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POLYNOMIALS WITH ROOTS IN Qp FOR ALL p

JACK SONN

(Communicated by Ken Ono)

Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but
with roots in Qp for all p, or equivalently, with roots mod n for all n. It is
known that f(x) cannot be irreducible but can be a product of two or more
irreducible polynomials, and that if f(x) is a product of m > 1 irreducible
polynomials, then its Galois group must be a union of conjugates of m proper
subgroups. We prove that for any m > 1, every finite solvable group that is
a union of conjugates of m proper subgroups (where all these conjugates have

trivial intersection) occurs as the Galois group of such a polynomial, and that
the same result (with m = 2) holds for all Frobenius groups. It is also observed
that every nonsolvable Frobenius group is realizable as the Galois group of a
geometric, i.e. regular, extension of Q(t).

1. Introduction

Let f(x) be a monic polynomial with rational integer coefficients. Suppose f has
no rational roots but has a root in Qp for all p, or equivalently, has a root mod n for
all positive integers n. It has been observed [BeBi], [Br] that f cannot be irreducible
(even under the slightly weaker assumption that f has a root mod p for all prime
numbers p), and that if f is a product of m > 1 irreducible polynomials, then its
Galois group must be a union of conjugates of m proper subgroups.1 Indeed, if f
is irreducible, let α be a root of f , F = Q(α), K the splitting field of f over Q,
and G the Galois group G(K/Q). Let p be a prime not dividing the discriminant
disc(f) of f . f has a root mod p implies that for some prime p of K dividing p,
the decomposition group G(p) of p is contained in G(K/F ), or equivalently, for any
prime p of K dividing p, there exists a root β of f such that G(p) ⊆ G(K/Q(β)).
By Chebotarev’s density theorem, G =

⋃
p�disc(f) G(p). But then

⋃

p�disc(f)

G(p) ⊆
⋃

f(β)=0

G(K/Q(β))

cannot equal G since a union of conjugates of a proper subgroup of a finite group
cannot equal the whole group. Thus f cannot be irreducible. By a similar argument,
if f is a product g1 · · · gm of m irreducible polynomials in Z[x] (of degree greater
than 1) with splitting field K and Galois group G, then G is a union of conjugates
of m proper subgroups, namely G(K/Q(αi)), where gi(αi) = 0, i = 1, ..., m. Finite
groups that are the union of conjugates of two proper subgroups are studied in [Br],
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where it is proved among other things that if a group G has this property, and the
two subgroups are nilpotent, then G is solvable. It is also proved in [BBH] that
if the symmetric group Sn has this property, then 3 ≤ n ≤ 6. In [Br] (see also
[BeBi]), the polynomials (xr − 2)Φr(x), r ≥ 3 a prime (Φr(x) is the rth cyclotomic
polynomial), with Galois groups the Frobenius groups of order r(r − 1), are given
as examples of polynomials with no rational roots and roots mod p for all p, and
the inverse problem is raised: if G is a union of conjugates of two proper subgroups
(one should also assume that the intersection of all these conjugates is trivial), then
can G be realized as the Galois group of the product f of two irreducible nonlinear
polynomials such that f has a root mod p for all p? The answer appears not to
have been known even for the dihedral group of order ten. We will prove that every
finite solvable group with the above property can be realized in this way, with f
having a root in Qp for all p. As it turns out, Shafarevich’s realization of solvable
groups already yields extensions with the required property (even for “m proper
subgroups” and “m irreducible polynomials” instead of two). We will also prove the
result for all nonsolvable Frobenius groups. On the other hand, the question seems
to be open even for the symmetric group S6, which as we mentioned above, is the
union of conjugates of two proper subgroups. In connection with Frobenius groups,
we observe that every nonsolvable Frobenius group is realizable as the Galois group
of a geometric, i.e. regular, extension of Q(t), a fact that does not seem to have
been pointed out before.

2. Roots in Qp for all p

We begin with a characterization of Galois extensions which are splitting fields
of polynomials that are products of m irreducible nonlinear polynomials in Q[x]
and that have roots in Qp for all p. Note that if f ∈ Z[x] has a root in Qp, then f
has a root mod p.

Proposition 1. Let K/Q be a finite Galois extension with Galois group G. The
following are equivalent:

(1) K is the splitting field of a product f = g1 · · · gm of m irreducible poly-
nomials of degree greater than 1 in Q[x] and f has a root in Qp for all primes p.

(2) G is the union of the conjugates of m proper subgroups A1, ..., Am, the
intersection of all these conjugates is trivial, and for all primes p of K, the decom-
position group G(p) is contained in a conjugate of some Ai.

Proof. Assume first that (1) holds, i.e. K is the splitting field of a product f =
g1 · · · gm of m irreducible polynomials of degree greater than 1 and f has a root in
Qp for all primes p. Let α1, ..., αm be roots of g1, ..., gm respectively in K and let
Ai := G(K/Q(αi)), 1 ≤ i ≤ m. Let p be a given prime number. By assumption
f has a root in Qp; hence some gi has a root in Qp. Then for some prime p of K
dividing p, the decomposition group G(p) is contained in Ai, or equivalently, for
every prime p of K dividing p, the decomposition group G(p) is contained in some
conjugate G(K/Q(α′

i)) of Ai. We therefore conclude that if f has a root in Qp for
all p, then for all primes p of K, the decomposition group G(p) is contained in a
conjugate of some Ai. By Chebotarev’s density theorem, every cyclic subgroup of
G occurs as a decomposition group of some (unramified) prime p of K; hence G is
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the union of the conjugates of A1, ..., Am. The intersection of all the conjugates of
A1, ..., Am is trivial because K is the splitting field of f . Thus (2) holds.

Conversely, assume (2), i.e. G is the union of the conjugates of m proper sub-
groups A1, ..., Am, the intersection of all these conjugates is trivial, and for all
primes p of K, the decomposition group G(p) is contained in a conjugate of some
Ai. Let α1, ..., αm ∈ K such that Ai = G(K/Q(αi)). Let g1, ..., gm be the minimal
polynomials of α1, ..., αm resp. over Q. Since the intersection of the conjugates
of A1, ..., Am is trivial, K is the splitting field of f = g1 · · · gm over Q, and since
A1, ..., Am are proper subgroups of G, g1, ..., gm have degrees greater than 1. Let p
be a rational prime, p a prime of K dividing p. By assumption the decomposition
group G(p) of p is contained in a conjugate of some Ai. Then gi has a root in Qp.
Thus our assumptions imply that f has a root in Qp for all p. �

Note that (2) implies that G is necessarily noncyclic.
We now prove a realization theorem for solvable groups.

Theorem 2. Let G be a finite solvable group which is the union of the conjugates
of m proper subgroups, where the intersection of all these conjugates is trivial.
Then there exists a polynomial f(x) which is the product of m irreducible nonlinear
polynomials in Q[x] with Galois group G and having a root in Qp for all rational
primes p. In particular (since every noncyclic group is a union of (conjugates of)
proper subgroups with trivial intersection), every noncyclic finite solvable group is
realizable as the Galois group over Q of a polynomial f(x) ∈ Q[x] having no rational
roots and having a root in Qp for all rational primes p.

Proof. The proof will follow easily from the observation that Shafarevich’s real-
ization of solvable groups as Galois groups over number fields yields an extension
K/Q with all decomposition groups G(p) cyclic. Indeed, let G be a finite solvable
group which is the union of the conjugates of m proper subgroups, and suppose
K/Q is Galois with group G with all decomposition groups G(p) cyclic. Then every
decomposition group is contained in a conjugate of some Ai, so by Proposition 1,
we are done.

To verify the observation about Shafarevich’s realization of solvable groups, we
use the exposition of the proof of Shafarevich’s theorem in [NSW]. The key result
in the construction is [NSW, Theorem 9.5.11]. Let F(n) denote the free pro-p− G
operator group on n generators. G acts “freely” on F(n). There is a filtration
F(n)(ν) (ν ∈ N × N) defined on F(n) which is a refinement of the descending p-
central series, all of whose terms are G-invariant. (For the precise definition, see
[NSW, pp. 481ff].) Now [NSW, Theorem 9.5.11] says that if K/k is any Galois
extension of global fields with group G, then for any p, n, ν, the split embedding
problem associated with the epimorphism F(n)/F(n)(ν) � G � G has a proper
solution with solution field Nn

ν , such that (if p �= char(K)) all divisors of p, all
infinite primes, and all primes of K which are ramified in K/k split completely
in Nn

ν /K, and all primes p of K which ramify in Nn
ν /K split completely in K/k,

and the local extension Nn
ν,p/kp is a totally ramified, hence cyclic, extension. In

particular, if all decomposition groups in G(K/k) are cyclic, then all decomposition
groups in Nn

ν /k are cyclic. Now given any semidirect product P �G, with P a finite
p-group, there exist some n, ν and an operator epimorphism from F(n)/F(n)(ν) to
P , and a corresponding epimorphism from the semidirect product F(n)/F(n)(ν)�G
to P � G. This implies that the split embedding problem associated with the
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epimorphism P � G � G has a proper solution with solution field N ⊆ Nn
ν , and

if all decomposition groups in G(K/k) are cyclic, then all decomposition groups in
G(N/k) are cyclic. Finally, given any semidirect product Q � G with Q a finite
nilpotent group, the above argument implies that the embedding problem associated
with the epimorphism Q�G � G has a proper solution with solution field M , and
if all decomposition groups in G(K/k) are cyclic, then all decomposition groups in
M/k are cyclic.

Now the proof of Shafarevich’s theorem follows by applying a theorem of Ore:
let G be a finite solvable group. Then G has a nilpotent normal subgroup Q and
a proper subgroup H such that G = QH. By induction we may assume H is
realized as a Galois group G(K/k) with all decomposition groups cyclic. Consider
the semidirect product Q � H with H acting on Q by conjugation inside G. By
the above, the embedding problem associated with the epimorphism Q � H � H
has a proper solution with solution field M , and since all decomposition groups in
G(K/k) are cyclic, all decomposition groups in M/k are cyclic. Finally, since G is
a homomorphic image of Q � H, there is a subfield L of M such that L/k is Galois
with group G and all decomposition groups cyclic. This verifies the observation
about Shafarevich’s construction and completes the proof of the theorem. �

Remark. Proposition 1 and Theorem 2 hold with the base field Q replaced by an
arbitrary global field k, with the same proof, where the primes p are replaced by
the primes of k.

We now turn to nonsolvable groups. One family of groups each of which is
the union of two conjugacy classes of proper subgroups is the family of Frobenius
groups. Unlike most nonsolvable groups, nonsolvable Frobenius groups are known
to be realizable as Galois groups over Q [So]. If G is a Frobenius group, then G is
a semidirect product Q � H, where g−1Hg ∩ H = 1 for all g /∈ H, which implies
that G is covered by Q (which is normal) and the conjugates of H [Hu, p. 495].

Theorem 3. Let G be a Frobenius group. Then there exists a polynomial f(x)
which is the product of two irreducible polynomials in Q[x] with Galois group G and
having a root in Qp for all rational primes p.

The proof of this theorem will use the following group-theoretic lemma, for which
we are indebted to David Chillag.

Lemma 1. Let G be a Frobenius group Q � H. Then every subgroup D of G such
that D ∩ Q = {1} is contained in a conjugate of H.

Proof. Since D ∩ Q = {1}, every element of D acts without fixed points on Q,
so DQ is a Frobenius group with kernel Q and complement D. By [Hu, Thm.
8.18, p. 506], the center of any Frobenius complement and in particular, Z(D), is
nontrivial. Let d be a nontrivial element of Z(D). Then D ⊆ C(d), where C(d) is
the centralizer of d in G. d lies in a conjugate of H, so without loss of generality,
we may assume d ∈ H. On the other hand, C(d) ⊆ H, since if x ∈ C(d) \ H, then
xdx−1 = d lies in xHx−1 ∩H = {1}, contradiction. We therefore have D ⊆ H. �

Proof of Theorem 2.3. By Proposition 1, it suffices to show that G is realizable as
the Galois group of an extension K/Q with each decomposition group contained
in either Q or a conjugate of H; hence by Lemma 1, it suffices to show that G is
realizable as the Galois group of an extension K/Q such that each decomposition
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group is either contained in Q or intersects Q trivially. We now proceed to show
this. One fact about Frobenius groups is very relevant here, namely Thompson’s
theorem that the Frobenius kernel Q of G is nilpotent [Hu, p. 499, Thm. 8.7]
(in fact for G nonsolvable, Q is even abelian [Hu, p. 506, Thm. 8.18]). We may
therefore use Shafarevich’s theorem as we did in the proof of Theorem 2. The same
argument that we used there shows that if we can realize the Frobenius complement
H by a Galois extension L/Q, then we can embed L/Q into a Galois extension K/Q

with group G such that the ramified primes in L/Q split completely in K/L, and
the ramified primes of K/L are split completely in L/Q. Let p be a prime of K. If
it is unramified over Q, its decomposition group is cyclic, hence contained in either
Q or a conjugate of H. If it is ramified over Q, let I(p) be its inertia group. If
I(p) ⊆ Q, then p is unramified in L/Q and ramified in K/L, hence split completely
in L/Q, so its decomposition group is contained in Q (and in fact equals I(p)) and
we are done. Otherwise, I(p) is not contained in Q, so p is ramified in L/Q, and so
splits completely in K/L. This means that its decomposition group G(p) intersects
Q trivially.

The proof of Theorem 3 is then completed by the realization of nonsolvable
Frobenius complements over Q in [So]. �

Remark 1. Theorem 3 holds with Q replaced by an arbitrary number field k.

Proof. It suffices to realize every nonsolvable Frobenius complement H as the Galois
group of a geometric (regular over Q) extension of the rational function field Q(t),
since Hilbert’s Irreducibility Theorem implies that if a group G is realizable as
the Galois group of a geometric extension of Q(t), then it is realizable over every
number field. Now H is itself a semidirect product Z �B, where Z is the semidirect
product of two cyclic groups of orders relatively prime to each other and to 2, 3, 5,
and B is one of two groups: Â5, the double cover of the alternating group A5, or
Ŝ5, one of the two double covers of the symmetric group S5. Over any Hilbertian
field F , every split geometric embedding problem with abelian kernel has a proper
geometric solution [MM, Thm. 2.4, p. 275]. Two applications of this fact reduce
the proof to the geometric realization of Â5 and Ŝ5 over Q(t), which appear in [Me]
and [Soa], respectively. �

The proof of Remark 1 implies a result that does not seem to have been observed
before:

Theorem 4. Every nonsolvable Frobenius group is realizable as the Galois group
of a geometric extension of Q(t).

Proof. As mentioned earlier, the Frobenius kernel of a nonsolvable Frobenius group
is abelian. Since the Frobenius complement is realizable geometrically over Q(t),
another application of [MM, Thm. 2.4, p. 275] yields the result. �

Remarkably, this result is not known for solvable Frobenius groups in general,
since nonabelian Frobenius kernels are known to exist.

Note added in proof. A finite nonsolvable group G is realizable as the Galois group
over Q of a polynomial f(x) ∈ Q[x] having no rational roots and having a root in
Qp for all rational primes p if and only if G is realizable as a Galois group over Q.
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