
affine maps preserving p will fix some point. Then p cannot be the local coordinate 
expression of a polynomial map on a closed affine manifold. 

We now have the background results needed to extend the "special case" 
discussed at the beginning of this section. 

THEOREM 2. If M is a closed affine manifold then the developing image D(M) does 
not lie between parallel hyperplanes. 

PROOF. Otherwise one could construct a nonconstant polynomial p on M of 
degree";;;; 2d = 2, using Theorem 1. This p would contradict Proposition 1. Q.E.D. 

We show next that polynomial maps must be constant for the class of affine 
manifolds considered in [FGH]. 

PROPOSITION 2. If the affine holonomy f of the closed affine manifold M has a 
nilpotent subgroup of finite index then all polynomials on M are constant. 

PROOF. Passing to a finite cover, we may assume that f is nilpotent. Then the 
Fitting Splitting [FGH] shows that An = FEB V, F an invariant affine subspace, Van 
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invariant vector complement and where the restriction r I F consists of unipotent 
transformations. 

We know by Lemma 2 that p(f, v) depends only on F. Since bounded polynomi-
als on F are constant, we need only to show that the projection of D( M) C FEB V to 
Fis onto. 

This was shown in [FGH, Theorem 6.8] for the case V = O. Carrying through the 
inductive argument given there as far as possible, we obtain the required surjectivity 
for arbitrary v. Q.E.D. 

We note that by [T] we may rephrase Proposition 2 as follows: a closed affine 
manifold with a nonconstant polynomial map must have a fundamental group with 
exponential growth. 

We conclude this section with a demonstration of a special case of well-known 
conjecture that the Euler characteristic of a closed affine manifold must vanish. 

THEOREM 3. If M is a closed affine manifold and the convex hull of D(M) is a 
proper subset of An (that is, if D( M) is contained in a half-space) then x( M) = O. 

PROOF. By choosing an origin we may identify An with Rn. By assumption, the 
convex cone C of linear functionals on Rn bounded below on the developing image 
D(M) contains a nonzero element L. By Theorem 2, LEe - {O} implies -L fi C. 
Thus C - {O} is a proper nonempty convex cone. 

Clearly C - {O} is invariant under the linear holonomy. It thus determines a 
nontrivial continuous cone field in the cotangent bundle T* M. Using the partition of 
unity one may construct a nonvanishing section to T* M, showing X(M) = O. 
Q.E.D. 

2. Low dimensional results. We will show that no closed affine manifold of 
dimension';;;; 3 has a nonconstant polynomial map. One could show this more 
directly in dimensions 1 and 2 by using Proposition 2 and Benzecri's result that the 
torus and Klein bottle are the only closed surfaces that admit affine structures [B]. 
As we need more general tools in dimension 3 anyway, we give a proof independent 
of [B]. 

THEOREM 4. If M is a closed affine manifold of dimension n .;;;; 3 then the developing 
image D(M) does not lie between the level curves of any polynomial on An. In 
particular, M does not have any nonconstant polynomial maps. 

PROOF. By Theorem 1, we need only show the second statement of the theorem. 
By multiplying in factors of S 1, we may assume henceforward that n = 3. 

Suppose p is a nonconstant polynomial map on M. Then the affine holonomy r is 
a subgroup of G( p) = {y E Aff(3) I p 0 y = p}. Since G( p) is an algebraic group it 
has only finitely many components and we may pass to a finite cover of M to 
assume r lies in the identity component Go(p) of G. We will let 8(){p) denote the Lie 
algebra of Go{ p) which we will identify with the associated Lie algebra of affine 
vector fields on A3. We summarize the first main step of our argument in 

LEMMA 3. Go{ p) contains no one-parameter groups of translations. Equivalently, p 
cannot be expressed as a function of.;;;; 2 linear variables. 
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PROOF OF LEMMA 3. Suppose (30 contains d > ° independent infinitesimal transla-
tions. If d = 3, P is constant. If d = 2 then P depends only on one variable, say x. 
Thus Go(p) = Go(x) and x induces a nonconstant polynomial on M, in violation of 
Proposition 1. Hence we must have d = 1,p = p(x, y). 

We consider the highest homogeneous part PN(X, y) of p(x, y), N = deg p, and 
factor PN over R into irreducible linear and quadratic terms PN = ITI; . ITqj. 
Projecting Go( p) into GI(3) gives a connected linear group Ho( p) that preserves P N' 
It follows that the action of Hi p) on the factors I; and qj is to multiply each factor 
by a positive scalar; for h E Ho( P ), 

Suppose a quadratic factor ql occurs in PN' In appropriate coordinates, we have 
ql = x 2 + y2. It follows easily that ILj = ILl for all j and A; = ILl for all i. Finally, 
since ITA; . ITILj = 1, we find that ILl = 1. 

This shows that the map (x, y) 0 D: At ---> R2 is equivariant from the action of 
7T I M on At by covering translations to a group of isometries of R2. The level curves 
of this map determine a Euclidean foliation of M. By [Th,4.8.1] the map (x, y) 0 D 
is onto. But as P is bounded on im D, we must have P constant. This contradiction 
shows that no quadratic factors appear in P N' 

If there are 3 or more nonproportional linear factors in PN' then we again find 
that all A; equal to 1 and we obtain the same Euclidean foliation and contradiction 
as in the preceding paragraph. 

Suppose PN contains exactly two nonproportionallinear terms. We may normalize 
so PN = X)N-;, 0< i < N. As in the preceding paragraphs, Ax and Ay are not 
identically 1. Thus Go( p) contains a one-parameter group of the form 
(e1ax, elPy, J;(x, y, z» with ai + f3(N - i) = 0, a =I=- 0, f3 =I=- 0, and where we have 
translated the origin to eliminate the translational terms in the x and y coordinates. 
It follows thatp(x, y) is constant along the level curves ofpN' Thus GO(PN) = Go(p). 
But now PN determines a polynomial map on M that is incompatible with Proposi-
tion 1. 

Finally we must have all/;'s proportional to one another. We may normalize so 
PN = yN. We have a nontrivial affine relation between the partial derivatives Px and 
Py ' since (30( p) is nontrivial. As P is not a function of a single linear variable and Px 

has lower degree than Py ' we find a relation (ax + by + c)Px + Pv = 0, (a, b) =I=-

(0,0). Absorbing c into the linear terms by a translation of coordinates, we find that 
P is constant along the trajectories of dx / dy = ax + by. 

If a =I=- ° then these trajectories are nonalgebraic curves of the form x = -by / a + 
ke a y - b / a 2. Hence a = 0, the trajectories are given by x = by 2/2 + k and P is 
functionally dependent on x - by 2/2 = q. It follows that q is preserved by G o( p) 
and so defines a polynomial on M. Since deg q = 2 this violates Proposition 1. 
Q.E.D. 

Lemma 3 implies that the natural map from Go( p) into GI(3, R) is locally 
injective. We will continue to denote the image group by Ho(p). We have Ho(p) ~ 
Go( p) ::J r so that Proposition 2 implies Go( p) is not nilpotent. Thus dim Ho( p) ;;;. 2 
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and by Engel's theorem the Lie algebra Xo(p) of Ho(p) contains an element A 
which isn't nilpotent. 

Since G( p) is an algebraic group, Xo( p) is invariant under the Jordan decomposi-
tion [Bo, (4.4)], so the semisimple part S of A belongs to Xo( p). Thus PN is invariant 
under e tS, where S E Hom(R3) is semisimple, S =1= O. 

We first suppose S has a pair of nonreal conjugate eigenvalues. Putting S in the 
form 

( -: a 
P 

o 
we find PN = Q(x 2 + y2, z2) . ze where e = 0 or 1 and Q is a homogeneous 
polynomial in 2 variables. We factor Q into linear and quadratic irreducible factors, 
Q = III; . IIqj" If any quadratic factor of qi occurs then q/x2 + y2, Z2) is a positive 
definite homogeneous function of x, y and z. It follows as in Lemma 3 that Ho(p) 
preserves q/x2 + y2, z2). But this implies that Ho(p) is compact and so M is 
complete,p constant. Thus only I;'s occur. Again no 1;(x2 + y2, Z2) can be definite. 
Also if two I; aren't proportional then Ho(p) transforms both x 2 + y2 and z2 by 
constants, implying Ho( p) is abelian. Thus we may assume all the I;'s are equal to 
a(x2 + y2) - bz 2, a, b ;;;., o. If b = 0, then M has a Euclidean foliation and we 
obtain a contradiction, as in proof of Lemma 3. Thus, by a linear change of variables 
we may putPN in the form (x 2 + YZ)b or ZN. 

We next consider the alternative case when S has only real eigenvalues. We may 
assume 

s= (~ 
o 
IL 
o ~) 

is in diagonal form. Setting PN = 'ia;ikxiyizk we obtain 0 = DpN(V)(SV) = 
'i(?l.i + ILj + vk)aiikxiyiz\ for all v = (x, y, z) E R3. Thus (?l.i + ILj + vk) = 0 
whenever a;ik =1= 0, (?I., IL, v) =1= (0,0,0). By permuting the coordinates we may put PN 
in the form 

where q is homogeneous polynomial in 2 variables. 
The analysis of S shows that in good coordinates PN may always be put in the 

form (*). We may make our choices so that either q is constant or q(u, v) = aoum + 
a l U",-IV + ... +amv"', aOam =1= 0, b relatively prime to c. 

We proceed to use the fact that the nonabelian group Ho( p) cannot consist 
exclusively of diagonal matrices. If q is constant we see that a, P and y cannot all be 
nonzero, and we may put PN in the form x"yp. In case q isn't constant, we have 

X(PNt = apN + x"yPzY(b + c)xb+cqu{xb+c, ybZ''), 

y(PN)Y = PPN + x"yPZYbybzcqv{Xb+c, ybzc), 

Z(PNt = YPN + x"yPZYcybzcqv{Xb+c, ybzc). 
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Considering the relative position of the nonvanishing coefficients of these formulas 
in the triangular region i + j + k = N, i, j, k ;;. 0 (see Figure 1), we find that either 
the only degree 1 equations amongst (PN)x' (PN)y and (PN)z are diagonal or b = c 
or one of band c is zero. Switchingy and z coordinates if necessary, we obtain b = 1 
and c = 0 or 1. 

(1-1,j,k+l) 

(b+c,-b,-c) 
(1-1,j+l,k) 

(1,j-l,k+l) 

(1,j,k) 

.. 
(1,j+l,k-l) 

~ 
(1+1,j-l,k) 

... 
(i+l,j,k-l) 

yfz ---+-

FIGURE 1. The partial derivatives of f = PN 

Thus we may replace the general form (*) for the top homogeneous part P N of P 
by one of 3 simpler forms, 

I PN = xaypzYq(x, y) } 

II PN=XayPzYq(x2,yz) 
, q = aou m + ... +amvm, maoam =1= 0, 

III PN = xayP, 

which we shall dispose of separately. 
CaseI.PN = xaypzYq(x, y). 
First suppose y = O. Then PN is a product of linear and definite quadratic terms in 

x andy. The Euclidean foliation arguments from the proof of Lemma 3 show thatPN 
has no definite factors and at most 2 nonproportionallinear factors, so we reduce to 
Case III. 

For y =1= 0, we again cannot have quadratic irreducible factors in q lest the 
ho10nomy be abelian (see the arguments above when Shad nonreal eigenvalues). 
Again, if PN has two or more nonproportional linear factors then Xo( p) is 
diagonalizable, hence abelian. 

Thus by linear coordinate changes, Case I reduces to Case III. 
Case I1,PN = xaypzYq(x2, yz). 
From a nondiagona1 first degree relation in the partial derivatives of PN' we obtain 

a relation of the form x( PN)z = ky( PN )x' k =1= 0, after possibly switching y and z. 
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Rescaling the y coordinate so k = 1. we find PN depends only on y and (x 2 + yz), 
and we may take PN = yp(x 2 + yzY, n '* O. 

First suppose {3 = O. Then Ho(p) C SO(2, 1). If we have Ho(p) = SO(2, 1), then 
Go(p) ~ SO(2, 1) is semisimple and connected. Then Go(p) would fix a point in A 3 

by [M], contradicting Proposition 2. Thus dim Ho( p) = 2. It follows that Ho( p) is a 
parabolic subgroup of SO(2, 1). 

If {3 '* 0 then Ho( p) C R + . SO(2, 1). It is easily seen that the projection of Ho( p) 
into SO(2, 1) is a 1-1 map onto a parabolic subgroup of SO(2, 1). 

Regardless of whether {3 = 0 or {3 '* 0, we have a linear basis for §o( p) of the 
form 

o 
-2n 
o 

where we have made the y - z translational part of B vanish by proper choice of the 
origin (using the fact that -2n and 2n + 2{3 are nonzero). Since A generates the 
commutator subgroup of§o(p), we obtain by computation that [A, B] = ({3 + 2n)A, 
giving the equations 

-{3u = ({3 + 2n)u, 
2nv + 28 = ({3 + 2n)v, 

- (2n + 2{3)w = ({3 + 2n)w 
from which follows u = w = 0, {3v = 28. 

If {3 '* 0 we may choose the origin so 8 = 0 and thus v = 0, contradicting 
Corollary 1. 

Thus {3 = 0 and 8 = {3vj2 = O. For a = (x, y, z) we have Dp(a)(Aa) = 0 and 
Dp(a)(Ba) = 0, that is 

zpx + (v - 2x)py = YPy - zPz = O. 

It follows that p is functionally dependent on yz + x 2 - vx = q. Thus q is invariant 
under r and determines a polynomial on M that violates Proposition 1. 

Case III. PN = xOyp. 
Our argument splits into two cases, according to whether a, {3 are both positive 

(we will restrict to this case for now) or whether one of a, {3 vanishes (which we shall 
consider below in Case IV). 

Ho( p) cannot preserve x and y by the Euclidean foliation argument in the proof 
of Lemma 3. Setting x 0 h = AX we obtain a homomorphism A: Ho(p) -+ R+ which 
is onto. The kernel K of A has dimension ;;a. 1 and determines a Lie algebra %. 

Elements of % - 0 give relations ~Px = 1/Py + (ax + by + cz + 8)pz = O. We 
must have (~, 1/) '* (0,0) and (a, b, c) '* (0,0,0) by Lemma 3. Let x = ~x + 1/Y 
and choose a complementary coordinate y for the x - y plane. Then we have Px + 
(ax + by + cz + 8)pz. In order to have algebraic level curves in the plane y = 
constant, we must have c = O. 

Since (~, 1/) '* (0, 0) on % - 0 we see dim % = 1 or 2. If dim % = 2, then we may 
translate x and y so 8 == 0 on %. Choosing a, 1/) = (1,0) and (0, 1) gives the pair of 
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equations Px + (ax + 1'y)pz = Py + (/LX + Py)pz = O. Thus p is constant along the 
families of curves 

y = constant, dz/dx = ax + 1'y, 
X = constant, dz/dy = /LX + Py. 

It follows that p is functionally related to a polynomial of the form z + q( X, y), and 
we again violate Proposition 1. 

Thus dim X = 1. We may choose a basis for §o( p ) of the form 

A~(~ ~ g)(~), B~(-; ; ~W) 
where we've used multiples of A to eliminate the lower left entry in B and then 
translated the origin to eliminate the X - Y translational component of B (a, [3 are 
nonzero). We find [B, A] = ([3 + d)A and obtain the equations 

([3 + d)b = db - ba, ([3 + db = a1/, 

([3 + d)l3 = C1/ + l3l3, ([3 + d)~ = -[3~. 
Hence b = 0 and precisely one of ~ and 1/ must vanish. 

(a) ~ = 0, 1/ =I=- O. We find d = a - [3, [3l3 = C1/. From 1/Py + (x + l3)pz = 0 we 
obtain p = q( x, yx + l3 y - 1/z). Setting y = 0 shows q = q( x, v) is a polynomial. 
Using [3 E §o( p) gives an equation in p equivalent to 

xqx + (v(l - a/[3) + e1//[3)qv = O. 

If k = 1 - a/[3 isn't zero, we may add a constant e to v and obtain xqx + kvqv = O. 
It follows that p is functionally dependent on vx- k = (yx + l3y - 1/Z + e)x- k • This 
induces a function on M which has no local maximum, which is impossible. Thus k 
must vanish and we obtain xqx + lqv = 0, I E R. It follows that p is functionally 
dependent on v - !log x. As P is algebraic, we must have I = O. But v is quadratic 
and induces a map on M that violates Proposition 1. 

(b) ~ =I=- 0, 1/ = O. Then l3 = 0, d = -2[3. From Px + xPz = 0 we find p = 
q(y, z - x 2/20 where, setting x = 0, q is a polynomial q(y, w). From -[3xpx + 
aypv +(cy - 2[3z + e)pz = 0 we obtain ayqv + (cy - 2[3w + e)qw = O. Thus q is 
functionally dependent on (w - cy/(a + 2i3) + e/2[3)ay 2(3 and p is functionally 
dependent on (z - x2/2~ - cy/(a + 2[3) + e/2[3ty 2(3. This last polynomial in-
duces a polynomial map on M that violates Proposition 1. 

At last we reduce to the final case. 
Case IV. PN = ZN. 

Here Go(p) preserves the I-form dz, although it cannot preserve z by Proposition 
l. Therefore the map z 0 q - z: Go(p) ~ R is a homomorphism onto. This map has 
a nontrivial kernel K with associated Lie algebra X =I=- O. 

Suppose (~ ~2) is a nonzero element of X. 
(a) Assume AI is invertible. Then for proper choice of coordinates we have A2 = O. 
(1) If AI has nonreal eigenvalues then the x - y coordinates can be chosen so that 

for each z, p depends only on x 2 + y2. Say p(x, y, z) = q(z, x 2 + y2). It is easy to 
see that q is a polynomial q(z, s). Choosing an element of §o( p) - X expresses Pz as 
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an affine combination of Px and PY' that is, 

qz = (ax + /3y + yz + 8) . 2yqs + (a'x + /3'y + y'z + 8') ·2xqs' 

The coefficient of qs must depend only on z and x 2 + y2, so y = 8 = y' = 8' = ° 
and 2y(a + /3y) + 2x(a'x + /3'y) = k(x2 + y2). It follows that qz = ksqs' Consid-
ering the terms of degree N - I in this equation, we see k = 0, and p is independent 
of z, contrary to Lemma 3. 

(2) If Al is real and semisimple, then we may choose coordinates so Al is diagonal. 
We findp(x, y, z) = q(z, xmyn) with m, n positive and relatively prime. Reasoning 
as in the preceding paragraph, we obtain again that p is independent of z and 
contradicts Lemma 3. 

(3) If Al is real and not semisimple we may assume Al = (~ \). Then for each z, p 
is functionally dependent on x/y - log y. Since p is a polynomial, p must actually 
be dependent on z alone, contradicting Lemma 3. 

(b) Thus we may assume Al isn't invertible and put our nonzero element of:X in 
the form 

(~ 
b 
/3 

° For fixed z, p is constant along 
dx _ by+cz+d 
dy /3y + yz + 8 . 

If /3 =1= 0, we may take /3 = 1. Then 
dx c'z + d' -=b+-----::-
dy y + yz + 8 

and p(-,-, z) is functionally dependent on -x + by + (c'z + d')log(y + yz + 8). 
For this to be algebraic, we must have (c'z + d') == 0. But then p depends only on 
(x - by) and z, in contradiction to Lemma 3. 

Thus /3 = 0. We may translate the origin to make precisely one of y or 8 vanish. 
(1) y = 1,8 = 0. 

p(x, y, z) = q( -zx + %y2 + czy + dy, z) = q(w, z). 

pz = qz - xqw + cyqw is an affine combination of 

Px = -zqw and Py = (by + cz + d)qw' 

It follows that qz = (awl + r(z»qw' with degr";; 2. Since q is a polynomial, we 
must have a = 0. It follows that q is functionally dependent on w + s( z), deg s ..;; 3. 
Thus w + s = -zx + by2/2 + czy + dy + s( z) defines a polynomial preserved by 
Go( p). Since w + s has no local maxima if b ;;;" ° and no local minima if b ..;; 0, we 
contradict Proposition 1. 

(2) y = 0, 8 = 1. 

p = q ( -x + % y 2 + czy + dy, z ) . 
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The argument here is almost the same as in (I). One finds that G o( p) preserves a 
polynomial of the form x + r(y, z) and contradicts Proposition 1. Q.E.D. 

While we are primarily interested in Theorem 4 as it was stated we may generalize 
it in several ways without any change in the proof. We have used no special features 
of 3-manifold topology, so we have the following results. 

THEOREM 5. If M is a closed affine manifold and p a nonconstant polynomial on M 
then p is not expressible in terms of,,;;;; 3 linear coordinates. 

Next we recall the notion of affine foliation for a manifold M from [Th]. The 
codimension-i foliation 'F is affine if the changes of chart are the restrictions of affine 
transformations of Ri. Then a map p: M ~ R is polynomial if it is constant on leaves 
of 'F and given by a polynomial in the transverse affine coordinates. This generalizes 
the notion of an affine structure, when i = dim M. 

THEOREM 6. Let M be a closed manifold with an affine foliation 'F of codimension i. 
If i ,,;;;; 3 then the only polynomials on M are constants. 

This is proved by using the developing map of the foliation D: M ~ Rand 
arguing as before. 

REFERENCES 

[D) J. P. Benzecri, Varietes localement plates, Thesis, Princeton Univ., Princeton, N. J., 1955. 
[Do) A. Borel, Linear algebraic groups, Benjamin, New York, 1969. 
[FGH) D. Fried, W. Goldman and M. W. Hirsch, Affine manifoldl with nilpotent holonomy, Comment. 

Math. Helv. 56 (1981), 487-523. 
[M) J. Milnor, On fundamental groups of complete affinely flat manifolds, Adv. in Math. 25 (1977), 

178-187. 
[NY) T. Nagano and K. Yagi, The affine structures on the real 2-torus. I, Osaka J. Math. 11 (1974), 

181-210. 
[10] W. Thurston, The geometry and topology of 3-manifolru, Princeton Lecture Notes, Princeton Univ. 

Press, Princeton, N. 1., Chapter IV, 1978. 
[T] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270. 
[W] 1. Wolf, Spaces of constant curvature, McGraw-Hili, New York, 1967. 

DEPARMENT OF MATHEMATICS, UNIVERSITY OF SANTA CRUZ, SANTA CRUZ, CALIFORNIA 95064 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	0020313
	0020314
	0020315
	0020316
	0020317
	0020318
	0020319
	0020320
	0020321
	0020322
	0020323

