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POLYNOMIALS THAT ARE POSITIVE ON AN INTERVAL

VICTORIA POWERS AND BRUCE REZNICK

Abstract. This paper discusses representations of polynomials that are pos-
itive on intervals of the real line. An elementary and constructive proof of the
following is given: If h(x), p(x) ∈ R[x] such that {α ∈ R | h(α) ≥ 0} = [−1, 1]
and p(x) > 0 on [−1, 1], then there exist sums of squares s(x), t(x) ∈ R[x] such
that p(x) = s(x) + t(x)h(x). Explicit degree bounds for s and t are given, in
terms of the degrees of p and h and the location of the roots of p. This is a
special case of Schmüdgen’s Theorem, and extends classical results on repre-
sentations of polynomials positive on a compact interval. Polynomials positive
on the non-compact interval [0,∞) are also considered.

1. Introduction

Suppose that p ∈ R[x] is a real polynomial in a single real variable. If p(x) ≥ 0
for all x ∈ R, then an easy consequence of the Fundamental Theorem of Algebra
is that p can be written as a sum of two squares of polynomials. It is natural to
wonder what one can say if p(x) ≥ 0 or p(x) > 0 for x in a fixed interval.

There are several such representations which resonate with more recent work in
real algebraic geometry. It has long been known that if p(x) > 0 for x ∈ (−1, 1),
then p can be written as a positive linear combination of polynomials (1−x)i(1+x)j

for suitable integers i and j (Bernstein); however, it might be necessary for i + j
to exceed the degree of p. And if p(x) ≥ 0 for x ∈ [−1, 1], then one can write
p(x) = f(x) + (1 − x2)g(x), where f(x), g(x) ≥ 0 for all x (Fekete). It has also
long been known that if p(x) ≥ 0 for x ∈ [0,∞), then p can be written in the form
f1 + xf2, where each fi is a sum of two squares (Pólya-Szegö). The proofs of these
results are elementary, and are included in this paper.

This question can be viewed from a more abstract algebraic perspective. Re-
cently, K. Schmüdgen [23] has proved a remarkable theorem which can be viewed
as a broad generalization of these representations to positive functions. Roughly
speaking, if a compact set S in Rm is defined by finitely many polynomial inequal-
ities, then any polynomial which is strictly positive on S can be written in terms
of the defining polynomials for S and sums of squares (of polynomials). The proof
of this result in [23] is neither elementary nor constructive.

We now present the requisite definitions. Given non-constant polynomials f1, . . . ,
fn ∈ R[x1, . . . , xm], define S(f1, . . . , fn) to be the basic closed semi-algebraic set
generated by the fi’s, i.e.,

S(f1, . . . , fn) = {α ∈ Rm | fi(α) ≥ 0 for 1 ≤ i ≤ n}.
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Let Σ denote the set of sums of squares
∑
j f

2
j , with fj ∈ R[x1, . . . , xm]. For any

I ⊂ {1, ..., n}, let fI(x) =
∏
i∈I fi(x), with the usual understanding that f∅(x) = 1.

Then we define P (f1, . . . , fn), the preorder generated by the fi’s, by

P (f1, . . . , fn) =
{ ∑
I⊂{1,...,n}

sI(x)fI(x) | sI ∈ Σ
}
.(1)

Note that since Σ is closed under multiplication and fIfI′ = f2
I∩I′fI4I′ , the pre-

order P (f1, . . . , fn) is also closed under multiplication.
For a set A ⊆ Rm, let Psd(A) (resp. Pd(A)) denote the set of polynomials

p ∈ R[x1, . . . , xm] so that p(a1, . . . , am) ≥ 0 (resp. p(a1, . . . , am) > 0) for every
(a1, . . . , am) ∈ A. Such polynomials are said to be positive semi-definite (psd) on A
(resp. positive definite (pd) on A). These sets are also closed under multiplication.

Let P = P (f1, . . . , fn) and S = S(f1, . . . , fn), then clearly, P is contained in
Psd(S). Schmüdgen’s Theorem says that if S is compact, then a stronger statement
is true:

Pd(S) ⊆ P ⊆ Psd(S).

In other words, if g > 0 on compact S(f1, . . . , fn), then g is in the preorder generated
by the fi’s. Schmüdgen’s Theorem is somewhat simpler in one variable. As noted
earlier, f ∈ Σ iff f ∈ Psd(R); that is, iff S(f) = R. (The situation is more
complicated for polynomials in more than one variable; see [20].) Thus, to give a
simple example, one consequence of Schmüdgen’s Theorem is that if p(x) > 0 for
x ∈ [−1, 1], then one can write p(x) = f(x)+(1−x2)3g(x), where f(x), g(x) ≥ 0 for
all x. This paper contains a constructive proof of this result, with degree bounds
for f and g which depend on the degree of p and the location of its roots.

In Section 2 of this paper, we show that the study of Psd(I) and Pd(I) for
real intervals I essentially reduces to two cases: I = [−1, 1] and I = [0,∞). We
review the literature on this problem, which goes back to Hermite, and discuss
work of Goursat, Bernstein, Hausdorff, Pòlya and Szegö, Fekete, Lukàcs, Karlin
and Shapley and Karlin and Studden. (There has been some work on Psd(A)
when A ⊂ Rm is given in the form A = S(f1, . . . , fn) for linear fi. See papers by
Handelman [8] and Micchelli and Pinkus [16]. These are beyond the scope of this
paper.)

In Section 3, we combine recent results of de Loera and Santos with work of
Goursat, Pòlya and Szegö to give a constructive proof that, if p is in Pd([−1, 1]),
then for a computable value of m, there exist dk ≥ 0 so that

p(x) =
m∑
k=0

dk(1− x)k(1 + x)m−k.

(Without the information on m, this theorem is due to Bernstein.) Other compu-
tations of m have been made by Erdélyi and Erdélyi and Szabados.

In Section 4, we give an elementary and constructive proof of Schmüdgen’s The-
orem in one special case. Let h be a given polynomial for which S(h) = [−1, 1]. If
p ∈ Pd([−1, 1]), we give a constructive proof of the existence of s0, s1 ∈ Σ so that
p = s0 +hs1. This includes an a priori bound on the degrees of s0 and s1, based on
h, the degree of p, and the smallest absolute value of the roots of p. In the special
case h(x) = 1−x2, Lukács proved a stronger theorem: Psd([−1, 1]) = P (1−x2). We
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shall give a necessary and sufficient condition on h so that Psd([−1, 1]) = P (h). Our
proof relies on a non-constructive result of Scheiderer, and so is not constructive.

In Section 5, we turn our attention to the non-compact interval [0,∞), to which
Schmüdgen’s Theorem does not apply. As noted earlier, Pòlya and Szegö proved
that, if p ∈ Psd([0,∞)), then there exist si ∈ Σ so that p(x) = s0(x)+xs1(x). In this
section, we prove that this is essentially the only case in which Schmüdgen’s con-
clusion holds for [0,∞): If S(f1, . . . , fn) = [0,∞) and Pd([0,∞)) ⊂ P (f1, . . . , fn),
then fj(x) = cx for some j.

The final version of this paper was hammered out in October 1998, while the
authors were participating in the MSRI Workshop on Symbolic Computation in
Algebra, Geometry, and Analysis. We happily acknowledge our gratitude to MSRI
for its warm hospitality.

2. Background and historical remarks

Suppose I ⊆ R is an interval. How can one describe Psd(I) and Pd(I)? At first
glance, this question might seem to involve many cases, depending on whether I is
open or half-open or closed; finite, half-infinite or infinite. In fact, there are really
only two cases.

First observe that, by continuity, Psd(I) = Psd(Ī); Pd(I) contains Pd(Ī), with
the complement consisting of those polynomials which are positive on I but vanish
at one or the other of its endpoints. If a ∈ Ī \ I is a left-hand endpoint and
p ∈ Pd(I)\Pd(Ī), then there exists an integer k so that p(x) = (x−a)kq(x), where
q ∈ Pd(I∪{a}). A similar consideration applies if b ∈ Ī \I is a right-hand endpoint.
Thus, it suffices to consider Psd(I) and Pd(I) for closed intervals I. Furthermore,
if p ∈ Psd(I) \ Pd(I), then p has (finitely many) zeroes in I. If p(t) = 0 and t is
interior to I, then p(x) = (x − t)2kq(t) for some even integer 2k, and q ∈ Psd(I).
If a (resp. b) is a left-hand (resp. right-hand) endpoint of I and p(a) = 0 (resp.
p(b) = 0), then p(x) = (x−a)kq(x) (resp. p(x) = (b−x)kq(x)) for some q ∈ Psd(I).
In any event, p can only have a finite number of zeroes, so p ∈ Psd(I) for the closed
interval I = [a, b] if and only if

p(x) = (x− a)k0

( r∏
j=1

(x− tj)2kj

)
(b− x)kr+1q(x)(2)

for some non-negative integers kj , where tj ∈ (a, b) and q ∈ Pd(I). (If I is half-
infinite or infinite, then this formula is modified accordingly.)

If I = (−∞,∞), then it is classically known that Psd(I) consists of the sums
of two squares of polynomials and Pd(I) consists of the sums of two squares of
polynomials which have no common real zeros. If I is half-infinite, then I = [a,∞)
(resp. (−∞, b]), and if p ∈ Pd(I) and f(x) = p(x− a) (resp. f(x) = p(b− x)), then
f ∈ Pd([0,∞)). Finally, if I = [a, b], p ∈ Pd(I) and

f(x) = p
( (b−a)x+(b+a)

2

)
,

then f ∈ Pd([−1, 1]). In other words, there are essentially only two cases: I =
[0,∞) and I = [−1, 1].

(It might seem more natural to identify [0, 1] as the archetypal finite interval, and
the early theorems of Bernstein and Hausdorff were cast in this way. The interval
[−1, 1] was preferred by analysts wanting to know which polynomials p have the
property that the trigonometric polynomial p(cos θ) takes non-negative values.)
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4680 VICTORIA POWERS AND BRUCE REZNICK

It turns out that Pd([0,∞)) and Pd([−1, 1]) are closely related to each other.
Given a polynomial f of exact degree m, we define the (m-th degree) Goursat
transform of f , f̃ , by

f̃(x) = (1 + x)mf
(

1−x
1+x

)
.(3)

It is worth noting that the Goursat tranform is nearly its own inverse:

˜̃
f(x) = (1 + x)mf̃

(
1−x
1+x

)
= (1 + x)m(1 + 1−x

1+x )mf

(
1− 1−x

1+x

1 + 1−x
1+x

)
= 2mf(x).(4)

If deg f = m and deg f̃ = m−k < m, then the (m−k)-th degree Goursat transform
of f̃ is already a polynomial, hence (4) implies that (1 + x)k|f(x).

Lemma 1 (Goursat’s Lemma). Suppose f is a polynomial of degree m. Then f ∈
Pd([−1, 1]) if and only if f̃ ∈ Pd([0,∞)) and deg f̃ = m; f ∈ Psd([−1, 1]) if and
only if f̃ ∈ Psd([0,∞)) and deg f̃ ≤ m.

Proof. If x ∈ (−1, 1], then y = 1−x
1+x ∈ [0,∞). Since (1 + x)m > 0, we see from (3)

that f(x) > 0 (resp. f(x) ≥ 0) if and only if f̃(y) > 0 (resp. f̃(y) ≥ 0.) Write
f(x) =

∑m
k=0 akx

k; the coefficient of xm in f̃(x) =
∑m

k=0 ak(1 − x)k(1 + x)m−k is∑m
k=0(−1)kak = f(−1).
It follows immediately that f ∈ Pd([−1, 1]) if and only if f̃ ∈ Pd([0,∞)) and

deg f̃ = m. If we weaken the hypothesis from “positive” to “non-negative”, then
the same conclusions carry over, with the loss of information about the degree of
f̃ . (Note that f(−1) ≥ 0 by continuity, in any case.)

This subject appears to have been inaugurated [11] in 1894 by the 71-year old
French mathematician Charles Hermite, in the first volume of the French problems
journal Interméd. des math. Let

Pd :=
{ ∑
i+j≤d

cij(1 − x)i(1 + x)j | cij ≥ 0
}
.(5)

Hermite asked: if p ∈ Pd([−1, 1]) has degree d, must it belong to Pd? This question
was quickly answered in the negative, by E. Goursat [7], J. Sadier [21] and J. Franel
[6], in several different ways. A later solution appeared in Pólya-Szegö [18, VI 48].
We present Goursat’s proof.

Suppose p ∈ Pd and p(x) =
∑

i+j≤d cij(1− x)i(1 + x)j , with cij ≥ 0. Then

p̃(x) =
∑
i+j≤d

2i+jcijxi(1 + x)d−i−j ,

so that the coefficients of p̃ are nonnegative. For ε > 0, let pε(x) = x2 + ε. We have

p̃ε(x) = ε(1 + x)2 + (1− x)2 = (1 + ε)− (2 − 2ε)x+ (1 + ε)x2.

Clearly, if ε > 0, then pε ∈ Pd([−1, 1]). But pε ∈ P2 if and only if the coefficients of
p̃ε are nonnegative, and this is true only for ε ≥ 1. Thus, for 0 < ε < 1, pε provides
a negative answer to Hermite’s question.

However, if p ∈ Pd([−1, 1]), then it is true that p ∈ Pm for sufficiently large
m. This was proved by Bernstein [1] in 1915, although Pólya-Szegö attributes this
result to Hausdorff [10, pp. 98-99] in 1921, as part of his solution of the classical
moment problem on [0, 1]. Two proofs of this theorem are given in [18]. One
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uses Goursat’s transform, combined with another theorem of Pólya’s [17]. We will
give a computational version of the latter proof in the next section. Finally, it
is worth noting that if 0 6= p ∈ Psd([−1, 1]), and p(u) = 0 for u ∈ (−1, 1), then
upon setting x = u in the equation p(x) =

∑
i,j cij(1 − x)i(1 + x)j , with cij ≥ 0,

we conclude that cij = 0 for all (i, j), a contradiction. It then follows easily that⋃
m Pm = Pd((−1, 1)).
Two other results found in [18] give degree information absent in Schmüdgen’s

Theorem. If p(x) ∈ Psd([−1, 1]) and p has degree n, then

p(x) =
(
f(x)

)2 + (1 − x2)
(
g(x)

)2
for some polynomials f and g of degree at most n and n−1 respectively. (This result
([18, VI 46]) is attributed to M. Fekete, but no additional bibliographic details are
given.) Under the same hypotheses, p can be written as

p(x) =
(
f1(x)

)2 + (1− x)
(
f2(x)

)2 + (1 + x)
(
f3(x)

)2 + (1− x2)
(
f4(x)

)2
so that each summand has degree ≤ n. (This result ([18, VI 47]) is attributed to
F. Lukàcs, again with no details.) Further, if n is even, then f2 = f3 = 0, and if n
is odd, then f1 = f4 = 0.

Karlin and Shapley [12, p. 35] gave an even more precise representation. Suppose
p(x) ∈ Pd([−1, 1]) has even degree n = 2m, then

p(x) = α

m∏
j=1

(x− x2j−1)2 + β(1 − x2)
m−1∏
j=1

(x− x2j)2.

If p has odd degree n = 2m+ 1, then

p(x) = α(1 + x)
m∏
j=1

(x− x2j)2 + β(1 − x)
m−1∏
j=1

(x− x2j−1)2.

These representations are unique under the additional condition that −1 < x1 <
· · · < xn−1 < 1. Karlin and Studden [13, p. 169] give a similarly interlaced repre-
sentation for polynomials in Pd([0,∞)).

We present now a short proof of the representation result [18, VI 45] for [0,∞).

Proposition 2 (Pólya-Szegö). If p ∈ Psd([0,∞)), then p ∈ P (x). More specifi-
cally, there exist f, g ∈ Σ so that p(x) = f(x) + xg(x), and deg f, deg xg ≤ deg p.

Proof. First observe that if pi = fi + xgi, with deg fi, deg xgi ≤ deg pi, then

p := p1p2 = (f1f2 + x2g1g2) + x(f1g2 + f2g1) := f + xg,

where deg f, deg xg ≤ deg p. Thus, it suffices to write p ∈ Psd([0,∞)) as a product
of factors, each of which satisfies the desired condition.

Now factor p over R[x]. Any positive roots appear to an even degree, hence the
linear factors of p will either appear to an even degree, or will be a product of terms
x + x0, with x0 ≥ 0. The irreducible quadratic factors of p are positive definite.
Since any psd factor q is already in Σ, it can be written as q+x ·0; the linear factor
x + x0 can be written as x0 + x · 1. In view of the first paragraph, this completes
the proof.

Proposition 2 implies a stronger conclusion than Schmüdgen’s Theorem for
P (1− x2) and P (1− x, 1 + x).

Corollary 3. Psd([−1, 1]) = P (1− x2) = P (1− x, 1 + x).
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Proof. Recall that if p ∈ P (1− x2), then p(x) = f(x) + (1− x2)g(x) for f, g ∈ Σ =
Psd(R), so p ∈ Psd([−1, 1]). A similar argument applies to P (1− x, 1 + x).

To prove the converse, suppose p ∈ Psd([−1, 1]) and deg p = m. By Goursat’s
Lemma and Proposition 2, there exist fi, gi ∈ R[x], ri = deg fi ≤ m/2 and si =
deg gi ≤ m/2 so that

p̃(x) =
2∑
i=1

f2
i (x) + x

2∑
i=1

g2
i (x).

Now perform another Goursat transform of degree m (cf. (4)):

2mp(x) =
2∑
i=1

(1 + x)m−2ri f̃2
i (x) + (1− x)

2∑
i=1

(1 + x)m−1−2si g̃2
i (x).

If m is even, we can absorb the extra factors of 1 + x to obtain

2mp(x) =
2∑
i=1

(
(1 + x)m/2−ri f̃i(x)

)2 + (1 − x2)
2∑
i=1

(
(1 + x)m/2−1−si g̃i(x)

)2
,

so p ∈ P (1− x2). If m is odd, then we obtain a similar expression:

2mp(x) = (1 + x)
2∑
i=1

(
(1 + x)(m−1)/2−ri f̃i(x)

)2
+ (1− x)

2∑
i=1

(
(1 + x)(m−1)/2−si g̃i(x)

)2
,

hence p ∈ P (1 − x, 1 + x).
Finally, observe that P (f) = P (g) if and only if f ∈ P (g) and g ∈ P (f). We are

done if we can show that 1±x ∈ P (1−x2) and 1−x2 ∈ P (1−x, 1 +x). The latter
is immediate from (1− x2) = (1− x)(1 + x), and the identity

1± x =
(1± x)2

2
+

1
2

(1− x2) ∈ P (1− x2).

Note that

1− x2k = (1− x2)(1 + x2 + · · ·+ x2k−2)

and

1− x2 =
(k − 1)− kx2 + x2k

k
+

1
k

(
1− x2k

)
,

where (k − 1) − kx2 + x2k is psd by the arithmetic-geometric inequality. Thus,
P (1− x2) = P (1− x2k) for all positive integers k. However, Stengle [24] has shown
that 1− x2 /∈ P ((1− x2)3), so S(f) = S(g) does not imply that P (f) = P (g). (See
also Corollary 11 below.)
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3. Computing the Bernstein degree

Suppose f ∈ Pd([−1, 1]) has degree m. Define r(f) to be the smallest integer
n so that f ∈ Pn; r(f) has been called the Bernstein degree of f (by DeVore and
Lorentz [3]) and the Lorentz degree of f (by Borwein and Erdélyi [2]). Our first
task in this section is to compute r(f).

Pólya proved in 1928 [17], that if p ∈ Pd(Rm+ ), then for sufficiently large d,
(1 +

∑m
j=1 xj)

dp(x1, . . . , xm) has positive coefficients. In particular, if g ∈
Pd([0,∞)), then for sufficiently large d, (1 + x)dg(x) has non-negative coefficients.
Let r̃(g) denote the smallest integer d for which (1 + x)dg(x) has non-negative
coefficients. Recently, De Loera and Santos [14, p. 232] have made an algorithmic
analysis of [17]; there are several unfortunate typos in [14], but the statement below
is correct. We use this to give an upper bound for r̃(g).

Proposition 4 ([14]). Suppose q(x1, . . . , xm) is a real homogeneous polynomial of
degree d, the coefficients of q are bounded above in absolute value by L and q(u) ≥
λ > 0 for u ∈ ∆ = {(u1, . . . , um) | uj ≥ 0,

∑
j uj = 1}. If

r ≥ Lmd2

λ
+md,

then (
∑

j xj)
rq(x1, . . . , xm) has positive coefficients.

This proposition has an immediate interpretation for (inhomogeneous) polyno-
mials of one variable:

Corollary 5. Suppose g(x) =
∑d
j=0 bjx

j ∈ Pd([0,∞)), |bj | ≤ L and

λ = min


d∑
j=0

bjt
j(1− t)d−j | t ∈ [0, 1]

 .

Then

r̃(g) ≤ 2d+
⌈

2d2L

λ

⌉
.

Proof. Let q(x, y) =
∑d
j=0 bjx

jyd−j, and apply Proposition 4 to q, noting that
m = 2. For later reference, observe that λ = inf{(1− t)dg( t

1−t ) | t ∈ [0, 1)}.

Theorem 6. Suppose f(x) ∈ Pd([−1, 1]) has degree n, and let f̃(x) =
∑

j ejx
j.

Let λ denote the minimum of f(x) for x ∈ [−1, 1] and let L denote max{|ej|}.
Then

r(f) = n+ r̃(f̃) ≤ 3n+
⌈

2n2L

λ

⌉
.

Proof. First suppose m = r̃(f̃), so that

(1 + x)m+nf
(

1−x
1+x

)
= (1 + x)mf̃(x) =

m+n∑
k=0

bkx
k,

with bk ≥ 0. Apply the Goursat transform (of degree m+ n) to both sides above,
to obtain

2m+nf(x) =
m+n∑
k=0

bk(1 − x)k(1 + x)m+n−k.
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Thus, r(f) ≤ m+ n = r̃(f̃) + n. This proof of Bernstein’s theorem is in [18].
To prove the converse, we first observe that a representation

f(x) =
∑
i+j≤d

cij(1− x)i(1 + x)j

with non-negative cij can always be homogenized:

f(x) =
∑
i+j≤r

cij(1− x)i(1 + x)j(1−x
2 + 1+x

2 )r−(i+j)

=
∑
i+j≤r

cij(1− x)i(1 + x)j
1

2r−(i+j)

r−i−j∑
`=0

(
r−(i+j)

`

)
(1− x)`(1 + x)r−(i+j+`)

:=
r∑

k=0

dk(1− x)k(1 + x)r−k,

and if cij ≥ 0 for all i, j, then dk ≥ 0 for all k as well. Thus, r(f) is always achieved
by a homogeneous representation.

If we have such a representation for f with dk ≥ 0, then, upon taking the Goursat
transform of degree r ≥ n, we get

(1 + x)rf
(

1−x
1+x

)
= (1 + x)r−nf̃(x) = 2r

r∑
k=0

dkx
k.(6)

Thus, r̃(f̃) ≤ r(f)− n, and so r(f) = r̃(f̃) + n.
Finally, by Corollary 5, r̃(f̃) − n ≤ d 2Ln2

λ e + 2n, where λ is the infimum of
(1− t)df̃( t

1−t ) for t ∈ [0, 1). However,

(1− t)df̃
(

t
1−t

)
= (1 − t)d(1 + t

1−t )
df

(
1− t

1−t
1 + t

1−t

)
= f(1− 2t),

so that λ is precisely the minimum of f on [−1, 1].

Remark. Erdélyi [4] and Erdélyi and Szabados [5] have given detailed computations
of r(f) for quadratic polynomials. For example, if the (complex) roots of the definite
quadratic f lie on the ellipse x2 + y2

a2 = 1, then r(f) ∈ [a−2, 1 + 2a−2], and these
bounds are essentially achieved. These results can be found in [2, pp.83–89].

Example. We compute r(pε) for ε > 0, where pε(x) = ε+x2 ∈ Pd([−1, 1]). Recall
that

p̃ε(x) = ε(1 + x)2 + (1− x)2 = (1 + ε)− (2 − 2ε)x+ (1 + ε)x2,

so that r(pε) = 2 if ε ≥ 1. Henceforth, assume ε < 1, and that ε−1 ∈ (2k−1, 2k+1]
for some positive integer k. We shall show that r(pε) = 2k + 1, the least odd
integer ≥ ε−1. (For ε ≤ 1/3, compare with Theorem 6: We have n = 2, λ = ε, and
` = max{1+ε, 2−2ε}, which yields an upper bound of 3·2+d2·22· 2−2ε

ε e = d 16
ε e−10.)

Let gδ(x) = 1 − (2 − δ)x + x2, so that p̃ε = (1 + ε)gδ, where δ = 4ε
1+ε . We have

δ ∈ [ 2
k+1 ,

2
k ), and r̃(p̃ε) = r̃(gδ).

By the binomial theorem,

(1 + x)mgδ(x) =
m+2∑
j=0

((
m
j

)
− (2− δ)

(
m
j−1

)
+
(
m
j−2

))
xj ;
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a further calculation shows that

(1 + x)mgδ(x) =
m+2∑
j=0

m!
j!(m+2−j)!

(
(m+ 2− 2j)2 − (m+ 2) + j(m+ 2− j)δ

)
xj .

Thus r̃(gδ) is the smallest m so that

(m+ 2− 2j)2 − (m+ 2) + j(m+ 2− j)δ ≥ 0 for all 0 ≤ j ≤ m+ 2.(7)

Suppose (7) holds for even m = 2s. The inequality for j = s + 1 implies that
δ ≥ 2

s+1 , so s ≥ k. The algebraic identity

(2s+ 2− 2j)2 − (2s+ 2) + j(2s+ 2− j)δ

= 2(2s+1)(s+1−j)2

s+1 + j(2s+ 2− j)(δ − 2
s+1 )

shows that (7) holds when δ ≥ 2
s+1 . Similarly, if (7) holds for odd m = 2s−1, then

j = s implies δ ≥ 2
s+1 , so s ≥ k, and the identity

(2s+ 1− 2j)2 − (2s+ 1) + j(2s+ 1− j)δ

= 2(2s+1)(s−(j−1))(s−j)
s+1 + j(2s+ 1− j)(δ − 2

s+1 )

shows that (7) holds when δ ≥ 2
s+1 , since j is an integer-valued variable.

Since we want to find the smallest m so that (7) holds, for given δ, we conclude
that r̃(gδ) = 2k−1, and so r(pε) = r̃(p̃ε)+2 = r̃(gδ)+2 = 2k+1. The computation
in this example is quite similar to [9, pp. 59–60].

4. Schmüdgen’s Theorem for [−1, 1]

In this section, we give a constructive proof of Schmüdgen’s Theorem in the
special case that there is a single polynomial h such that S(h) = [−1, 1]. That is,
if [−1, 1] = {x : h(x) ≥ 0}, and p(x) > 0 for x ∈ [−1, 1], then we construct psd real
polynomials s and t so that

p = s+ t h.(8)

(As noted earlier, in one variable Σ consists of the psd polynomials, so it suffices
to show that s and t are non-negative on R.)

We begin with some simple remarks. First, if S(h) = [−1, 1], then h(x) changes
sign only at x = ±1, and can have zeroes with even degree only in (−1, 1). Thus
h(x) = (1 − x)c(1 + x)dq(x), where q(±1) 6= 0 and c and d are both odd. Further-
more, q(x) ≥ 0 on (−1, 1) and q(x) > 0 for |x| ≥ 1. It follows from (1) that, for
any polynomial φ, P (h) ⊃ P (φ2h). Thus, since c− d is even, we can multiply h by
an even power of 1± x and assume that c = d =: r is odd.

Fix h(x) = (1 − x2)rq(x) so that S(h) = [−1, 1]. Since q is a polynomial in
one variable, q(x) 6→ 0 as x → ∞, so there exists α so that q(x) ≥ α > 0 for
x ∈ (−∞, 1]∪ [1,∞). Since q is continuous, there exists β so that 0 ≤ q(x) ≤ β for
x ∈ [−1, 1].

The main technical result is the following:

Theorem 7. Suppose ε > 0, and h(x) = (1 − x2)rq(x), where q(x) ≥ α > 0 for
x ∈ (−∞,−1] ∪ [1,∞) and 0 ≤ q(x) ≤ β for x ∈ [−1, 1]. Let

A =
1

r2rεr−1α
, and m =

⌊
r

2ε

(
β

rα

) 1
r
⌋
,

and set F (x) = 1 + ε+ x−Ax2mh(x). Then F (x) is psd.
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Remark. This theorem implies that F ∈ Σ, hence 1 + ε+ x = F +Ax2mh ∈ P (h).
Let h̄(x) = h(−x), then, with the same values for α, β,A and M , we have 1+ε+x ∈
P (h̄); upon taking x→ −x, we see that 1 + ε− x ∈ P (h). Thus,

1 + ε± x = F±(x) +G±(x)h(x),

where F±, G± ∈ Σ, and degF±, degG±h are bounded above by⌊
r

ε

(
β

rα

) 1
r

⌋
+ deg h ≤ r

ε

(
β

rα

) 1
r

+ deg h.

Proof. We want to show that F (x) ≥ 0 for all x ∈ R. Observe that 1 + ε + x ≥ 0
for x ≥ −1 − ε and −Ax2mh(x) ≥ 0 for |x| ≥ 1. Thus we need only consider
x ∈ (−∞,−1− ε) ∪ (−1, 1).

First, write x ∈ (−∞,−1 − ε) as x = −1 − ε − y, where y > 0. We must show
that

F (x) = −y −A(1 + ε+ y)2m
(
1− (1 + ε+ y)2

)r
q(−1− ε− y) ≥ 0.

We have the estimates (1 + ε+ y)2m ≥ 1 and q(−1− ε− y) ≥ α, and since r is odd,(
1− (1 + ε+ y)2

)r = (2 + ε+ y)r(ε+ y)r ≥ 2r(rεr−1y).

(The last inequality follows from ε, y ≥ 0, and the selection of one term from the
binomial expansion of (ε+ y)r.) Thus it suffices to show that

−y +A2rrεr−1yα = y(Aα2rrεr−1 − 1) ≥ 0,

and this follows directly from the definition of A.
Now suppose x ∈ (−1, 1). An easy calculus exercise shows that if a and b are

positive and 0 ≤ t ≤ 1, then ta(1−t)b ≤ aabb

(a+b)a+b . Using this argument with t = x2,
we have

F (x) = 1 + ε+ x−A(x2)m(1− x2)rq(x) ≥ ε−A mmrr

(m+ r)m+r
β.

But m
m+r < 1, and since m+ r > r

2ε

(
β
rα

)1/r

, we have

ε−A mmrr

(m+ r)m+r
β > ε−Aβ

(
r

m+ r

)r
= ε

(
1− β

rα

(
r

2ε(m+ r)

)r)
≥ 0.

Remark. For A ∈ R+ and m ∈ N, let F (m,A;x) := 1 + ε+x−Ax2mh(x). We have
not attempted to be precise in the calculation of m, and as one might suspect, for
particular examples F (m,A;x) will be psd for a smaller value of m than the one
asserted above. Note, for example, that the argument of the last theorem works
with the value of m reduced roughly by r, provided ε is small enough that this
integer is non-negative.

Consider h(x) = 1 − x2, for which, as we’ve seen, no additional machinery is
required to prove Schmüdgen’s Theorem. The following identity shows that m = 0
will actually work: if a > 1, then a± x = a

2 (x± 1
a )2 + a2−1

2a + a
2 (1− x2). If we take

h(x) = (1 − x2)3, then r = 3 and q(x) = 1, so α = β = 1, and the bound for m is
32/3

2ε − 3 ≈ 1.04
ε − 3. More precise results can be computed in this specific case. It

can be shown, for example, that the minimum of x−(1−x2)3 on R is approximately
−1.11987; hence, for example, with ε = .12, F (0, 1;x) = 1.12 +x− (1−x2)3 is psd.
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On the other hand, set ε = .01 and consider F (0, A;x) = 1.01 + x − A(1 − x2)3.
If F (0, A; 0) ≥ 0, then 1.01 ≥ A, but if F (0, A;−1.02) ≥ 0, then A(.0404)3 ≥ .01,
hence A > 150. Thus, F (0, A, x) is not psd for any A. (This does not imply that
1.01 + x /∈ P ((1 − x2)3), merely that there is no expression of this simple form.)
We can repeat this argument for m = 1: F (1, A;−.6) ≥ 0 implies A ≤ 4.3445...
and F (1, A;−.1.02) ≥ 0 implies A ≥ 145.764.... These arguments can be repeated
to show that if 1.01 + x − Ax2m is psd, then m ≥ 11, and a numerical argument
shows that for all x,

F (11, 140;x) = 1.01 + x− 140x22(1 − x2)3 ≥ .0002 > 0.

The following quantitative special case of Schmüdgen’s Theorem contains degree
information unavailable in the original. Observe that, if p is positive on [−1, 1], then
by continuity, it is positive on [−1− ε, 1 + ε] for some ε > 0.

Corollary 8. Suppose h(x) = (1 − x2)rq(x), where r is odd, 0 ≤ q(x) ≤ β for
|x| ≤ 1 and q(x) ≥ α > 0 for |x| ≥ 1. Suppose p(x) ∈ Pd([−1, 1]) has degree n, and
p has s real roots uj, with |uj| ≥ u > 1. Then there exist polynomials F,G ∈ Σ, so
that

p = F +Gh,

where the degrees of F and G are bounded above by

s

(
r

2(u− 1)

(
β

α

) 1
r

+ deg h

)
+ n− s.

Proof. Factor p over R[x] into linear factors x−uj and irreducible quadratic factors
qk ∈ Σ. Then |uj| ≥ u > 1. Observe that ±(x − uj) = |uj | − sgn(uj)x, with the
sign chosen so that the factor is positive on [−1, 1]; thus,

p(x) =
s∏
j=1

(
|uj| − sgn(uj)x

) n−s
2∏

k=1

qk(x).

Now use Theorem 6 to write |uj | − sgn(uj)x = Fj + hGj , with the degrees ≤
r

2(|uj |−1)

(
β
α

) 1
r

+ deg h ≤ r
2(u−1)

(
β
α

) 1
r

+ deg h, and substitute above.

There is no degree dependence in Fekete’s Theorem on the location of the roots
of p. On the other hand, Stengle has shown [24, p. 170] that there is a constant C
such that given si ∈ Σ with

1− x2 + ε = s0(x) + s1(x)(1 − x2)3,

then deg si ≥ Cε−1/2. Stengle [24, p. 171] also constructed such a representation in
which deg si ≤ Cε−1/2| log ε|. This implies that if r ≥ 3, then there is no bound for
the degrees of F and G which depends solely on the degree of p and information
about h. It also suggests that a better construction might reduce the exponent on
u− 1 from 1 to 1

2 .
Corollary 8 states that Pd([−1, 1]) ⊆ P (h). In view of the results of Fekete and

Lukacs, as well as Corollary 3, it is natural to wonder when we have the stronger
result that Psd([−1, 1]) = P (h). We are able to answer that question completely:
this happens if and only if h(x) = (1−x2)q(x), where q is as before, and q(±1) > 0.
Our proof relies on a very recent result of Scheiderer [22, 4.8].
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Lemma 9 (Scheiderer). Suppose f, g ∈ R[x] satisfy the following conditions:
1. f and g are relatively prime,
2. {x | f(x) ≤ 0} ∩ {x | g(x) ≤ 0} = ∅, and
3. S(f, g) is bounded.

Then there exist s, t ∈ Σ such that sf + tg = 1.

Proposition 10. Suppose h ∈ R[x] such that S(h) = [−1, 1] and h has a root of
multiplicity a at x = 1 and a root of multiplicity b at x = −1. Then (1 − x)a and
(1 + x)b are in P (h).

Proof. We give the proof for (1 − x)a; the proof for (1 + x)b is similar. Write
h(x) = (1 − x)aq(x), and note that a must be odd. We want to apply Lemma 9
to the polynomials (1 − x)a and q(x). They are clearly relatively prime. We have
{x | (1 − x)a ≤ 0} = [1,∞), and q(x) > 0 on [1,∞) by its definition. Hence
conditions (2) and (3) of Lemma 9 hold. Thus there exist s, t ∈ Σ so that 1 =
s(x)(1 − x)a + t(x)q(x). Multiplying both sides by (1 − x)a yields (1 − x)a =
s(x)(1 − x)2a + t(x)h(x) ∈ P (h).

Remark. The proof of Lemma 9 is not constructive, hence this does not yield a
constructive method for finding an explicit representation of (1− x)a and (1 + x)b

in the preorder.

Corollary 11. Suppose S(h) = [−1, 1] and p ∈ Psd([−1, 1]). Then p ∈ P (h) if
and only if for y = ±1, the order of p at y is either even or at least as big as the
order of h at y. In particular, P (h) = Psd([−1, 1]) if and only if the order of h at
both ±1 is 1.

Proof. Write h(x) = (1− x)a(1 + x)bq(x), where q(x) > 0 for |x| ≥ 1 and q(x) ≥ 0
for |x| < 1. Every p ∈ Psd([−1, 1]) can be written as

p(x) = (1 + x)c
( r∏
j=1

(x− xj)2kj

)
(1− x)dq(x),

where |xj | < 1 and q ∈ Pd([−1, 1]). If c is even or c − a ≥ 0 is even and if d is
even or d− b ≥ 0 is even, then by Corollary 8 and Proposition 10, p is a product of
factors from P (h), hence p ∈ P (h).

Now suppose c < a is odd or d < b is odd. The proofs are similar, and we
give the first. Suppose we could write p = s + th, with s, t ∈ Σ. Then (1 + x)c|p
and (1 + x)a|h, hence (1 + x)c|s. But s is psd, so any linear factors appear to an
even degree. Thus, (1 + x)c+1|s, and c + 1 < a implies that (1 + x)c+1|p, which
contradicts the definition of c.

There are several other directions in which these results could be generalized.
The most obvious is to allow {f1, . . . , fn} with n ≥ 2 so that S(f1, . . . , fn) = [−1, 1].
(As noted earlier, any compact interval might as well be [−1, 1], but Schmüdgen’s
Theorem also applies when the semi-algebraic set is a union of closed intervals.)
Stengle [24] proved that if S(f1, . . . , fn) = [−1, 1], then there exists a single h in
P (f1, . . . , fn) so that S(h) = [−1, 1]. His proof requires various non-constructive
Stellensätze, and we have been unable to find a constructive proof.

Nevertheless, we can present here some remarks towards a constructive proof.
Suppose S(f1, . . . , fn) = [−1, 1]. Assume each fi has a factor of 1 − x2. (If not,
replace fi by (1 − x2)2fi ∈ P (f1, . . . , fn), so that fi = (1 − x2)gi.) There is no
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real α so that gi(α) < 0 for all i. Our goal is to find psd p1, . . . , pk such that
p1g1 + · · · + pkgk is positive definite. Setting h =

∑
k pkfk = (1 − x2)

∑
pkgk, we

then have S(h) = [−1, 1], and we can apply Theorem 7.

Example. Suppose f1 = (1− x2)(x+ a) and f2 = b2− x2, where 1 < b < a. Then
S(f1, f2) = {α : f1(α) ≥ 0} ∩ {α : f2(α) ≥ 0} =

(
(−∞,−a) ∪ [−1, 1]

)
∩[−b, b] =

[−1, 1]. An algebraic identity shows that

h(x) = 2b(b2 − 1)f1(x) + (1− x2)2f2(x)

= 2b(b2 − 1)(1− x2)(x + a) + (1− x2)2(b2 − x2)

= (1 − x2)
(
2b(b2 − 1)(x+ b+ (a− b)) + (1− x2)(b2 − x2)

)
= (1− x2)

(
(x+ b)2

(
(x − b)2 + b2 − 1

)
+ 2b(b2 − 1)(a− b)

)
.

Since (x + b)2
(
(x − b)2 + b2 − 1

)
+ 2b(b2 − 1)(a − b) ≥ 2b(b2 − 1)(a − b) > 0, we

have S(h) = [−1, 1]. In other words, we have used the above construction with
g1 = x+ a, g2 = (1− x2)(b2 − x2), p1 = 2b(b2 − 1), and p2 = 1.

It is difficult to apply Theorem 7 directly to h in this case, because of the
computation of α and β. For concreteness, set a = 3 and b = 2, so that 2b(b2−1) =
12, h(x) = (1 − x2)(x4 − 5x2 + 12x + 40) and r = 1. It is routine to verify that
q(x) = x4 − 5x2 + 12x + 40 is increasing on [−1, 1], hence β = h(1) = 48, and
q(x) = 12 + (x + 2)2(x2 − 4x + 7), hence α = 12. If we set ε = 1, then Theorem 7
tells us that, with A = 1

12 and m = 1,

H(x) := 2 + x− 1
12x

2(1 − x2)(x4 − 5x2 + 12x+ 40)

is psd. (This can easily be confirmed by graphing it.) That is, we can explicitly
write 2 + x ∈ Pd([−1, 1]) as an element of P (f1, f2):

2 + x = H(x) + 1
12x

2h(x) = H(x) + 12x2f1(x) + 1
12x

2(1− x2)2f2(x).

5. The semi-infinite interval

A simple example shows that there exists h so that S(h) = [0,∞), but Pd([0,∞))
is not contained in P (h).

Example. Observe that S(x3) = [0,∞), and that 1 + x ∈ Pd([0,∞)). But if
1 + x ∈ P (x3), then there would exist g, h ∈ Σ = Psd(R) so that

1 + x = g(x) + x3h(x).

Observe that the degrees of g and h are even. Hence, the degrees of g(x) and
x3h(x), namely, 2m and 2n+ 3, are different, and hence the degree of their sum is
max{2m, 2n+ 3}, which must equal 1; a clear contradiction.

This example generalizes considerably. We first need a familiar folk-lemma.

Lemma 12. Suppose −∞ < a < b <∞ are given. Then for every positive integer
n, there exists C(a, b, n) so that, if |

∑n
j=0 ajx

j | ≤ M for x ∈ [a, b], then |aj | ≤
M · C(a, b, n).

Proof. Let p(x) =
∑n

j=0 ajx
j and choose nodes a = x0 < x1 < · · · < xn = b. The

following system of n+ 1 equations in the n+ 1 unknowns {aj}:

p(xk) =
n∑
j=0

xjkaj
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has Vandermonde determinant
∏

0≤j<k≤n(xj − xk) 6= 0, hence there exist cj,k so
that

aj =
n∑
k=0

cj,kp(xk).

The assertion is now immediate.

Remark. We note the following useful property of P (f1, . . . , fn) in the case where
S(f1, . . . , fn) = [0,∞): Each fi and each s ∈ Σ has positive leading coefficient.
Thus, there can be no cancellation in the highest degree terms. In particular, if
p =

∑
fIsI , then for each I, deg p ≥ deg sIfI .

Theorem 13. Suppose [0,∞) = S(f1, . . . , fn) and suppose {pm} ⊂ P (f1, . . . , fn)
satisfy deg pm = deg p and pm → p coefficientwise. Then p ∈ P (f1, . . . , fn).

Proof. Write

pm(x) = s0,m(x) +
∑

I⊂{1,...,n}
sI,m(x)

∏
i∈I

fi(x),(9)

with s0,m, sI,m ∈ Σ, and any summand which is zero has been deleted from the
sum. For each m, deg p = deg pm = max{deg sI,m +

∑
i∈I deg fi}, hence there is

a uniform bound on the degrees of deg sI,m. Each fi(x) is a polynomial which is
non-negative on [0,∞), hence there exists an interval (0, λi) on which fi(x) > 0.
Let λ = mini λi. Then there exists ε > 0 so that fi(x) ≥ ε for x ∈ [λ3 ,

2λ
3 ] := [a, b].

Since pm → p, there exists T so that pm(x) ≤ T for all m and x ∈ [a, b]. It follows
from (9) that, for every subset I, and x ∈ [a, b],

T ≥ pm(x) ≥ sI,m(x)
∏
i∈I

fi(x) ≥ ε|I|sI,m(x).

Thus, sI,m(x) ≤ ε−|I|T for x ∈ [a, b], and deg sI,m ≤ deg p. It follows from Lemma
12 that there is a uniform upper bound to the coefficients of sI,m(x). Thus there
exists a convergent subsequence {mr} so that, for each I, sI,mr(x)→ sI(x) coeffi-
cientwise. We conclude from (9) that

p(x) = s0(x) +
∑

I⊂{1,...,n}
sI(x)

∏
i∈I

fi(x).

Corollary 14. Suppose S(f1, . . . , fn) = [0,∞) and ε+x ∈ P (f1, . . . , fn) for every
ε > 0. Then fj(x) = cx for some j and positive c.

Proof. In view of Theorem 13, it suffices to show that x ∈ P (f1, . . . , fn) implies
that some fj is a multiple of x. Suppose otherwise, and write

x = s∅(x) +
∑

I⊂{1,...,n}
sI(x)

∏
i∈I

fi(x).

Each summand has degree ≤ 1. Since sI ∈ Σ, it must be a non-negative constant:
sI(x) = σI . Further, if σI > 0, then deg

∏
i∈I fi(x) ≤ 1, so I is a singleton, I = {j},

where fj(x) = ajx+ bj is linear. Since fj(x) ≥ 0 on [0,∞), we have aj , bj ≥ 0, and
bj > 0 by hypothesis. After a suitable relabeling, we obtain the identity

x = σ0 +
r∑
j=1

σj(ajx+ bj).
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By setting x = 0, we conclude that σ0 = σ1 = · · · = σr = 0, a contradiction.

Example. Let p(x) = x+ x3; clearly, S(p) = [0,∞). We show that, for every odd
integer m, and ε sufficiently small, xm + ε /∈ P (p). It suffices to show by induction
on odd m that xm /∈ P (p). Suppose otherwise. There would exist g, h ∈ Σ so that

xm = (x+ x3)g(x) + h(x).

Observe that m = max{3 + deg g, deg h}, where deg g, deg h are even. This is
impossible for m = 1. Suppose we have shown this to be impossible for m − 2,
where m ≥ 3. We have h(0) = 0, and so x|h(x), and since h ∈ Σ, it follows that
h(x) = x2h̄(x) for some h̄ ∈ Σ. Thus,

xm−1 = (1 + x2)g(x) + xh̄(x).

But this implies that g(0) = 0, so x|g(x) and so g(x) = x2ḡ(x), with ḡ ∈ Σ, hence

xm−2 = (x+ x3)ḡ(x) + h̄(x),

which contradicts the induction hypothesis.

Added in proof. There is a gap in the proof of [14, Theorem 1.1]. For details, see
[15]. We have been able to improve the bound in [14] as follows:

Theorem 5.7. Suppose f ∈ R[X ] is homogeneous, say f(X) =
∑
|α|=d aαX

α =∑
|α|=d c(α)bαXα ∈ R[X ], where c(α) := d!

α1!···αn! . Let L = L(f) := max|α|=d |bα|
and λ = λ(f) := minX∈∆n f(X). Then for

N >
d(d− 1)

2
L

λ
− d,

(x1 + · · ·+ xn)Nf(x1, . . . , xn) has positive coefficients.

Substituting this theorem for Corollary 3.2, we obtain our results. The proof of
this theorem is contained in the forthcoming paper [19].
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5. T. Erdélyi and J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54
(1988), 107–122. MR 91g:41026

6. J. Franel, solution, Intermèd. des math. 1 (1894), 253–254.
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definite forms, J. Pure Appl. Alg., to appear.

16. C. A. Micchelli and A. Pinkus, Some remarks on nonnegative polynomials on polyhedra, in
Probability, Statistics and Mathematics: Papers in honor of Samuel Karlin (T. W. Anderson,
et al. eds.), Academic Press, Boston, 1989, pp. 163–186. MR 91h:26014
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19. V. Powers and B. Reznick, A new bound for Pólya’s Theorem with applications to polynomials
positive on polyhedra, to appear in Proceedings of the MEGA 2000 conference.

20. B. Reznick, Some Concrete Aspects of Hilbert’s 17th Problem, to appear in RAGOS Proceed-
ings, Contemp. Math. 253 (2000), 251–272.

21. J. Sadier, solution, Intermèd. des math. 1 (1894), 251–253.
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