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Abstract

We consider the polynuclear growth (PNG) model in 1 + 1 dimen-
sion with flat initial condition and no extra constraints. Through the
Robinson-Schensted-Knuth (RSK) construction, one obtains the mul-
tilayer PNG model, which consists of a stack of non-intersecting lines,
the top one being the PNG height. The statistics of the lines is trans-
lation invariant and at a fixed position the lines define a point process.
We prove that for large times the edge of this point process, suitably
scaled, has a limit. This limit is a Pfaffian point process and identical
to the one obtained from the edge scaling of Gaussian orthogonal en-
semble (GOE) of random matrices. Our results give further insight to
the universality structure within the KPZ class of 1 + 1 dimensional
growth models.

1 Introduction

The polynuclear growth (PNG) model is the best-studied growth model from
the KPZ class in one spatial dimension. Since in one dimension the dynamical
scaling exponent is z = 3/2, the correlation length increases as t2/3 for large
growth time t. The exponent is universal, but different classes of initial
conditions lead to distinct scale invariant statistical properties of the surface
in the large t limit. To go beyond the exponents and to determine the exact
scaling functions one has to analyze some solvable models. In this paper
we consider the PNG model. The surface height at time t is denoted by
x 7→ h(x, t). On the surface new islands of height one are created at random
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with intensity ̺. The islands spread with unit speed and simply merge upon
contact.

For the PNG model the exact scaling function for stationary growth is
known, see [14], relying on previous results by Baik and Rains [4, 3]. In the
case where initially h(x, 0) = 0 and nucleations are constrained to occur only
above a first spreading layer, the surface has typically the shape of a droplet.
In this geometry, for fixed but large t, the spatial statistics of the surface is
well understood. Subtracting the deterministic part, it is proved in [15] that
the self-similar shape fluctuations are governed by the Airy process.

In numerical simulations, one starts the growth process mostly with a
flat substrate, i.e., h(x, 0) = 0 with no further constraints. Thus it would
be of interest to understand the statistics of x 7→ h(x, t) at large t. It is a
space translation invariant process and the only available result [4, 12] is the
one-point distribution,

lim
t→∞

P (

h(0, t) ≤ 2t + ξt1/3
)

= F1(ξ2
2/3), (1.1)

with F1 the GOE Tracy-Widom distribution (here ̺ = 2). The limiting
function F1 is linked to the Gaussian Orthogonal Ensemble (GOE) of random
matrix theory as follows. Let us denote by λmax,N the largest eigenvalue of a
N × N GOE matrix, in units where E(λmax,N) = 2N . Then

lim
N→∞

P (

λmax,N ≤ 2N + ξN1/3
)

= F1(ξ), (1.2)

see [23]. F1 is given in terms of a Fredholm determinant, compare (2.10)
below. A plot of dF1(ξ)/dξ in semi-logarithmic scale is available in [12].

The result (1.1) leaves open the joint distribution at two space points,
even more the full process with respect to x. From the general KPZ scaling
theory, see [13] for an exposition, a meaningful limit is expected only if the
two points are separated by a distance of order t2/3. Thus the issue is to
determine the limit

lim
t→∞

P (

h(0, t) ≤ 2t + ξ1t
1/3, h(τt2/3, t) ≤ 2t + ξ2t

1/3
)

= ? (1.3)

Of course, the marginals are F1(ξ12
2/3) and F1(ξ22

2/3). But this leaves many
choices for the joint distribution.

In the present contribution we will not succeed in removing the question
mark in (1.3). However, we will make a big step towards a well-founded
conjecture. The idea to progress in the direction constituting the main body
of our paper was set forward by Kurt Johansson in a discussion taking place at
the 2003 workshop on growth processes at the Newton Institute, Cambridge
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(as communicated by Herbert Spohn). In a somewhat rough description,
underlying the PNG process there is a line ensemble constructed through
the Robinson-Schensted-Knuth (RSK) algorithm. Its top line at time t is
the height x 7→ h(x, t). Thus the question mark in (1.3) refers to the top
line. But instead of (1.3) we will study, for large t, the line ensemble at
fixed x = 0 close to the top line. As in a way already suggested by the Baik
and Rains result, under suitable scaling the lines at x = 0 have indeed the
statistics of the top eigenvalues of GOE random matrices. The implications
for (1.3) will be discussed after explaining more precisely our main result.

2 Main result

First we describe the PNG model with flat initial conditions, and secondly
recall some random matrix results on GOE eigenvalues, as needed to state
the scaling limit.

2.1 Polynuclear growth (PNG) model and RSK con-

struction

The polynuclear growth (PNG) model considered here is a 1+1 dimensional
model. One way to view PNG is via a graphical construction involving
Poisson points. Consider a fixed T > 0 and let ω be a countable configuration
of points in R × [0, T ]. For any compact subset B of R × [0, T ], denote the
number of points of ω in B by n(B)(ω). Then

Ω = {ω|n(B)(ω) < ∞, ∀ compact B ⊂ R× [0, T ]} (2.1)

is the set of all locally finite point configurations in R× [0, T ]. The Poisson
process with intensity ̺ > 0 in R× [0, T ] is given by setting the probabilityPT such that PT ({n(B) = n}) =

(̺|B|)n

n!
e−̺|B| (2.2)

for all compact B ⊂ R×[0, T ], and the family of random variables {n(Bj), j =
1, . . . , m} with Bi ∩Bj = ∅ for i 6= j, is always independent. In what follows
we set ̺ = 2.

For each ω ∈ Ω we define the height function h(x, t)(ω), (x, t) ∈ R×[0, T ],
by the following graphical construction. Because of flat initial conditions, we
set h(x, 0)(ω) = 0 and we call nucleation events the points of ω. Each
nucleation event generates two lines, with slope +1 and −1 along its forward
light cone. A line ends upon crossing another line. In Figure 1 the dots
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Figure 1: Graphical construction generating the surface height from the Pois-
son points.

are the nucleation events and the lines follow the forward light cones. The
height h(x, t)(ω) is then the number of lines crossed along the straight path
from (x, 0) to (x, t). Since ω is locally finite, it follows that x 7→ h(x, t)(ω),
t ∈ [0, T ], is locally bounded and the number of discontinuities is locally
finite.

The interpretation of the graphical construction in terms of a growing
surface is the following. The surface height at position x ∈ R and time t ≥ 0
is h(x, t) ∈ Z. The initial condition is h(x, 0) = 0 for all x ∈ R. For fixed time
t, consider the height function x 7→ h(x, t). We say that there is an up-step
(of height one) at x if h(x, t) = limy↑x h(y, t) + 1 and a down-step (of height
one) at x if h(x, t) = limy↓x h(y, t) + 1. A nucleation event which occurs at
position x and time t is a creation of a pair of up- and down-step at x at time
t. The up-steps move to the left with unit speed and the down-steps to the
right with unit speed. When a pair of up- and down-step meet, they simply
merge. In Figure 1 the dots are the nucleation events, the lines with slope −1
(resp. +1) are the positions of the up-steps (resp. down-steps). Other initial
conditions and geometries can be treated in a similar fashion. For example,
if h(x, 0) is not 0 for all x, it is enough to add additional lines starting from
the t = 0 axis with slope ±1 reflecting the up/down direction of the steps
at t = 0. Another interesting situation is the PNG droplet, where one starts
with flat initial conditions and there are no nucleation points outside the
forward light cone starting at (0, 0).

To study the surface height at time T , x 7→ h(x, T ), it is convenient to
extend to a multilayer model. This is achieved using the RSK construction.
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Figure 2: RSK construction up to time t = T .

We construct a set of height functions hℓ(x, t)(ω), (x, t) ∈ R× [0, T ], ℓ ≤ 0 as
follows. At t = 0 we set hℓ(x, 0) = ℓ with ℓ = 0,−1, . . ., ℓ denoting the level’s
height. The first height is defined by h0(x, t)(ω) ≡ h(x, t)(ω). The meeting
points of the forward light cones generated by the points of ω are called
the annihilation events of level 0. h−1(x, t)(ω) is constructed as h0(x, t)(ω)
but the nucleation events for level −1 are the annihilation events of level 0
and h−1(x, t)(ω) + 1 equals the number of lines for level −1 crossed from
(x, 0) to (x, t). In Figure 2 the nucleation events of level −1 are the empty
dots, whose forward light cones are the dotted lines. Setting the annihilation
events of level j as the nucleation events for level j − 1, the set of height
functions hℓ(x, t)(ω) is defined for all ℓ ≤ 0. The line ensemble for t = T ,
i.e., {hℓ(x, T ), ℓ ≤ 0} is represented in Figure 3.

The point process which describes this line ensemble at x = 0 is denoted
by ζflat

T and given by

ζflat
T (j) =

{

1 if a line passes at (0, j),
0 if no line passes at (0, j).

(2.3)

From the Baik and Rains result we know that the largest j such that ζflat
T (j) 6=

0 is located near 2T and fluctuates on a T 1/3 scale. The edge rescaled point
process is defined as follows. For any smooth test function f of compact
support

ηflat
T (f) =

∑

j∈Z ζflat
T (j)f

(

(j − 2T )/(T 1/32−2/3)
)

, (2.4)
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Figure 3: Line ensemble for t = T for the point configuration of Figure 2.

the factor 2−2/3 is the same as in (1.1). Notice that in (2.4) there is no
prefactor to the sum. The reason is that close to 2T , the points of ζflat

T are
order T 1/3 apart and ηflat

T remains a point process in the limit T → ∞. ηflat
T

has a last particle, i.e., ηflat
T (ξ) = 0 for all ξ large enough, and even in the

T → ∞ limit has a finite density which increases as
√−ξ as ξ → −∞.

Consequently the sum in (2.4) is effectively finite.

2.2 Random matrices

The Gaussian Orthogonal Ensemble (GOE) is the set of N × N real
symmetric matrices distributed according to the probability measure
Z−1

N exp[−Tr M2/4N ]dM , with dM =
∏

1≤i≤j≤N dMi,j. The eigenvalues are
then distributed with density

1

Z ′
N

∏

1≤i<j≤N

|λi − λj|
N
∏

i=1

exp[−λ2
i /4N ]. (2.5)

Let us denote by ζGOE
N the point process of GOE eigenvalues, i.e., ζGOE

N (x) =
∑N

j=1 δ(x − λj). At the edge of the spectrum, 2N , the eigenvalues are order

N1/3 apart. The edge rescaled point process is then given by

ηGOE
N (ξ) = N1/3ζGOE

N (2N + ξN1/3), (2.6)

and for f a test function of compact support,

ηGOE
N (f) =

N
∑

j=1

f
(

(λj − 2N)/N1/3
)

=

∫R dξf(ξ)ηGOE
N (ξ). (2.7)

We denote by ηGOE the limit of ηGOE
N as N → ∞.
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The limit point process ηGOE is characterized by its correlation functions
as follows. Let us denote by ρ

(n)
GOE(ξ1, . . . , ξn) the n-point correlation functions

of ηGOE, i.e., the joint density of having eigenvalues at ξ1, . . . , ξn. Then

ρ
(n)
GOE(ξ1, . . . , ξn) = Pf[GGOE(ξi, ξj)]i,j=1,...,n (2.8)

where Pf is the Pfaffian and GGOE is a 2 × 2 matrix kernel with elements

GGOE
1,1 (ξ1, ξ2) =

∫ ∞

0

dλ Ai(ξ1 + λ) Ai′(ξ2 + λ) − (ξ1 ↔ ξ2), (2.9)

GGOE
1,2 (ξ1, ξ2) =

∫ ∞

0

dλ Ai(ξ1 + λ) Ai(ξ2 + λ) +
1

2
Ai(ξ1)

∫ ∞

0

dλ Ai(ξ2 − λ),

GGOE
2,1 (ξ1, ξ2) = −GGOE

1,2 (ξ2, ξ1)

GGOE
2,2 (ξ1, ξ2) =

1

4

∫ ∞

0

dλ

∫ ∞

λ

dµ Ai(ξ2 − µ) Ai(ξ1 − λ) − (ξ1 ↔ ξ2),

and Ai is the Airy function [1]. The notation (ξ1 ↔ ξ2) means that the
previous term is repeated with ξ1 and ξ2 interchanged. For an antisymmetric
matrix A, Pf(A) =

√

Det(A), see (4.1) for the definition of the Pfaffian. The
GOE kernel was studied in [23]. It is not uniquely defined, for example the
one reported in [6, 18] differs slightly from the one written here, but they
are equivalent because they yield the same point process. The point process
ηGOE is uniquely determined by its correlation functions [20].

Finally let us remark that F1 can be written in terms of a Fredholm
determinant

F1(ξ) = lim
N→∞

EN

( N
∏

j=1

(1 − 1(ξ,∞)((λj − 2N)/N1/3))

)

=
√

Det(1− J−1GGOE), (2.10)

where J is the matrix kernel J =

(

0 1
−1 0

)

. The determinant in (2.10) is

the Fredholm determinant of the kernel K = J−1GGOE on the measure space
((ξ,∞) × {1, 2}, dx × ν) with dx the Lebesgue measure and ν the counting
measure on {1, 2}, i.e.,

Det(1− K) =

∞
∑

k=0

(−1)n

n!

∫

(ξ,∞)n

dξ1 · · ·dξn

∑

i1,...,in∈{1,2}

Det [Kik,il(ξk, ξl)]k,l=1,...,n .

(2.11)
Remark: One can also consider instead of Det(1 − K) the determinant

Det(1 − K̂) with K̂ the operator with kernel K. K̂ is not trace-class on
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L2((ξ,∞), dx)⊕L2((ξ,∞), dx) because it is not even Hilbert-Schmidt. Nev-
ertheless it is possible to make sense of it as follows. K̂ is Hilbert-Schmidt
in the space L2((ξ,∞), θ−1dx) ⊕ L2((ξ,∞), θdx) where θ is any positive
weight function growing at most polynomially at x → ∞ and satisfying
θ−1 ∈ L1((ξ,∞), dx). Moreover the sum of the diagonal terms, T̃r(K̂), is ab-
solutely integrable. Then the modified Fredholm determinant, which has also
the series development (2.11), is defined by Det(1−K̂) = e−T̃r(K̂) Det2(1−K̂)
with Det2 the regularized determinant [7]. This functional analysis point of
view is used by Tracy and Widom [26] to show the convergence of the mod-
ified Fredholm determinants in the N → ∞ limit.

2.3 Scaling limit

As our main result we prove that the point process ηflat
T converges weakly to

the point process ηGOE as T → ∞.

Theorem 2.1. For any m ∈ N and smooth test functions of compact support
f1, . . . , fm,

lim
T→∞

ET

( m
∏

k=1

ηflat
T (fk)

)

= E( m
∏

k=1

ηGOE(fk)

)

. (2.12)ET refers to expectation with respect to the Poisson process measure PT .
The expected value on the r.h.s. of (2.12) is computed via the correlation
functions (2.8).

As announced in the Introduction, the result of Theorem 2.1 is a first
step towards a conjecture on the self-similar statistics of the PNG with flat
initial conditions. The starting observation is that, as for the PNG, also to
random matrices one can introduce a line ensemble in a natural way. Let M
be a N × N random matrix in the GOE, resp. GUE, ensemble. As noticed
by Dyson [5] when the coefficients of M are independent Ornstein-Uhlenbeck
processes, then the eigenvalues λj(t) of M = M(t) satisfy the set of stochastic
differential equations

dλj(t) =

(

− 1

2N
λj(t) +

β

2

N
∑

i=1,
i6=j

1

λj(t) − λi(t)

)

dt + dbj(t) , j = 1, ..., N,

(2.13)
with {bj(t), j = 1, ..., N} a collection of N independent standard Brownian
motions, β = 1 for GOE and β = 2 for GUE. We refer to the stationary
process of (2.13) as Dyson’s Brownian motion. Note that for β ≥ 1 there is
no crossing of the eigenvalues, as proved by Rogers and Shi [17].
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Let us denote by ζGUE
N the point process of GUE eigenvalues, i.e.,

ζGUE
N (x, t) =

∑N
j=1 δ(x− λj(t)) where λj(t) are the GUE eigenvalues at time

t. At the edge of the spectrum the eigenvalues are order N1/3 apart and the
space-time edge rescaled point process is given by

ηGUE
N (ξ, τ) = N1/3ζGUE

N (2N + ξN1/3, 2τN2/3). (2.14)

Its limit as N → ∞ is denoted by ηGUE(ξ, τ). ηGUE is a determinantal point
process and its space-time kernel is the extended Airy kernel. The top line of
ηGUE is given by the Airy process, denoted by A(t), which appears in [15, 9]
with more detailed properties investigated in [2, 25, 24, 27]. The height
statistics x 7→ h(x, t) for the PNG droplet is linked to the Airy process by

lim
T→∞

T−1/3
(

h(τT 2/3, T ) − 2
√

T 2 − (τT 2/3)2
)

= A(τ), (2.15)

where the term subtracted from h is the asymptotic shape of the droplet [15].
To obtain this result, Prähofer and Spohn consider the line ensemble obtained
by RSK and define a point process like (2.3) but extended to space-time. It is
a determinantal point process and in the edge scaling it converges, as T → ∞,
to the point process associated with the extended Airy kernel. Thus they
prove not only that the top line converges to the Airy process, but also that
the top lines converge to the top lines of Dyson’s Brownian motion with
β = 2.

One can extend ηGOE
N of (2.6) to space-time as in (2.14). The conjecture

is that, under edge scaling, the process x 7→ h(x, T ) for flat PNG is in
distribution identical to the largest eigenvalue of Dyson’s Brownian motion
with β = 1. The result of Theorem 2.1 makes this conjecture more plausible.
In fact we now know that, not only h(0, T ) in the limit T → ∞ and properly
rescaled is GOE Tracy-Widom distributed, but also that the complete point
process ηflat

T converges to the edge scaling of Dyson’s Brownian motion with
β = 1 for fixed time. For β = 1 Dyson’s Brownian motion one expect that
under edge scaling the full stochastic process has a limit. More explicitly, one
focuses at the space-time point (2N, 0), rescales space by a factor N1/3, time
by N2/3, and expects that the statistics of the lines has a limit for N → ∞.
It could be that this limit is again Pfaffian with suitably extended kernel.
But even for β = 1 Dyson’s Brownian motion this structure has not been
unravelled.

The rest of the paper is organized as follows. In Section 3 we explain
the line ensemble which will be used to obtain our result. It differs from the
one of Figure 3. The end points of the line ensemble gives a point process,
whose correlation functions are obtained in Section 4. They are given in
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Figure 4: A configuration with three Poisson points in the triangle △+ and
their symmetric images with respect to the t = 0 axis. The path γ is the
bold line. On the right we draw the top lines of the line ensemble associated
to γ, {Hj(s), j ≤ 0, s ∈ [0, T

√
2]}.

term of a 2 × 2 matrix kernel which is computed for fixed T in Section 5.
Section 6 is devoted to the edge scaling of the kernel and its asymptotics.
Finally Section 7 contains the proof of Theorem 2.1.

3 Line ensemble

3.1 Line ensemble for the � symmetry

The line ensemble for flat PNG generated by RSK at time t = T is not easy
to analyze because there are non-local constraints on the line configurations.
Instead, we start considering the point process ζflat

T . First remark that this
point process depends only on the points in the triangle △+ = {(x, t) ∈R × R+|t ∈ [0, T ], |x| ≤ T − t}. We then consider the Poisson points only
in △+ and add their symmetric images with respect to the t = 0 axis, which
are in △− = {(x, t) ∈ R ×R−|(x,−t) ∈ △+}. We denote by ζ sym

T the point
process at (0, T ) obtained by RSK construction using the Poisson points
and their symmetric images, see Figure 4. To study ζ sym

T we consider a
different line ensemble. Let us consider the path in space-time defined by
γ(s) = (T − s/

√
2, s/

√
2), s ∈ [0, T

√
2], and construct the line ensemble
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{Hj(s), j ≤ 0, s ∈ [0, T
√

2]}, as follows. The initial conditions are Hj(0) = j
since the height at t = 0 is zero everywhere. Every times that γ crosses a
RSK line corresponding to a nucleation event of level j, Hj has an up-jump.
Then the point process ζ sym

T is given by the points {Hj(T
√

2), j ≤ 0}. In
Proposition 3.2 we show that ζflat

T can be recovered by ζ sym
T , in fact we prove

that hj(0, T ) = 1
2
(Hj(T

√
2) + j).

Next we have to determine the allowed line configurations and their dis-
tribution induced by the Poisson points. This is obtained as follows. We
prove that the particle-hole transformation on the line ensemble {Hj(s), j ≤
0, s ∈ [0, T

√
2]} is equivalent to a particular change of symmetry in the po-

sition of the nucleation events, and we connect with the half-droplet PNG
problem studied by Sasamoto and Imamura [18].

Young tableaux

Let σ = (σ(1), . . . , σ(2N)) be a permutation of {1, . . . , 2N} which indicate
the order in which the Poisson points are placed in the diamond △+ ∪ △−.
More precisely, let (xi, ti) be the positions of the points with the index i =
1, . . . , N such that ti +xi is increasing with i, and σ is the permutation such
that tσ(i) − xσ(i) is increasing in i too. Let us construct the line ensembles
along the paths (T, 0) → (0, T ) and (−T, 0) → (0, T ). The relative position
of the steps on the line ensembles are encoded in the Young tableaux S(σ)
and T (σ) constructed using Schensted’s algorithm. If the kth step occurs in
line Hj, then in the Young tableau there is a k in row j, see Figure 5.

In our case the points are symmetric with respect to the axis t = 0
and we refer to it as the symmetry �. In the case studied in [18], the
points are symmetric with respect to the axis x = 0 and we call it the
symmetry �. Consider a configuration of points with symmetry � and let σ
be the corresponding permutation. The RSK construction leads to the line
ensembles of T (σ) and S(σ) as shown in the left part of Figure 5. If we apply
the axis symmetry with respect to x+t = 0, then we obtain a configuration of
points shown in the right part of Figure 5. The points have now the symmetry
� and the corresponding permutation σ̃ is obtained simply by reversing the
order of σ, that is, if σ = (σ(1), . . . , σ(2N)) then σ̃(j) = σ(2N + 1 − j). By
Schensted’s theorem [19],

S(σ̃) = S(σ)t, . (3.1)

Moreover, the positions of the steps in the line ensembles of S(σ) and S(σ̃)
occurs at the same positions, but of course in different line levels. Figure 5
shows an example with σ = (2 4 5 1 6 3), for which the Young tableaux are
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S(σ)

T (σ)

S(σ̃)

T (σ̃)

Figure 5: Line ensembles for σ = (2 4 5 1 6 3) and σ̃ = (3 6 1 5 4 2). For
the even levels, ℓ = 0,−2, we use the solid lines and for the odd levels,
ℓ = −1,−3, the dashed lines. The line ensemble of S(σ) corresponds to the
line ensemble {Hj(s), j ≤ 0, s ∈ [0, T

√
2]} of Figure 4.

S(σ) =

(

1 3 5 6
2 4

)

,

T (σ) =

(

1 2 3 5
4 6

)

,

S(σ̃) = T (σ̃) =









1 2
3 4
5
6









.

Particle-hole transformation

At the level of line ensemble we can apply the particle-hole transformation,
which means that a configuration of lines is replaced by the one with jumps at
the same positions and the horizontal lines occupy the previous empty spaces,
as shown in Figure 6. Let us start with the line ensemble corresponding to
S(σ), then the Young tableau for the hole line ensemble is given by S(σ)t. In
fact, the information encoded in S(σ) tell us that the jth particle has jumps
at (relative) position S(σ)j,k, k ≥ 1, for j ≥ 1. On the other hand, the
jth hole has jumps where the particles have their jth jump. Therefore the
particle-hole transformation is equivalent to the symmetry transformation
� → �.

Allowed line configurations and measure

Sasamoto and Imamura [18] study the half-droplet geometry for PNG, where
nucleation events occurs symmetrically with respect to x = 0, i.e., with the
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0
1

Figure 6: Particle (solid) and hole (dashed) line ensembles for the example
of Figure 5. The particle line ensemble is the one associated with S(σ), and
the hole line ensemble is the one of S(σ̃) reflected with respect to the line
j = 1/2. The pairing rule is shown by the brackets.

� symmetry. In particular, they prove that the point process at x = 0
converges to the point process of eigenvalues of the Gaussian Symplectic
Ensemble (GSE). Its correlation functions have the same Pfaffian structure
as GOE but with a different kernel. In a way the line ensemble they study is
the hole line ensemble described above, thus their edge scaling focuses at the
top holes, i.e., in the region where the lowest particles are excited. Notice
that the change of focus between particles and holes changes the statistics
from GSE to GOE. This differs from the case of the PNG droplet [15] where
for both holes and particles the edge statistics is GUE. Although the result
of [18] cannot be applied directly to our symmetry, some properties derived
there will be of use.

From [18] we know that for the symmetry � a hole line configuration is
allowed if: a) the lines do not intersect, b) have only down-jumps, c) they
satisfy the pairing rule: Hhole

2j (T
√

2) = Hhole
2j−1(T

√
2) for all j ≥ 1. This

implies that for the symmetry � a line configuration {Hj} is allowed if: a)
the lines do not intersect, b) have only up-jumps, c) Hj(T

√
2) − Hj(0) is

even for each j ≤ 0. Moreover, there is a one-to-one correspondence between
allowed configurations and nucleation events. The probability measure for
the line ensemble turns out to have a simple structure. Consider Poisson
points with intensity ̺ and symmetry �. Each Poisson point (x, t) ∈ △+ has
a probability ̺ dxdt of being in [x, x+dx]×[t, t+dt]. In the corresponding line
ensemble this weight is carried by two jumps, therefore the measure induced
by the points on a line configuration {Hj} is given by

√
̺#jumps in {Hj} times

the uniform measure.
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3.2 Flat PNG and line ensemble for � symmetry

The correspondence between the point process ζflat
T and ζ sym

T is as fol-
lows. Let us consider a permutation σ with Young tableau S(σ) of shape
(λ1, λ2, . . . , λm). Let, for k ≤ m, ak(σ) be the length of the longest subse-
quence consisting of k disjoint increasing subsequences.

Theorem 3.1 (Greene [8]). For all k = 1, . . . , m,

ak(σ) = λ1 + · · ·+ λk. (3.2)

The geometric interpretation is the following. Let σ be the permutation
which corresponds to some configuration of Poisson points in △+∪△−. Then
ak is the maximal sum of the lengths of k non-intersecting (without common
points) directed polymers from (0,−T ) to (0, T ).

Proposition 3.2. Let π be a Poisson point configuration in △+ and let the
corresponding Young tableau S(π) have shape (λ1, λ2, . . . , λm). Let π̃ be the
configuration of points on △+ ∪△− with symmetry � which is identical to π
in △+. Then S(π̃) has shape (λ̃1, λ̃2, . . . , λ̃m) = (2λ1, 2λ2, . . . , 2λm).

Proof. To prove the proposition is enough to prove that ak(π̃) = 2ak(π) for
k = 1, . . . , m.
i) ak(π̃) ≥ 2ak(π): it is obvious since we can choose the k directed polymers
on π̃ by completing the ones on π by symmetry.
ii) ak(π̃) ≤ 2ak(π): assume it to be false. Then there exists k directed
polymers in △+ and k in △− such that the total length is strictly greater
than 2ak(π). This implies that at least one (by symmetry both) of the sets
of k directed polymers has total length strictly greater that ak(π). But this
is in contradiction with the definition of ak(π), therefore ak(π̃) ≤ 2ak(π).

Since λ1−j = hj(0, T ) − j and λ̃1−j = Hj(T
√

2) − j, it follows from this
proposition that

hj(0, T ) = 1
2
(Hj(T

√
2) + j) (3.3)

for all j ≤ 0.

4 Correlation functions

Non-intersecting lines can be viewed as trajectories of fermions in discrete
space Z and continuous time [0, T

√
2]. Let us start with a finite number of

fermions, 2N , which implies that only the information in the first 2N levels
in the RSK construction is retained. For any configuration, the number
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of non perfectly flat lines, is obviously bounded by the number of Poisson
points in △+. On the other hand for fixed T , the probability of having a
number of Poisson points greater than 2N decreases exponentially fast for N
large. First we derive an exact formula for the n-point correlation function
for finite N , and then take the limit N → ∞ so that, for any fixed T , each
line configuration contains all the information of the Poisson points. Finally
we consider the asymptotic for large T .

4.1 Correlation functions and Pfaffians

The correlation functions of the point process ζ sym
T turn out to be expressed

as Pfaffians. Therefore we first review the Pfaffian ensemble. Let A =
[Ai,j ]i,j=1,...,2N be an antisymmetric matrix, then its Pfaffian is defined by

Pf(A) =
∑

σ∈S2N
σ2i−1<σ2i

(−1)|σ|
N
∏

i=1

Aσ2i−1,σ2i
, (4.1)

where S2N is the set of all permutations of {1, . . . , 2N}. Notice that the Pfaf-
fian depends only on the upper triangular part of A. For an antisymmetric
matrix the identity Pf(A)2 = Det(A) holds.

The Pfaffian ensemble is introduced in [16], see also [21]. Let (X, µ) be
a measure space, f1, . . . , f2N complex-valued functions on X, ε(x, y) be an
antisymmetric kernel, and define by

p(x1, . . . , x2N ) =
1

Z2N
Det[fj(xk)]j,k=1,...,2N Pf[ε(xj , xk)]j,k=1,...,2N (4.2)

the density of a 2N -dimensional probability distribution on X2N with respect
to µ⊗2N , the product measure generated by µ. The normalization constant
is given by

Z2N =

∫

X2N

d2Nµ Det[fj(xk)]j,k=1,...,2N Pf[ε(xj, xk)]j,k=1,...,2N = (2N)! Pf[M ]

(4.3)
where the matrix M = [Mi,j ]i,j=1,...,2N is defined by

Mi,j =

∫

X2

fi(x)ε(x, y)fj(y)dµ(x)dµ(y). (4.4)

The n-point correlation functions ρ(n)(x1, . . . , xn) of a point process with
measure (4.2) are given by Pfaffians

ρ(n)(x1, . . . , xn) = Pf[K(xi, xj)]i,j=1,...,n (4.5)
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where K(x, y) is the antisymmetric kernel

K(x, y) =

(

K1,1(x, y) K1,2(x, y)
K2,1(x, y) K2,2(x, y)

)

(4.6)

with
K1,1(x, y) =

∑2N
i,j=1 fi(x)M−1

j,i fj(y)

K1,2(x, y) =
∑2N

i,j=1 fi(x)M−1
j,i (εfj)(y)

K2,1(x, y) =
∑2N

i,j=1(εfi)(x)M−1
j,i fj(y)

K2,2(x, y) = −ε(x, y) +
∑2N

i,j=1(εfi)(x)M−1
j,i (εfj)(y)

(4.7)

provided that M is invertible, and (εfi)(x) =
∫

X
ε(x, y)fi(y)dµ(y). Note the

order of indices in M−1
j,i .

4.2 Linear statistics

Let a∗
j and aj , j ∈ Z, be the creation and annihilation operator for the

fermions and |∅〉 be the state without fermions. The initial state is then
given by

|Ωin〉 =
0

∏

j=−2N+1

a∗
j |∅〉, (4.8)

and the final state is

|Ωfin〉 =
∑

n∈CN

0
∏

j=−2N+1

a∗
j+2nj

|∅〉 (4.9)

where CN = {{n0, . . . , n−2N+1}|nj ≥ nj−1, nj ≥ 0}. Let us define the up-
jump operator as

α1 =
∑

k∈Z a∗
k+1ak, (4.10)

which when applied on |Ωin〉 is actually a finite sum. Then the evolution from
the initial state (t = 0) to the final one (t = T

√
2) is given by the transfer

operator
exp(T̃α1), T̃ =

√

2̺T = 2T. (4.11)

The linear statistics, i.e., for a bounded function g : Z→ R, isEN,T

( 0
∏

j=−2N+1

(1 − g(xfin
j ))

)

=
〈Ωfin|

∏

y∈Z(1 − g(y)a∗
yay)e

T̃ α1 |Ωin〉
〈Ωfin|

∏

y∈Z eT̃ α1 |Ωin〉
(4.12)
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where the xfin
j , j ∈ {−2N +1, . . . , 0} are the position of the fermions at time

T
√

2. Let us denote by ρ(n)(x1, . . . , xn) the n-point correlation function of
ζ sym
T . ThenEN,T

( 0
∏

j=−2N+1

(1 − g(xfin
j ))

)

=
∑

n≥0

(−1)n

n!

∑

x1,...,xn∈Z ρ(n)(x1, . . . , xn)
n

∏

j=1

g(xj).

(4.13)
For finite N , ρ(n) = 0 for n > 2N .

Proposition 4.1. Let us define the matrix Φ with entries

Φx,i =
1

(x − i)!
T̃ x−iΘ(x − i), (4.14)

with Θ the Heaviside function, the antisymmetric matrices S and A

Sx,y =
1 + sgn(x − y)(−1)x

2

1 − sgn(x − y)(−1)y

2
sgn(x − y), (4.15)

Ai,j =
∑

x,y∈ZΦt
i,xSx,yΦy,j = [ΦtSΦ]i,j. (4.16)

Then the n-point correlation function, for n ∈ {0, . . . , 2N}, are given by

ρ(n)(x1, . . . , xn) = Pf [K(xi, xj)]i,j=1,...,n (4.17)

where K is a 2×2 matrix kernel, K(x, y) =

(

K1,1(x, y) K1,2(x, y)
K2,1(x, y) K2,2(x, y)

)

, with

K1,1(x, y) = −∑0
i,j=−2N+1 Φt

i,xA
−1
i,j Φt

j,y

K1,2(x, y) = −∑0
i,j=−2N+1 Φt

i,xA
−1
i,j [ΦtSt]j,y = −K2,1(y, x)

K2,1(x, y) = −∑0
i,j=−2N+1[Φ

tSt]i,xA
−1
i,j Φt

j,y

K2,2(x, y) = St
x,y −

∑0
i,j=−2N+1[Φ

tSt]i,xA
−1
i,j [ΦtSt]j,y.

(4.18)

When N → ∞, (4.13) becomes a Fredholm Pfaffian, Pf (J − Kg) =
√

Det(1− J−1Kg), where J =

(

0 1
−1 0

)

, see Section 8 of [16]. In this

case, we consider bounded functions g with support bounded from below, so
that the sum in (4.13) is well defined. From the point of view of operators, the
determinant has to be though as defined through the modified determinant
like in the case of the GOE case, see discussion at the end of Section 2.2.
Finally, note that A is invertible because Det(A) is the partition function of
the line ensemble.
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Proof. Since it is often used, we denote the ordered set I = {−2N +1, . . . , 0},
and instead of writing a matrix M = [Mi,j]i,j=−2N+1,...,0 we write M =
[Mi,j ]i,j∈I . Let w({xin} → {xfin

n
}), n ∈ CN as given in (4.9), be the weight

of fermions starting from positions {xin} = (xin
i )i∈I , xin

i = i, and ending at
{xfin

n
} = (xfin

j )j∈I , xfin
j = j +2nj. The non-intersection constraint implies [10]

that the weight can be expressed via determinants,

w({xin} → {xfin
n
}) = Det[ϕi,j]i,j∈I (4.19)

with
ϕi,j = 〈∅|aj+2nj

eT̃ α1a∗
i |∅〉 =

[

eT̃ α1

]

j+2nj ,i
= Φj+2nj ,i. (4.20)

Taking into account the even/odd initial position of the fermions, (4.19) can
be rewritten as

w({xin} → {xfin
n
}) = Det[Φi(x

fin
j )]i,j∈I

0
∏

j=−N+1

e(xfin
2j )o(xfin

2j−1) (4.21)

with

e(x) =
1 + (−1)x

2
, o(x) =

1 − (−1)x

2
. (4.22)

Let us denote by p(x−2N+1, . . . , x0) the probability that the set of end
points {xfin

j , j = −2N +1, . . . , 0} coincide with the set {x−2N+1, . . . , x0}. We
want to show that this probability can be written as a determinant times a
Pfaffian. Since the xj ’s do not have to be ordered, let π be the permutation
of {−2N + 1, . . . , 0} such that xπ(i) < xπ(i+1), that is, xπ(i) = xfin

i , i ∈ I.
Moreover, define the matrix Ξ = [Ξi,j]i,j∈I by setting Ξi,j = δi,π(j). Then

[Φi(x
fin
j )]i,j∈I = [Φi(xj)]i,j∈I Ξ. (4.23)

Now let us show that

0
∏

j=−N+1

e(xfin
2j )o(xfin

2j−1) = Pf[St
xfin

i ,xfin
j

]i,j∈I . (4.24)

Since xfin
i < xfin

i+1, the components i, j (i < j) of the r.h.s. matrix are given
by o(xfin

i )e(xfin
j ). The Pfaffian of a matrix M = [Mi,j ]i,j∈I is

Pf(M) =
∑

σ
σ2i−1<σ2i

(−1)|σ|
0

∏

i=−N+1

Mσ2i−1,σ2i
, (4.25)

where the sum is on the permutations σ of {−2N + 1, . . . , 0} with σ2i−1 <
σ2i. The identity permutation gives already l.h.s. of (4.24). Thus we have
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to show that all other terms cancels pairwise. Take a permutation σ such
that σ(2i − 1) < σ(2j − 1) < σ(2i) < σ(2j) and define the permutation
σ′ by setting σ′(2j) = σ(2i), σ′(2i) = σ′(2j), and σ′(k) = σ(k) otherwise.
The term of the Pfaffian coming from σ and σ′ are identical up to a minus
sign because (−1)|σ| = −(−1)|σ

′|. Moreover, the only permutation for which
σ(2i − 1) < σ(2j − 1) < σ(2i) < σ(2j) can not be satisfied for some i, j is
the identity. Consequently (4.24) holds.

Finally, define the matrix G = Ξt [St
xi,xj

]i,j∈I Ξ. Replacing the definition

of Ξ we obtain G = [St
xfin

i ,xfin
j

]i,j∈I . Then

p(x−2N+1, . . . , x0) = w({xin} → {xfin
n }) (4.26)

= Det[Φi(x
fin
j )]i,j∈I

0
∏

j=−N+1

e(xfin
2j )o(xfin

2j−1)

= Det[Φi(xj)]i,j∈I Det(Ξ) Pf(Ξt [St
xi,xj

]i,j∈I Ξ)

= Det[Φi(xj)]i,j∈I Pf[St
xi,xj

]i,j∈I

where we used the property of Pfaffians Pf(ΞtTΞ) = Pf(T ) Det(Ξ), see
e.g. [22], and Det(Ξ) = (−1)|π|.

The probability (4.26) is of the form (4.2) with

ε(x, y) = St
x,y, fi(x) = Φx,i (4.27)

from which follows that

Mi,j = −Ai,j , (εfi)(x) = −[SΦ]x,i, (4.28)

and the kernel is given by

K ′(x, y) =

(

−K1,1(x, y) K1,2(x, y)
K2,1(x, y) −K1,2(x, y)

)

. (4.29)

But K and K ′ are two equivalent kernels (they give the same correlation

functions) since K ′ = U tKU with U = i

(

1 0
0 −1

)

and Pf[U tKU ] =

Det[U ] Pf[K]. We use K instead of K ′ uniquely because another derivation
of the kernel gave K and we already carried out the analysis.

5 Kernel for finite T

In this section we compute the components of the kernel given in (4.18). At
this stage we take the limit N → ∞. The justification of this limit is in the
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end of this section. The first step is to find the inverse of the matrix A. First
we extend A to be defined for all i, j ∈ Z by using (4.16) to all i, j. Let us
divide ℓ2(Z) = ℓ2(Z∗

+)⊕ℓ2(Z−), where Z∗
+ = {1, 2, . . .} and Z− = {0,−1, . . .}.

The inverse of A in (4.18) is the one in the subspace ℓ2(Z−). Let us denote
by P− the projector on Z− and P+ the one on Z∗

+.

Lemma 5.1. The inverse of A in subspace ℓ2(Z−), which can be expressed
as P−(P−AP− + P+)−1P−, is given by

[A−1]i,j = [α−1e
−T̃ α−1P−e−T̃ α1 − e−T̃ α−1P−e−T̃ α1α1]i,j (5.1)

where [α1]i,j = δi,j+1 and α−1 ≡ αt
1.

Proof. First we rewrite A as a sum of a Toeplitz matrix plus the remainder.

Let αe be the matrix with [αe]i,j = δi,j
1+(−1)i

2
and αo = 1− αe. Then

S =
∑

k≥0

α2k+1
1 αo −

∑

k≥0

α2k+1
−1 αe. (5.2)

It is then easy to see that, for Ve(x) an even polynomial of arbitrarily high
order

Ve(α±1)αe = αeVe(α±1), Ve(α±1)αo = αoVe(α±1) (5.3)

and for Vo(x) an odd polynomial of arbitrarily high order

Vo(α±1)αe = αoVo(α±1), Vo(α±1)αo = αeVo(α±1). (5.4)

Hence A can be written as

A = exp(T̃α−1)
∑

k≥0

(α2k+1
1 αo − α2k+1

−1 αe)(cosh(T̃ α1) + sinh(T̃α1)). (5.5)

We pull the last factor in (5.5) in front of the sum using the commutation
relations (5.3) and (5.4), and, after some algebraic manipulations, we obtain

A = M + R (5.6)

where M = 1
2
Φt(Q − Qt)Φ, R = 1

2
(Q + Qt)(αo − αe), with Q =

∑

k≥0 α2k+1
1

and Φ = exp(T̃α1).
Let B = [Φ−1]t(α−1P− − P−α1)Φ

−1. We want to prove that it is the
inverse of A in the subspace ℓ2(Z−). First notice that Bi,j = 0 if i ≥ 1 or
j ≥ 1, which implies [A · B]i,j = [P−AP− · B]i,j for i, j ≤ 0. Therefore, for
i, j ≤ 0,

[A · B]i,j = [(M + R) · [Φ−1]tU0Φ
−1]i,j (5.7)
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with
U0 = α−1P− − P−α1, (5.8)

and, expanding M + R, we have

[A · B]i,j =
[(

eT̃ α−1 Q−Qt

2
eT̃ α1 + Q+Qt

2
(αo − αe)

)(

e−T̃ α−1U0e
−T̃ α1

)]

i,j

=
[

eT̃ α1U1e
−T̃ α1

]

i,j
+

[

eT̃ α−1U2e
−T̃ α1

]

i,j
(5.9)

where U1 = 1
2
(Q − Qt)U0 and U2 = 1

2
(Q + Qt)(αo − αe)U0. The components

of these matrices are given by

[U1]n,m = δn,m1[n≤0] +
1

2
δm,0 sgn(n − 1)

1 + (−1)n

2
,

[U2]n,m =
1

2
δm,0

1 + (−1)n

2
, (5.10)

and a simple algebraic computation leads then to [A ·B]i,j = δi,j for i, j ≤ 0.
Finally, since A and B are antisymmetric, [B ·A]i,j = [At ·Bt]j,i = [A ·B]j,i =
δi,j too. Therefore B is the inverse of A in the subspace ℓ2(Z−).

The second step is to find an explicit expression for the kernel’s elements.
Using the fact that [A−1]i,j of Lemma 5.1 is zero for i ≥ 1 or j ≥ 1, we can
extend the sum over all i, j ∈ Z and obtain

K1,1(x, y) = −[ΦA−1Φt]x,y,

K1,2(x, y) = −K2,1(y, x),

K2,1(x, y) = −[SΦA−1Φt]x,y,

K2,2(x, y) = St
x,y − [SΦA−1ΦtSt]x,y.

(5.11)

Put Ψ = eT̃ α1e−T̃ α−1 . We write S as in (5.2), use the commutation relations
(5.3) and (5.4), and after some straightforward algebra obtain

K1,1 = −ΨU0Ψ
t,

K2,1 = −Ψt(SU0 − U1)Ψ
t − ΨU1Ψ

t, (5.12)

K2,2 = St + SKt
1,1,

where U1 is given by (5.10), and

[U0]n,m = (δn,m−1 − δm,n−1)1[n,m≤0]

[SU0 − U1]n,m =
1

2

1 + (−1)n

2
δm,0. (5.13)

Using these relations we obtain the kernel elements, which are summed
up in the following
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Lemma 5.2.
K(x, y) = G(x, y) + R(x, y), (5.14)

with

R1,1(x, y) = 0,

R1,2(x, y) = −(−1)y

2
Jx+1(2T̃ ),

R2,1(x, y) =
(−1)x

2
Jy+1(2T̃ ),

R2,2(x, y) = −S(x, y) +
1

4
sgn(x − y)

−(−1)x

2

∑

m≥1

Jy+2m(2T̃ ) +
(−1)y

2

∑

n≥1

J2n+x(2T̃ ), (5.15)

and

G1,1(x, y) = −
∑

n≥1

Jx+n+1(2T̃ )Jy+n(2T̃ ) +
∑

n≥1

Jy+n+1(2T̃ )Jx+n(2T̃ ), (5.16)

G1,2(x, y) =
∑

n≥1

Jx+n(2T̃ )Jy+n(2T̃ ) − Jx+1(2T̃ )

(

∑

m≥1

Jy+2m−1(2T̃ ) − 1

2

)

,

(5.17)

G2,1(x, y) = −
∑

n≥1

Jx+n(2T̃ )Jy+n(2T̃ ) + Jy+1(2T̃ )

(

∑

m≥1

Jx+2m−1(2T̃ ) − 1

2

)

,

(5.18)

G2,2(x, y) =
∑

m≥1

∑

n≥m

Jx+2m(2T̃ )Jy+2n+1(2T̃ ) −
∑

n≥1

∑

m≥n

Jx+2m+1(2T̃ )Jy+2n(2T̃ )

−1

2

∑

m≥1

Jx+2m(2T̃ ) +
1

2

∑

n≥1

Jy+2n(2T̃ ) − 1

4
sgn(x − y), (5.19)

where Jm(t) denotes the mth order Bessel function.

Remark: this result could also be deduced starting from Section 5 of [16].
Now we justify the N → ∞ limit. Let us first explain the idea. Denote
the sets I = {−2N + 1, . . . , 0} and L = {−N + 1, . . . , 0}. We consider
the kernel’s elements for x, y ≥ 0. For (i, j) ∈ I2 \ L2, the inverse of A
for finite N differs from the inverse for N = ∞ only by O(e−µN ) with µ =
µ(T̃ ) > 0. On the other hand, the contribution to K.,.(x, y) coming from
(i, j) ∈ (I \L)2 are exponentially small in N . Therefore, replacing the inverse
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of A for finite N with the inverse obtained in Lemma 5.1 we introduce only
an error exponentially small in N . The dependence of the kernel’s elements
on N is only via the extension of the sums in (4.18), which limit the one we
derived in Lemma 5.2.

In what follows we denote by AN the 2N × 2N matrix (4.16) and by A
the N = ∞ one.

Lemma 5.3. If we replace [A−1
N ]i,j by A−1

i,j in the kernel’s elements (4.18),
then for N large enough, the error made is O(e−µN) for some constant µ =
µ(T̃ ) > 0. The error is uniform for x, y ≥ 0.

Proof. Here we use some results of Appendix A.1. First, we define the matrix
B by setting, Bi,j = A−1

i,j for (i, j) ∈ I×L, and Bi,j = −A−1
−2N+1−i,−2N+1−j for

(i, j) ∈ I × (I \ L). Since [AN ]i,j = −[AN ]−2N+1−i,−2N+1−j , by (A.7) follows
that

ANB = 1− C (5.20)

for some matrix C with ‖C‖ = maxi,j |Ci,j| ≤ O(e−µ2N). Therefore, for N
large enough,

A−1
N = B(1+ D), D =

∑

k≥1

Ck (5.21)

with ‖D‖ ≤ O(e−µ2N) too. Thus, replacing A−1
N with B we introduce an

error in the kernel’s elements of O(N2e−µ2N).
If we replace Bi,j with A−1

i,j also in (i, j) ∈ L × (I \ L) we introduce an
error of O(N2e−µ3N), with µ3 = min{µ1, µ2/2}. This is achieved using (A.6)
for i < j + N/2, and (A.4) otherwise.

The final step is to show, using only the antisymmetry of A−1
N that the

contribution of K.,. coming from (i, j) ∈ (I \L)2 are also exponentially small
in N . For (i, j) ∈ (I \ L)2, it is easy to see that, uniformly in x, y ≥ 0,

Φx,i = O(e−µ1N) (5.22)

(SΦ)x,i = O(e−µ1N), for odd x,

(SΦ)x,i = sinh(T̃ ) + O(e−µ1N ), for even x and even i,

(SΦ)x,i = cosh(T̃ ) + O(e−µ1N), for even x and odd i.

Therefore, the contributions for K1,1, K1,2, and K2,1 are O(N2e−µ1N) be-
cause they contain at least a factor O(e−µ1N) coming from Φx,i or Φt

j,y. For

K2,2 there are terms without O(e−µ1N), and containing only sinh(T̃ ) and/or
cosh(T̃ ). These terms cancel exactly because A−1

N is antisymmetric. Conse-
quently, we can simply replace Bi,j with A−1

i,j also in (i, j) ∈ (I \ L)2 up to
an error O(N2e−µ1N ).
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6 Edge scaling and asymptotics of the kernel

In this section we define the edge scaling of the kernel, provide some bounds
on them which will be used in the proofs of Section 7, and compute their
T → ∞ limit.

The edge scaling of the kernel is defined by

Gedge
T ;1,1(ξ1, ξ2) = T̃ 2/3G1,1([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3])

Gedge
T ;k (ξ1, ξ2) = T̃ 1/3Gk([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]), k = (1, 2), (2, 1)

Gedge
T ;2,2(ξ1, ξ2) = G2,2([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]), (6.1)

and similarly for Redge
T ;k (ξ1, ξ2).

Next we compute some bounds on the kernel’s elements such that, when
possible, they are rapidly decreasing for ξ1, ξ2 ≫ 1.

Lemma 6.1. Write

Ω0(x) =

{

1, x ≤ 0
exp(−x/2), x ≥ 0

, Ω1(x) =

{

1 + |x|, x ≤ 0
exp(−x/2), x ≥ 0

, (6.2)

Ω2(x) =

{

(1 + |x|)2, x ≤ 0
exp(−x/2), x ≥ 0

. (6.3)

Then there is a positive constant C such that for large T̃

|Redge
T ;1,2(ξ1, ξ2)| ≤ CΩ0(ξ1),

|Redge
T ;2,1(ξ1, ξ2)| ≤ CΩ0(ξ2), (6.4)

|Redge
T ;2,2(ξ1, ξ2)| ≤ C(Ω1(ξ1) + Ω1(ξ2)),

and

|Gedge
T ;1,1(ξ1, ξ2)| ≤ CΩ2(ξ1)Ω2(ξ2),

|Gedge
T ;1,2(ξ1, ξ2)| ≤ CΩ1(ξ1)(1 + Ω2(ξ2)), (6.5)

|Gedge
T ;2,1(ξ1, ξ2)| ≤ CΩ1(ξ2)(1 + Ω2(ξ1)),

|Gedge
T ;2,2(ξ1, ξ2)| ≤ C(1 + Ω1(ξ1) + Ω1(ξ2) + Ω1(ξ1)Ω1(ξ2)).

Proof. We use Lemma A.1 and Lemma A.2 to obtain the above estimate.
1) The bounds on |Redge

T ;1,2(ξ1, ξ2)| and |Redge
T ;2,1(ξ1, ξ2)| are implied by

Lemma A.1.
2) Bound on |Redge

T ;2,2(ξ1, ξ2)|.

|Redge
T ;2,2(ξ1, ξ2)| ≤

5

4
+

1

2

∑

M∈N/T̃ 1/3

|J[2T̃+(2M+ξ2)T̃ 1/3](2T̃ )| + (ξ1 ↔ ξ2) (6.6)
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and
∑

M∈N/T̃ 1/3

|J[2T̃+(2M+ξ2)T̃ 1/3](2T̃ )| ≤
∑

M∈N/T̃ 1/3

|J[2T̃+(M+ξ2)T̃ 1/3](2T̃ )|. (6.7)

For ξ2 ≤ 0,

(6.7) ≤
∑

M∈ξ2+N/T̃ 1/3∪[ξ2,0]

|J[2T̃+MT̃ 1/3](2T̃ )| +
∑

M∈N/T̃ 1/3

|J[2T̃+MT̃ 1/3](2T̃ )|.

(6.8)
By (A.8) the first term is bounded by a constant times (1+ |ξ2|) and by (A.9)
the second term by a constant. For ξ2 ≥ 0,

(6.7) ≤
∑

M∈ξ2+N/T̃ 1/3∪[ξ2,∞)

|J[2T̃+MT̃ 1/3](2T̃ )| (6.9)

which, by (A.9), is bounded by a constant times exp(−ξ2/2). Therefore
∑

M∈N/T̃ 1/3

|J[2T̃+(M+ξ2)T̃ 1/3](2T̃ )| ≤ C Ω1(ξ2). (6.10)

for a constant C, from which follows the desired bound.
3) Bound on |Gedge

T ;1,1(ξ1, ξ2)|. Let us define J̃n(t) = Jn+1(t) − Jn(t). Then

Gedge
T ;1,1(ξ1, ξ2) = T̃ 2/3

∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+M)T̃ 1/3](2T̃ )J̃[2T̃+(ξ2+M)T̃ 1/3](2T̃ )

− (ξ1 ↔ ξ2). (6.11)

For large T̃ , the sums are very close integrals and this time we use both
Lemma A.1 and Lemma A.2, obtaining

|Gedge
T ;1,1(ξ1, ξ2)| ≤ C

∫ ∞

0

dMΩ0(M + ξ1)Ω1(M + ξ2)

≤ C

∫ ∞

0

dMΩ1(M + ξ1)Ω1(M + ξ2) (6.12)

for a constant C > 0. It is then easy to see that r.h.s. of (6.12) is bounded
as follows: for ξ1 ≤ ξ2 ≤ 0 by C(1 + |ξ1|)2, for ξ1 ≤ 0 ≤ ξ2 by C(1 +
|ξ1|)2 exp(−ξ2/2), and for 0 ≤ ξ1 ≤ ξ2 by C exp(−ξ1/2) exp(−ξ2/2), for some
other constant C > 0. Therefore |Gedge

T ;1,1(ξ1, ξ2)| ≤ CΩ2(ξ1)Ω2(ξ2).

4) Bound on |Gedge
T ;1,2(ξ1, ξ2)|.

Gedge
T ;1,2(ξ1, ξ2) =

∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+M)T̃ 1/3](2T̃ )
(

T 1/3J[2T̃+(ξ2+M)T̃ 1/3](2T̃ )
)

−T 1/3J[2T̃+(ξ1+M)T̃ 1/3+1](2T̃ )
(

∑

M∈N/T̃ 1/3

J[2T̃+(ξ1+2M)T̃ 1/3−1](2T̃ ) − 1

2

)

.
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In the first sum, the term with ξ2 is bounded by a constant and remaining sum
was already estimated in (6.10). The second term is bounded by a constant
times Ω0(ξ1)Ω2(ξ2). Using Ω0(ξ1) ≤ Ω1(ξ1) we conclude that |Gedge

T ;1,2(ξ1, ξ2)| ≤
CΩ1(ξ1)(1 + Ω2(ξ2)).
5) Bound on |Gedge

T ;2,1(ξ1, ξ2)|. The bound is the same as for |Gedge
T ;1,2(ξ1, ξ2)|.

6) Bound on |Gedge
T ;2,2(ξ1, ξ2)|. The terms with the double sums are esti-

mated applying twice (6.10) and are then bounded by Ω1(ξ1)Ω1(ξ2). The
two terms with only one sum are bounded by Ω1(ξ1) and Ω1(ξ2) respec-
tively, and the signum function by 1/4. Therefore, for some constant C > 0,
|Gedge

T ;2,2(ξ1, ξ2)| ≤ C(1 + Ω1(ξ1) + Ω1(ξ2) + Ω1(ξ1)Ω1(ξ2)).

Finally we compute the pointwise limits of the G’s since they remains in
the weak convergence.

Lemma 6.2. For any fixed ξ1, ξ2,

lim
T̃→∞

Gedge
T ;k (ξ1, ξ2) = GGOE

k (ξ1, ξ2), (6.13)

where the GGOE
k ’s are the ones in (2.9).

Proof. Let us consider ξ1, ξ2 fixed. In the proof of Lemmas 6.1, we have
already obtained uniform bounds in T for Gedge

T ;k (ξ1, ξ2), so that dominated
convergence applies. To obtain the limits we use (A.33), i.e.,

lim
T→∞

T 1/3J[2T+ξT 1/3](2T ) = Ai(ξ), (6.14)

and

lim
T→∞

T 2/3(J[2T+ξT 1/3+1](2T ) − J[2T+ξT 1/3](2T )) = Ai′(ξ). (6.15)

The limit of Gedge
T ;1,1(ξ1, ξ2) follows from (6.11).

The limit of Gedge
T ;1,2(ξ1, ξ2) leads to

∫ ∞

0

dλ Ai(ξ1 + λ) Ai(ξ2 + λ) − 1

2
Ai(ξ1)

(
∫ ∞

0

dλ Ai(ξ2 + λ) − 1

)

(6.16)

which equals GGOE
1,2 since

∫ ∞

0
dλ Ai(ξ2 + λ) − 1 = −

∫ ∞

0
dλ Ai(ξ2 − λ).

The limit of Gedge
T ;2,1(ξ1, ξ2) is obtained identically.

Finally, the limit of Gedge
T ;2,2(ξ1, ξ2) is given by

1

4

∫ ∞

0

dλ

∫ ∞

λ

dµ Ai(ξ1 + λ) Ai(ξ2 + µ) − (ξ1 ↔ ξ2) (6.17)

− 1

4

∫ ∞

0

dλ Ai(ξ1 + λ) +
1

4

∫ ∞

0

dµ Ai(ξ2 + µ) − 1

4
sgn(ξ1 − ξ2),
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which can be written in a more compact form. Since
∫R dλ Ai(λ) = 1,

∫ ∞

0

dλ Ai(ξ1 + λ) =

∫ ∞

0

dλ

∫ ∞

−∞

dµ Ai(ξ1 + λ) Ai(ξ2 + µ), (6.18)

and the signum can be expressed as an integral of Ai(ξ1 + λ) Ai(ξ2 + µ)

− sgn(ξ1 − ξ2) =

∫R dλ

∫R dµ Ai(ξ1 + λ) Ai(ξ2 + µ) sgn(λ − µ). (6.19)

In fact

r.h.s. of (6.19) =

∫R dλ

∫R dµ Ai(λ) Ai(µ) sgn(λ − µ + ζ) = b(ζ) (6.20)

with ζ = ξ2 − ξ1. For ζ = 0 it is zero by symmetry. Then consider ζ > 0, the
case ζ < 0 follows by symmetry. By completeness of the Airy functions,

db(ζ)

dζ
=

∫R dµ Ai(µ) Ai(µ − ζ) = δ(ζ). (6.21)

Then using (6.18) and (6.19) we obtain the result.

Remark that the GOE kernel in [18] differs slightly from the one written
here, but they are equivalent in the sense that they give the same correlation
functions.

For the residual terms the limit does not exist, but exists in the even/odd
positions. In particular

lim
T→∞

∑

m≥1

J[2T̃+ξT̃ 1/3+2m](2T̃ ) =
1

2

∫ ∞

0

dλ Ai(ξ + λ). (6.22)

7 Proof of Theorem 2.1

In this section we first prove the weak convergence of the edge rescaled point
process of ηsym

T to ηGOE in the T → ∞ limit. Secondly, using the equivalence
of the point process ζ sym

T and ζflat
T , we prove Theorem 2.1.

Theorem 7.1. Let us define the rescaled point process

ηsym
T (f) =

∑

x∈Z f((x − 2T̃ )/T̃ 1/3)ζ sym
T (x) (7.1)
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with T̃ =
√

2̺T = 2T and f a smooth test function of compact support. In
the limit T → ∞ it converges weakly to the GOE point process, i.e., for all
m ∈ N, and f1, . . . , fm smooth test functions of compact support,

lim
T→∞

ET

( m
∏

k=1

ηsym
T (fk)

)

= E( m
∏

k=1

ηGOE(fk)

)

(7.2)

where the GOE kernel is given in 2.9.

Proof. Let f1, . . . , fm be smooth test functions of compact support and
f̂i(x) = fi((x − 2T̃ )/T̃ 1/3), thenET

( m
∏

k=1

ηsym
T (fk)

)

=
∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[K(xi, xj)]i,j=1,...,m

=
∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[(XKX t)(xi, xj)]i,j=1,...,m/ Det[X]m

=
1

T̃m/3

∑

x1,...,xm∈Z f̂1(x1) . . . f̂m(xm) Pf[L(xi, xj)]i,j=1,...,m (7.3)

where X =

(

T̃ 1/3 0
0 1

)

and L(x, y) = (XKX t)(x, y), i.e., L1,1(x, y) =

T̃ 2/3K1,1(x, y), Lk(x, y) = T̃ 1/3Kk(x, y), for k = (1, 2), (2, 1), and L2,2(x, y) =
K2,2(x, y). Moreover, we define the edge scaling for the kernel elements as

Ledge
T ;k (ξ1, ξ2) = Lk([2T̃ + ξ1T̃

1/3], [2T̃ + ξ2T̃
1/3]). (7.4)

In what follows we denote by ξi = (xi − 2T̃ )/T̃ 1/3. To simplify the notations
we consider T̃ ∈ N, but the same proof can be carried out without this
condition, replacing for example Z/T̃ 1/3 by (Z− 2T̃ )/T̃ 1/3 in (7.5). ThenET

( m
∏

k=1

ηsym
T (fk)

)

=
1

T̃m/3

∑

ξ1,...,ξm∈Z/T̃ 1/3

f1(ξ1) · · · fm(ξm) Pf[Ledge
T (ξi, ξj)]i,j=1,...,m.

(7.5)
Let us denote ξI

i = [ξiT̃
1/3]/T̃ 1/3 the “integer” discretization of ξi. ThenET

( m
∏

k=1

ηsym
T (fk)

)

=

∫Rm

dξ1 · · ·dξmf1(ξ
I
1) · · · fm(ξI

m) Pf[Ledge
T (ξI

i , ξ
I
j )]i,j=1,...,m.

(7.6)
Using the definition in (6.1) we have

Ledge
T ;k (ξ1, ξ2) = Gedge

T ;k (ξ1, ξ2) + Redge
T ;k (ξ1, ξ2), (7.7)
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therefore (7.6) consists in one term with only Gedge
T ;k plus other terms which

contain at least one Redge
T ;k .

First consider the contribution where only Gedge
T ;k occur. Let Mf > 0 be

the smallest number such that fj(x) = 0 if |x| ≥ Mf , for all j = 1, . . . , m.
We bound the product of the fi’s by

|f1(ξ
I
1) · · · fm(ξI

m)| ≤
m
∏

j=1

‖fj‖∞1[−Mf ,Mf ](ξj) (7.8)

and, in the same way as in Lemma 7.3 but with Kedge
T ;k replaced by Gedge

T ;k , we
conclude that this is uniformly integrable in T . We then apply dominated
convergence and take the limit inside the integral obtaining

lim
T→∞

∫Rm

dξ1 · · ·dξmf1(ξ
I
1) · · ·fm(ξI

m) Pf[Gedge
T (ξI

i , ξ
I
j )]i,j=1,...,m

=

∫Rm

dξ1 · · ·dξmf1(ξ1) · · ·fm(ξm) Pf[GGOE(ξi, ξj)]i,j=1,...,m. (7.9)

Next we have to show that whenever some Redge
T ;k are present their contri-

bution vanish in the limit T → ∞. In (7.6) we have to compute the Pfaffian
of ET defined by

ET (n, l) =



















Ledge
T ;1,1((n + 1)/2, (l + 1)/2), n odd, l odd,

Ledge
T ;1,2((n + 1)/2, l/2), n odd, l even,

Ledge
T ;2,1(n/2, (l + 1)/2), n even, l odd,

Ledge
T ;2,2(n/2, l/2), n even, l even,

(7.10)

for 1 ≤ n < l ≤ 2m, with Ledge
T ;k (a, b) ≡ Ledge

T ;k (ξa, ξb). The Pfaffian of ET is
given by

Pf(ET ) =
∑

σ∈S2m
σ2i−1<σ2i

(−1)|σ|ET (σ1, σ2) · · ·ET (σ2m−1, σ2m). (7.11)

Now we have to check that the product of residual terms does not contain
twice the term (−1)x for the same x. This is implied by Lemma 7.2.

Let us decompose the sum in (7.5) into 2m sums, depending on whether
ξiT̃

1/3 is even or odd. Denote ξe
i = [ξiT̃

1/3/2]2/T̃ 1/3 and ξo
i = ([ξiT̃

1/3/2]2 +
1)/T̃ 1/3 the “even” and “odd” discretizations of ξi. Then

(7.5) =
1

2m

∑

si={o,e},
i=1,...,m

∫Rm

dξ1 · · ·dξmf1(ξ
s1

1 ) · · ·fm(ξsm
m ) Pf[Ledge

T (ξsi
i , ξ

sj

j )]i,j=1,...,m.

(7.12)
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With this subdivision, each term in the Pfaffian converges pointwise to a well
defined limit. Moreover all the 2m integrals, including Gedge

T ;k ’s and/or Redge
T ;k ’s,

are uniformly bounded in T . By dominated convergence we can take the
limit inside the integrals.

Each time that there is a Redge
T ;1,2(ξi, ξj), or Redge

T ;2,1(ξj, ξi), the integral with
si = o and the one with si = e only differs by sign, therefore they cancel each
other. Each time that appears Redge

T ;2,2(ξi, ξj), the part including coming from
the (−1)xi and the one with (−1)xj simplifies in the same way. Finally we
consider the second part, the one including the S and signum function. The
sum of si = {o, e} and sj = {o, e} of the terms with −S(ξiT̃

−1/3, ξjT̃
−1/3)

equals minus the ones with 1
4
sgn((ξi − ξj)T̃

−1/3). Consequently all the terms

including at least one time Redge
T ;i have a contribution which vanishes in the

T → ∞ limit.

Lemma 7.2. The following products do not appear in (7.11):

(a)Ledge
T ;2,2(xi, xj)L

edge
T ;1,2(xk, xi), (b)Ledge

T ;2,2(xi, xj)L
edge
T ;1,2(xk, xj),

(c)Ledge
T ;2,2(xi, xj)L

edge
T ;2,1(xi, xk), (d)Ledge

T ;2,2(xi, xj)L
edge
T ;2,1(xj , xk)

(e)Ledge
T ;1,2(xi, xj)L

edge
T ;2,1(xj , xk).

(7.13)

Proof. We prove it by reduction ab absurdum. We assume that the product
appear and we obtain a contradiction. (a) appears if there exist some a < b
and c < d with a, b, d even and c odd, all different, such that i = a/2, j = b/2,
k = (c + 1)/2, i = d/2. But this is not possible since d 6= a. (b) appears if
there exist some a < b and c < d with a, b, d even and c odd, all different,
such that i = a/2, j = b/2, k = (c + 1)/2, j = d/2. But this is not possible
since d 6= b. (c) appears if there exist some a < b and c < d with a, b, c even
and d odd, all different, such that i = a/2, j = b/2, i = c/2, k = (d + 1)/2.
But this is not possible since c 6= a. (d) appears if there exist some a < b and
c < d with a, b, c even and d odd, all different, such that i = a/2, j = b/2,
j = c/2, k = (d + 1)/2. But this is not possible since c 6= b. (e) appears if
there exist some a < b and c < d with b, c even and a, d odd, all different,
such that i = (a + 1)/2, j = b/2, j = c/2, k = (d + 1)/2. But this is not
possible since c 6= b.

Lemma 7.3. There exists a constant C > 0 such thatET

(

|ηsym
T (1[−M,∞))|m

)

≤ CmeMm/2(m)m/2 (7.14)

uniformly in T .
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Proof. The m-point correlation function ρ(m)(ξ1, . . . , ξm) is a sum of product
of Kedge

T ;k ’s which contains twice every ξi’s, i = 1, . . . , m, and only in Kedge
T ;k

the two argument can be the same. From Lemma 6.1, for any ξ1, ξ2 ∈ R,

|Kedge
T ;1,1(ξ1, ξ2)| ≤ C exp(−ξ1/2) exp(−ξ2/2) (7.15)

|Kedge
T ;1,2(ξ1, ξ2)| ≤ C exp(−ξ1/2)

|Kedge
T ;2,1(ξ1, ξ2)| ≤ C exp(−ξ2/2)

|Kedge
T ;2,2(ξ1, ξ2)| ≤ C.

For negative ξ we could replace exp(−ξ1/2) by (1+ |ξ1|)2 where appears, but
for our purpose this is not needed.

All the products in ρ(m)(ξ1, . . . , ξm) contain at least one exp(−ξi/2) for
each i. In fact, this holds if: Kedge

T ;2,2(ξ1, ξ2) is not multiplied by Kedge
T ;1,2(ξ3, ξ2),

Kedge
T ;1,2(ξ3, ξ1), Kedge

T ;2,1(ξ1, ξ3), Kedge
T ;2,1(ξ2, ξ3), and if Kedge

T ;1,2(ξ1, ξ2) is not multi-

plied by Kedge
T ;2,1(ξ2, ξ3). This is already proven in Lemma 7.2.

Consequently,ET

(

|ηsym
T (1[−M,∞))|m

)

=

∫

[−M,∞)m

dξ1 . . . dξmρ
(m)
T (ξ1, . . . , ξm)

≤ (2m)m/2
(

∫

[−M,∞)

C exp(−ξ/2)dξ
)m

= 2mCmeMm/2(2m)m/2 (7.16)

uniformly in T . The term (2m)m/2 comes from the fact that the absolute
value of a determinant of a n × n matrix with entries of absolute value not
exceeding 1 is bounded by nn/2 (Hadamard bound). Finally resetting the
constant as C2

√
2 the lemma is proved.

To prove Theorem 2.1 we use Theorem 7.1, Proposition 3.2, and
Lemma 7.3.

Proof of Theorem 2.1. Let us denote by xj , j ≤ 0, the position of the jth

element of ζflat
T and xsym

j , j ≤ 0, the position of the jth element of ζ sym
T . Then

define ξj,T and ξsym
j,T by

xj = 2T + ξj,TT 1/32−2/3, xsym
j = 4T + ξsym

j,T (2T )1/3. (7.17)

By Proposition 3.2, xj − j = 1
2
(xsym

j − j), which implies

ξj,T = ξsym
j,T +

j

(2T )1/3
. (7.18)
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Let f1, . . . , fm be test functions of compact support and denote by Mf > 0
the minimal value such that fj(x) = 0 if |x| ≥ Mf , j = 1, . . . , m. ThenET

(

m
∏

k=1

ηflat
T (fk)

)

= ET

(

m
∏

k=1

∑

i≤0

fk(ξ
sym
i,T + i/(2T )1/3)

)

(7.19)

= ET

(

∑

i1,...,im≤0

m
∏

k=1

fk(ξ
sym
ik,T + ik/(2T )1/3)

)

.

We bound the fk’s by their supremum times 1[−Mf ,Mf ] as in (7.8), then

|r.h.s. of (7.19)| ≤ ET

(

m
∏

j=1

∑

i≤0

1[−Mf ,Mf ](ξ
sym
i,T + i/(2T )1/3)

)

m
∏

j=1

‖fj‖∞,

(7.20)
and, since 1[−Mf ,Mf ](ξ

sym
i,T + i/(2T )1/3) ≤ 1[−Mf ,∞)(ξ

sym
i,T + i/(2T )1/3) ≤1[−Mf ,∞)(ξ

sym
i,T ), it follows that

|r.h.s. of (7.19)| ≤ ET

(

m
∏

j=1

ηsym
T (1[−Mf ,∞))

)

m
∏

j=1

‖fj‖∞ (7.21)

which is uniformly bounded in T from Lemma 7.3. Therefore by Fubini’s
theorem,ET

(

m
∏

k=1

ηflat
T (fk)

)

=
∑

i1,...,im≤0

ET

(

m
∏

k=1

fk(ξ
sym
ik,T + ik/(2T )1/3)

)

. (7.22)

Moreover, fk(ξ
sym
ik,T + ik/(2T )1/3) = fk(ξ

sym
ik,T ) + f ′

k(ξ̃ik,T )ik/(2T )1/3 for some

ξ̃ik,T ∈ [ξsym
ik,T + ik/(2T )1/3, ξsym

ik,T ]. Therefore (7.22) equals

∑

i1,...,im≤0

ET

(

m
∏

k=1

fk(ξ
sym
ik,T )

)

= ET

(

m
∏

k=1

ηsym
T (fk)

)

(7.23)

plus 2m − 1 terms which contains some f ′
k(ξ̃ik,T )ik/(2T )1/3. Finally we have

to show that these terms vanish as T → ∞. First we bound the fk’s and
the f ′

k’s by ‖fk‖∞ and ‖f ′
k‖∞ times 1[−Mf ,Mf ]. Therefore each of the 2m − 1

terms is bounded by a

1

T |J |/3

∏

k∈I

‖fk‖∞
∏

k∈J

‖f ′
k‖∞

∑

i1,...,im≤0

m
∏

k∈J

|ik|ET

(

m
∏

k=1

1[−Mf ,∞)(ξ
sym
ik,T )

)

(7.24)
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where I and J are subset of {1, . . . , m} with I ∪ J = {1, . . . , m} and J is
non-empty. Let j0 = min{i1, . . . , im}, thenET

(

m
∏

k=1

1[−Mf ,∞)(ξ
sym
ik,T )

)

= ET

(1[−Mf ,∞)(ξ
sym
j0,T )

)

= PT

(

ξsym
j0,T ≥ −Mf

)

≤ PT

(

ηsym
T (1[−Mf ,∞)) ≥ j0

)

(7.25)

≤
ET

(

|ηsym
T (1[−Mf ,∞))|3m

)

|j0|3m
≤ O(C3meMf 3m/2(3m)3m/2)

∏m
k=1 |ik|3

,

since |j0| ≥ |ik| for all k + 1, . . . , m. From (7.25) it follows that (7.24) is
uniformly bounded in T and vanishes as T → ∞. We have then proved that,
for all f1, . . . , fm smooth test functions of compact support,

lim
T→∞

ET

(

m
∏

k=1

ηflat
T (fk)

)

= lim
T→∞

ET

(

m
∏

k=1

ηsym
T (fk)

)

= E(

m
∏

k=1

ηGOE(fk)
)

,

(7.26)
the last equality being Theorem 7.1.
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A Appendices

A.1 Bounds on the inverse of A

Let us denote the finite matrix A by AN and its inverse by A−1
N . For the N =

∞ case we use the notations A and A−1. Let us denote I = {−2N +1, . . . , 0}
and L = {−N + 1, . . . , 0}. Using (5.6) we have

|Ai,j| ≤ 1 +
1

2

∑

k≥i

∑

l≥j

T̃ k−i

(k − i)!

T̃ l−j

(l − j)!
= 1 +

1

2
e2T̃ . (A.1)
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To obtain some properties of A−1, we first estimate [e−T̃ α−1P−e−T̃ α1 ]i,j.

[e−T̃ α−1P−e−T̃ α1 ]i,j =
∑

max{i,j}≤k≤0

(−T̃ )k−i

(k − i)!

(−T̃ )k−j

(k − j)!
(A.2)

=
∑

l≥0

T̃ 2l(−T̃ )|i−j|

l!(l + |i − j|)! −
∑

l>−max{i,j}

T̃ 2l(−T̃ )|i−j|

l!(l + |i − j|)!

= (−1)|i−j|I|i−j|(2T̃ ) −
∑

l>−max{i,j}

T̃ 2l(−T̃ )|i−j|

l!(l + |i − j|)! ,

where Ik is the modified Bessel function I of order k. From (A.2) and (l +
|i − j|)! ≥ l!|i − j|! follows

∣

∣[e−T̃ α−1P−e−T̃ α1 ]i,j
∣

∣ ≤ I0(2T̃ )
T̃ |i−j|

|i − j|! ≤
T̃ |i−j|

|i − j|!e
2T̃ , (A.3)

which implies
∣

∣A−1
i,j

∣

∣ ≤ 2
T̃ |i−j|

|i − j|!e
2T̃ ≤ c1(T̃ )e−µ2(T̃ )|i−j|, (A.4)

for some constants c1, µ2 > 0.
The remainder sum in (A.2) is exponentially small in −max{i, j}. In

fact, for n = −max{i, j},
∣

∣[e−T̃ α−1P−e−T̃ α1 ]i,j − (−1)|i−j|I|i−j|(2T̃ )
∣

∣

≤ T̃ |i−j|

|i − j|!
∑

l>n

T̃ 2l

(l!)2
≤ T̃ |i−j|

|i − j|!I0(2T̃ )e−µ1(T̃ )n (A.5)

for some constant µ1 > 0. Thus, for all (i, j) such that max{i, j} ≤ −N/2,

∣

∣A−1
i,j − lim

m→∞
A−1

i−m,j−m

∣

∣ ≤ c2(T̃ )e−µ1N/2 (A.6)

for some constant c2 > 0, that is, in this region A−1 is exponentially close to
a Toepliz matrix.

For j ∈ L, using (A.1) and (A.4), we obtain

∣

∣[ANA−1 − 1]i,j∣∣ =
∑

l≤−2N

Ai,lA
−1
l,j ≤ c3(T̃ )e−µ2N (A.7)

with c3 > 0 a constant.
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A.2 Some bounds

Lemma A.1. For N ≥ 0,

|T 1/3J[2T+NT 1/3](2T )| ≤ exp(−N/2)O(1) (A.8)

uniformly in T ≥ T0 for some constant T0.
For N ≤ 0 it follows from a result of Landau [11], see (A.34), that

|T 1/3J[2T+NT 1/3](2T )| ≤ C (A.9)

uniformly in T for a constant C > 0.

Proof. To obtain the bound we use 9.3.35 of [1], i.e., for z ∈ [0, 1],

Jn(nz) =

(

4ζ

1 − z2

)1/4 [

Ai(n2/3ζ)

n1/3
(1 + O(n−2)) +

Ai′(n2/3ζ)

n5/3
O(1)

]

(A.10)

where

ζ(z) = (3/2)2/3
[

ln(1 +
√

1 − z2) − ln(z) −
√

1 − z2
]2/3

. (A.11)

In our case, n = 2T + NT 1/3 and z = (1 + ε)−1 with ε = 1
2
NT−2/3 ≥ 0.

This implies that z ∈ [0, 1]. In this interval the function ζ(z) is positive and
decreasing. The prefactor is estimated using 4ζ(z(ε))(1 − z(ε)2)−12−4/3 ≤
1 + 4

5
ε for all ε > 0. Moreover, for x ≥ 0, Ai(x) ≤ Ai(x/2) and |Ai′(x)| ≤

Ai(x/2). Therefore

|T 1/3J[2T+NT 1/3](2T )| ≤
(

1 + 4
5
ε
)1/4

Ai(n2/3ζ/2)(1 + O(T−4/3)) (A.12)

where we also used (2T )1/3 ≤ n1/3. Next we bound (A.12) separately for
N ≤ 1

2
T 2/3 and N ≥ 1

2
T 2/3.

Case 1) 0 ≤ N ≤ 1
2
T 2/3. In this case ε ≤ 1

4
and, for ε ∈ [0, 1/3], ζ(z(ε)) ≥ ε

holds. Replacing n by 2T in the Airy function we have an upper bound since
it is a decreasing function, consequently

|T 1/3J[2T+NT 1/3](2T )| ≤ 2 Ai(N2−4/3)(1 + O(T−4/3)). (A.13)

Finally it is easy to verify that 2 Ai(N2−4/3) ≤ exp(−N/2), and obtain the
bound of the lemma.

Case 2) N ≥ 1
2
T 2/3. In this case ε ≥ 1

4
and z(ε) ≤ 4

5
. In this interval

ζ(z) ≥ 1
4
(ln(8ε))2/3 from which follows

|T 1/3J[2T+NT 1/3](2T )| ≤ (NT−2/3)1/4 Ai
(

1
8
(n ln(4NT−2/3))2/3

)

O(1). (A.14)

35



For x ≥ 0, Ai(x) ≤ exp(−2
3
x3/2), and N ≥ 1

2
T 2/3 implies Ñ = 4NT−2/3 ≥ 2.

Consequently,

|T 1/3J[2T+NT 1/3](2T )| ≤ Ñ1/4 exp(−c1T (1 + Ñ/8))O(1)

≤ exp(−c1T ) exp(−2c2TÑ)Ñ1/4O(1) (A.15)

with c1 = ln(2)/3, c2 = c1/16. For T ≥ 10 and Ñ ≥ 2, Ñ1/4 exp(−c2TÑ) ≤
1, and exp(−c2TÑ) ≤ exp(−N/2) for T large enough. These two last in-
equalities imply

|T 1/3J[2T+NT 1/3](2T )| ≤ exp(−c1T ) exp(−N/2)O(1) (A.16)

for T large enough, and the lemma is proved.

Lemma A.2. For all N ≥ 0,

DT,N = |T 2/3(J[2T+NT 1/3+1](2T ) − J[2T+NT 1/3](2T ))| ≤ exp(−N/2)O(1)
(A.17)

uniformly in T ≥ T0 for some constant T0.
For N ≤ 0, there is a constant C > 0 such that

DT,N ≤ C(1 + |N |) (A.18)

uniformly in T ≥ 1.

Proof. First we consider N ≥ 0. Let N ′ = N + T−1/3, then we have to
subtract J[2T+NT 1/3](2T ) to J[2T+N ′T 1/3](2T ). In term of ε = 1

2
NT−2/3 the

difference is 1/(2T ). Let us define

q(ε) =

(

4ζ(z(ε))

1 − z(ε)2

)1/4

(1 + ε)−1/3, p(ε) = (1 + ε)2/3ζ(z(ε)), (A.19)

and

f(ε) =
q(ε)

(2T )1/3
Ai[(2T )2/3p(ε)]. (A.20)

With these notations,

J[2T+NT 1/3](2T ) = f(ε) +
q(ε)

(2T )1/3
Ai[(2T )2/3p(ε)]O(T−2)

+
q(ε)

(2T )1/3
Ai′[(2T )2/3p(ε)]O(T−4/3). (A.21)

Now we bound DT,N as follows.
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Case 1) Let us consider N ∈ [0, 1
2
T 2/3]. The second and the third terms are

simply bounded by their absolute value. Then

|DT,N | ≤ T 2/3
∣

∣

∣
f(ε +

1

2T
) − f(ε)

∣

∣

∣

+T 2/3 max
x∈{ε,ε+1/2T}

q(x)

(2T )1/3
Ai[(2T )2/3p(x)]O(T−2) (A.22)

+T 2/3 max
x∈{ε,ε+1/2T}

q(x)

(2T )1/3
|Ai′[(2T )2/3p(x)]|O(T−4/3).

The first term is bounded by

T 2/3
∣

∣

∣
f(ε +

1

2T
) − f(ε)

∣

∣

∣
≤ T 2/3 sup

x∈[ε,ε+1/2T ]

∣

∣f ′(x)
∣

∣

1

2T
, (A.23)

where

∣

∣f ′(x)
∣

∣ ≤ |q′(x)| |Ai[(2T )2/3p(x)]|
(2T )1/3

+ |q(x)p′(x)|Ai[(2T )2/3p(x)](2T )1/3.

(A.24)
We are considering the case of N ∈ [0, 1

2
T 2/3], which corresponds to ε ∈

[0, 1/4]. The functions q, q′, and q · p′ behave modestly in this interval. They
satisfy

q(x) ∈ [1.22, 1.26], |q′(x)| ∈ [0.14, 0.17], |q(x)p′(x)| ∈ [1.3, 1.6] (A.25)

for x ∈ [0, 1/4]. The Airy function and its derivative are bounded as in
Lemma A.1. Therefore

|DT,N | ≤ exp(−N/2)(1 + O(T−2/3)). (A.26)

Case 2) Let us consider N ≥ 1
2
T 2/3. This case is simpler. We apply (A.16)

and obtain the bound

|DT,N | ≤ T 2/3 exp(−c1T ) exp(−N/2)O(1) ≤ exp(−N/2)O(1) (A.27)

for T large enough.
Secondly we consider N ≤ 0. For |N | ≥ T 1/3, using (A.34) we obtain

|DT,N | ≤ c3T
1/3 ≤ c3|N | (A.28)

for some constant c3 > 0. Next we consider |N | ≤ T 1/3. Since N is negative,
z ≥ 1 and (A.10) holds with ζ(z) given by [1]

ζ(z) = −(3/2)2/3
[√

z2 − 1 − arccos(1/z)
]2/3

. (A.29)
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Recall that z = (1 + ε)−1 and ε = 1
2
NT−2/3. |ε| ≤ 1

2
T−1/3 is very close to

zero. The estimate follows the same outline as for the case 1) for positive N .
Take T ≥ 1, then ε ∈ [−1

2
, 0] and

q(ε) ∈ [1.25, 1.37], |q′(ε)| ∈ [0.16, 0.25], |q(ε)p′(ε)| ∈ [1.5, 3.1]. (A.30)

The difference is that now the Airy function in not rapidly decreasing since
p(ε) ≤ 0 and its derivative is even increasing. We use some simple bounds:
|Ai(x)| ≤ 1 and |Ai′(x)| ≤ 1 + |x| for all x, with the result

|DT,N | ≤ c4(1 + |N |)(1 + O(T−2/3)) (A.31)

for a constant c4 > 0.

A.3 Some relations involving Bessel functions

Here we give some relation on Bessel function [1] which are used in the work.
Bessel functions Jn are defined via the generating function by

exp
(

1
2
z(t − 1/t)

)

=
∑

k∈Z tkJk(z), (t 6= 0). (A.32)

Then

1. for n ∈ N, J−n(z) = (−1)nJn(z),

2. J0(z) + 2
∑

k≥1 J2k(z) = 1,

3. J2
0 (z) + 2

∑

k≥1 J2
k(z) = 1,

4. for n ≥ 1,
∑2n

k=0(−1)kJk(z)J2n−k(z) + 2
∑∞

k=1 Jk(z)J2n+k(z) = 0.

Moreover the limit

lim
T→∞

T 1/3J[2T+ξT 1/3](2T ) = Ai(ξ) (A.33)

holds. A useful result of Landau [11] is the following:

|Jn(x)| ≤ c|x|−1/3, c = 0.785... for all n ∈ Z. (A.34)
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