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Abstract

Here we report PPB2 as a target prediction tool assigning targets to a query molecule based on 

ChEMBL data. PPB2 computes ligand similarities using molecular fingerprints encoding 

composition (MQN), molecular shape and pharmacophores (Xfp), and substructures (ECfp4), and 

features an unprecedented combination of nearest neighbor (NN) searches and Naïve Bayes (NB) 

machine learning, together with simple NN searches, NB and Deep Neural Network (DNN) 

machine learning models as further options. Although NN(ECfp4) gives the best results in terms of 

recall in a 10-fold cross-validation study, combining NN searches with NB machine learning 

provides superior precision statistics, as well as better results in a case study predicting off-targets 

of a recently reported TRPV6 calcium channel inhibitor, illustrating the value of this combined 

approach. PPB2 is available to assess possible off-targets of small molecule drug-like compounds 

by public access at ppb2.gdb.tools.
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Introduction

In ligand-based virtual screening (LBVS) one uses structural similarities between molecules to infer 

possible similarities in their biological activities.1 The approach is used broadly to accelerate and 

reduce the costs of the initial steps of drug discovery by guiding experimental screening to 

molecules with a higher probability of activity. LBVS also forms the basis for target prediction 

tools, which assign possible targets to a molecule based on its similarity to known, target annotated 

molecules such as those in the ChEMBL database.2 Targets are assigned either directly based on 

nearest neighbor (NN) relationships, or indirectly by building a machine learning (ML) model,3-22 

with several tools available online,23-34 with different levels of performance depending on the 

datasets, models and hyperparameters used.35-39 Such target prediction tools are essential to help 

assess the polypharmacology of any hit compound or drug molecule.  

We recently reported PPB (Polypharmacology Browser), a public web-portal for target 

prediction which used simple NN searches with multiple fingerprints simultaneously on ChEMBL 

data to predict off-targets.34 While showing good performance in benchmarking studies, PPB failed 

to correctly predict hERG as an important off-target of CIS22a, a TRPV6 inhibitor recently reported 

by our group,40 a limitation shared by other online target prediction tools. This motivated us to 

rethink our approach, which led us to PPB2 (Polypharmacology Browser version 2) presented 

herein, featuring a redesigned approach to target prediction. While our previous tool PPB used all 

available ChEMBL data including proteins, cell lines and organisms, we focused on protein targets 

only for the new tool PPB2 to have fewer but better defined cases. Furthermore, in contrast to PPB 

which exploited six different fingerprints and four fusion fingerprints using nearest neighbor (NN) 

searches, for PPB2 we selected only three fingerprints from PPB encoding different levels of detail, 

including the best performing ECfp4 (extended connectivity fingerprint up to four bonds),41 but 

used them in a combination of NN searches with Naïve Bayes (NB) machine learning. To the best 

of our knowledge this approach is unprecedented for target prediction, although a related method 

combination has been reported previously for QSAR studies.42 For comparison PPB2 also included 
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NN searches similar to those of PPB, as well as NB and Deep Neural Network (DNN) machine 

learning models. 

Our results show that while NN searches based on ECfp4 is the best method in PPB2 in 

terms of recall in a 10-fold cross-validation study, the combination of NN searches with NB 

machine learning perform best in terms of precision statistics. The combination method also stands 

out in a case study predicting off-targets of a recently reported TRPV6 calcium channel inhibitor,40 

where they correctly predict hERG as an important off-target missed by NN searches as well as by 

our previous tool PPB and by many other online target prediction tools. PPB2 is freely available for 

use at ppb2.gdb.tools.

Results and Discussion

To build PPB2 we collected a bioactivity dataset of all compounds having at least IC50 < 10 M on 

a single protein target in ChEMBL22,43 considering only high confidence data points as annotated 

in ChEMBL and only targets for which at least 10 compounds were documented. This provided 

344,163 single compounds associated with 1,720 single protein targets belonging to 8 different 

target families, representing 555,346 target-compound associations.

To encode molecular structures we selected three fingerprints from PPB perceiving different 

levels of details, namely: 1) MQN (Molecular Quantum Number), a 42-bit scalar fingerprint  

representing molecular composition by atoms, bonds, polar groups and topological features44, 45 

particularly useful to search and visualize large databases;46-48 2) Xfp (atom category extended 

atom-pair fingerprint), an 55-bit scalar fingerprint perceiving molecular shape and pharmacophores 

and well suited for scaffold-hopping virtual screening;49 and 3) ECfp4 (extended connectivity 

fingerprint up to four bonds), a 1024-bit binary substructure fingerprint encoding detailed 

information about molecular structure,41 and which performed best in PPB. Similarities were 

computed using the city-block distance for MQN and Xfp and the Tanimoto coefficient for 

ECfp4.50 
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In terms of search methods, we first implemented NN searches with each of these three 

fingerprints. Note that in contrast to PPB where the final target list was re-ordered according to p-

values obtained from NN similarities by calculating the probability of a similarity value to occur at 

random, we used the direct order of targets given by NN similarities. This simplification avoided 

any bias resulting from the choice of reference molecules used to create the random distribution 

(which for PPB were molecules from ZINC).  

Secondly, we implemented our key idea for PPB2, which was to build a specific ML model 

for each query molecule using NN compounds of the query. This approach would avoid making 

predictions based on non-realistic associations between compounds that would be structurally too 

distant from each other, thus capitalizing on both the “no-nonsense” advantage of NN searches and 

the deeper exploitation of multiple datapoints possible with ML. The best combination involved 

retrieving the 2,000 NN of a query molecule using MQN, Xfp, or ECfp4, followed by building a 

Laplacian modified Multinomial NB model from these 2,000 NN to provide the actual target 

prediction. The number of 2,000 NN was large enough to include all high-similarity compounds and 

small enough to enable a fast NB model building for each query molecule on the fly. Finally, we 

also implemented a direct NB model and a deep neural network (DNN) model trained with the 

entire dataset using ECfp4, the best performing fingerprint from our previous tool PPB. In total this 

provided eight different search methods for PPB2 (Figure 1a).

In the PPB2 web-portal the user inputs a molecule as either SMILES or structural drawing 

and selects a prediction method (Figure 1b). Prediction results are shown as a list of the most 

probable targets (Figure 1c). For each target the ChEMBL molecules on which the target prediction 

is based can be inspected visually by opening the “Show NN” window. Molecular structures are 

drawn from SMILES within the browser using SmilesDrawer (Figure 1d).51 A tutorial and a FAQ 

(frequently asked question) tabs are available with detailed explanation on the methods and tool. 
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The performance of the eight different target prediction methods in PPB2 was analyzed by 

calculating recall and precision statistics of a 10-fold cross-validation study (see methods for 

details). The performance in terms of overall recall (percentage of known compound-target pairs in 

the test set that are predicted by PPB2) over the eight methods tested increased from 47-61 % when 

considering only the single top predicted target, to 85-96 % when considering the ten top predicted 

targets (Figure 2a, top left panel). At the same time the overall precision (percentage of compound-

target pairs predicted by PPB2 which correspond to known interactions) decreased from 69-91 % 

when considering only the single top predicted target, to 13-14 % when considering the ten top 

predicted targets (Figure 2a, bottom left panel). Recall was lower but precision higher with a similar 

trend when calculated on a per target basis, which compensates for the fact that some targets are 

overrepresented (Figure 2a, top right and bottom right panels). Similar results were obtained when 

considering only compounds associated with a single protein target (Figure 2b). Performance was 

most strongly influenced by the ECfp4 Tanimoto similarity between the query molecule and its 

ECfp4 NN in the training set, with a drastic reduction of both recall and precision when the value 

dropped below 0.5 (Figure 2c/d). Performance was also influenced by the target class, with 

membrane receptors performing best and kinases performing worst, an effect also observed with 

other target prediction tools (Figure 2e).13 

Across the different comparisons above, the simple NN(ECfp4) method, used already in 

PPB, performed best in terms of recall statistics, which has also been noted by other authors in a 

related target prediction study.17 In terms of precision statistics by contrast, there was a clear 

advantage for the combined NN+NB methods, in particular when computed on a per target basis, 

which is an important parameter as it gives an indication of the expected rate of success for target 

assignment (lower right panels in Figure 2a-d and Figure 2e). On the other hand, the simple 

NN(MQN) and the NB(ECfp4) methods gave relatively poorer results across all comparisons, 

showing that encoding compounds by composition only (MQN) or using a NB model alone (even 
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6

with ECfp4) does not exploit the target-compound pair information as well as the other, more 

complex methods in PPB2 for target prediction.  

Query 

molecule

NN search (MQN / Xfp 

/ ECfp4) in ChEMBL

Predicted 

targets

(NN)

ECfp4-DNN model 

built on ChEMBL

ECfp4-NB Model 

built on 2,000 NN

Predicted 

targets

(NN+NB)

Predicted 

targets

(DNN)

ECfp4-NB model 

built on ChEMBL

Predicted 

targets

(NB)

a)

b)

c)

d)

Figure 1. The polypharmacology browser PPB2. (a) Workflow of the four different target prediction methods. Red 

arrows: retrieve top 2,000 NN using MQN (city block distance) or Xfp (city block distance) or ECfp4 (tanimoto 

coefficient) and rank the targets as per the similarity score of the most similar nearest neighbor associated with each 

target. Blue arrows: retrieve top 2,000 NN using MQN or Xfp or ECfp4, then build an ECFP4-Naïve Bayes (NB) 

machine learning model based on these 2,000 nearest neighbors and perform the target prediction. Orange arrows: 

perform target prediction using an ECfp4-Naïve Bayes machine learning model built on ChEMBL. Green arrows: 

perform target prediction using an ECfp4-Deep Neural Network (DNN) machine learning model built on ChEMBL. (b) 

Query molecule entry window in PPB2 with example molecule CIS22a. (c) PPB2 target prediction results window 

showing rank, ChEMBL ID and common name for predicted targets, exemplified with compound CIS22a and the 

NN(ECfp4) + NB(ECfp4) method. (d) Display of the first four NNs associated with hERG. This panel opens through 

the “Show NN” green button in the target list (c). 
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7

Figure 2. Performance of PPB2 in a 10-fold cross-validation (see method for details). (a) Overall (all ligand-target 

pairs) and average (per target) recall and precision performance as function of the number or targets considered. (b) 

Same as (a) considering only compounds annotated with a single target (241,083 compounds, ~70% of database). (c) 

Overall and average recall and precision considering top 5 predicted targets as function of ECfp4 tanimoto coefficient 

similarity of the compound in the test set to its NN in the training set. (d) Same as (c) for single target compounds only. 

(e) Average performance (per target) estimated per target class considering the top 5 predicted targets.
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As an application example we analyzed the case of compound CIS22a, a recently reported TRPV6 

calcium channel inhibitor for which we had measured 24 possible off-targets from the “safety 

screen” panel of Cerep Pvt. Ltd.40 We compared the prediction of PPB2 with those of 

SwissTargetPrediction,29 SEA,24 Modlab Spider,28 SuperPred,30 HitPick,27 TargetHunter,25 

Chemmapper,26 TarPred,32 PASS,31 as well as our previously reported PPB, considering for each 

tool the top 20 predicted targets (Figure 3, the structure of CIS22a is shown in Figure 1).34 
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Figure 3. Target prediction results for the eight prediction methods in PPB2 and other prediction tools available online 

for the TRPV6 inhibitor CIS22a. The structure of CIS22a is shown in Figure 1. a) 12 off-targets against which CIS22a 

was found experimentally to be active. b) 12 off-targets against which CIS22a was found experimentally to be inactive 

(active is defined as > 50 % inhibition at 10 µM, and inactive is defined as ≤ 50 % inhibition at 10 µM, see supporting 

information of ref. no 39). For each target prediction tool targets are marked as green if predicted by the tool, or black if 

not predicted by the tool. For each option in PPB2 and each online tool predictions were made by considering the 20 top 

predicted targets. Target full names: Voltage gated potassium channel subfamily H member 2 (HERG), Adrenergic α1A 

(ADRA1A) and α2A (ADRA2A) receptor, Dopamine receptor subtypes D1-4 (DRD1-4), Cholinergic muscarinic 

receptor 1 (CHRM1) and 2 (CHRM2), µ opioid receptor (OPRM), 5-Hydroytryptamine receptor 1A (HTR1A), 1B 

(HTR1B), 2A (HTR2A) and 2B (HTR2B), Voltage gated Na+ channel (SCN2A), Voltage dependent L- (CACNA1S) 

and N-type (CACNA1B) Ca2+ channel, 5-Hydroytryptamine receptor 3 (5-HT3), N-methyl-D-aspartate receptor 

(NMDA), Gamma aminobutyric acid receptor (GABA), Adrenergic β1 (ADRB1) and β2 (ADRB2) receptor, 

Cannabinoid 1 (CB1) and 2 (CB2) receptor.

PPB2 predicted 6-8 of the 12 off-targets against which CIS22a is active, and only 1-2 of 12 possible 

off-targets against which CIS22a is not active. Most interestingly, the three combined 

NN+NB(ECfp4) methods as well as the NB(ECfp4) and DNN(ECfp4) correctly predicted hERG, 

an important off-target of CIS22a which was missed by the simple NN searches, illustrating the 

value of ML approaches. Note that the combined NN+NB methods as well as the DNN did not 
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9

predict any of the inactive off-targets, while the NB method incorrectly predicted one of the inactive 

off-targets. 

Among the other search tools, only SPIDER and TarPred predicted hERG for CIS22a. 

TarPred also correctly predicted five other off-targets and did not predict any of the inactive off-

targets. SPIDER predicted 11 out of the 12 off-targets of CIS22a including hERG, but also 

predicted 5 out of the 12 inactive off-targets, suggesting that this tool favors recall over precision. 

The other tools tested failed to predict hERG but did not predict any of the inactive off-targets, 

indicating that they favor precision over recall.  

Conclusion

Here we redesigned our online target prediction tool PPB to a new version PPB2 by implementing 

three important changes: 1) focusing the dataset used for prediction protein targets by excluding cell 

lines and organisms to have fewer but better defined cases; 2) rather than the 10 fingerprints used in 

PPB with NN searches only, selecting only three fingerprints encoding different level of detail; 3) 

complementing NN searches with a combination of NN searches and Naive Bayes (NB) machine 

learning, providing NB and deep neural network (DNN) with ECfp4 as additional options, resulting 

in eight search options. 

Remarkably, all eight methods in PPB2 performed well in our 10-fold cross-validation 

study, giving performance values comparable or better than values reported in the literature for 

other target prediction tools. While NN(ECfp4) performed best in terms of recall statistics, the 

combined NN+NB methods, which is the key innovation in PPB2, showed superior performance in 

terms of precision. The combined methods also returned better results in a case study with the 

TRPV6 calcium channel inhibitor CIS22a, in particular regarding prediction of hERG as off-target. 

PPB2 is freely available at ppb2.gdb.tools and can be used to assess possible off-targets of small 

molecule drug-like compounds. 
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Methods

Compound-target interactions database

All compound-target interactions were extracted from the publicly available MySQL version of the 

ChEMBL database (release 22). Criteria for selecting interactions from the database were targets 

labeled as “single protein” with the source organism being either human or rat and compounds 

associated with the target were to have IC50, EC50, Ki or KD value of ≤ 10 µM, confidence score > 5 

and heavy atom count ≤ 50. In a next step, compounds were processed in non-isomeric SMILES 

format, where counter ions were removed, valence errors corrected, and the compounds ionized at 

pH 7.4. Duplicate molecules were then removed based on unique SMILES comparison in the 

context of each target protein, and targets with less than 10 compounds were discarded. Filtering 

ChEMBL22 using these criteria resulted in a subset containing 1,720 target proteins, 344,163 

unique compounds and 555,346 compound-target interactions. This subset was stored in a plain text 

file (henceforth referred to as the database) grouped by SMILES resulting in 344,163 lines, with 

each line containing a compound encoded as a SMILES string followed by the associated target 

names.

Fingerprints

For each compound in the database we calculated the MQN (42D), Xfp (55D) and ECfp4 (1024D) 

fingerprints. All fingerprint calculations were performed using an in-house java program utilizing 

various plugins from the ChemAxon JChem library such as MajorMicrospeciesPlugin to adjust the 

ionization state of molecules, HBDAplugin to determine hydrogen bond donor and acceptor atoms 

and TopologyAnalyserPlugin to determine the shortest topological path between atom-pairs. 

NN searches 

For a given query molecule, NN searches are performed in the database using MQN, Xfp, or ECfp4 

fingerprint. For MQN and Xfp, the similarity between query (A) and a compound in the database 
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(B) is calculated using city block distance (CBD) as follows, where A = fingerprint of the query 

molecule, B = fingerprint of a compound in the database: 

𝐶𝐵𝐷(𝐴,𝐵) =
𝑛∑𝑖 = 1

|𝐴𝑖 ― 𝐵𝑖|
For the ECfp4 fingerprint the similarity between compounds is calculated using the Tanimoto 

coefficient (T) as follows, where A = ECfp4 fingerprint of the query molecule, B = ECfp4 

fingerprint of a compound in the database, NC = number of ON bits common between molecule A 

and B, NA and NB = number of ON bits in the query and a compound in the database, respectively: 

𝑇(𝐴, 𝐵) =
𝑁𝐶𝑁𝐴 +  𝑁𝐵 ―  𝑁𝐶 

After the similarity calculation compounds in the database are sorted with respect to the query 

molecule (high to low similarity: increasing CBDs or decreasing Tanimoto coefficient) and the top 

2,000 compounds are extracted. Targets associated with these top 2000 compounds are then 

extracted and sorted as per similarity score of the closest nearest neighbor associated with a target.

NB Model

The Naive Bayes model was created using ECfp4 fingerprints of all the compounds in the database. 

A Multinomial Naïve Bayes Classifier (NB) model with Laplacian smoothing was trained using the 

Python-based scikit-learn (version 0.19) machine learning library. Fingerprints of molecules were 

used as input feature vectors, while target names were used as class labels. The NB classifier is 

probabilistic in nature, which means that for any given query compound the NB classifier calculates 

the probability for each target present in the database and considers the targets with the highest 

probabilities (top N targets) as the predicted targets of a query molecule. This probability 

calculation is fundamentally based on the Bayesian theorem of conditional probability, wherein the 

probability of an event A happening considering an evidence B ( ) can be calculated based 𝑃(𝐴│𝐵)

on prior probability of an evidence B in the sample of an event A ( ) and prior probability of 𝑃(𝐵│𝐴)
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an event A ( ) in the training dataset. For target prediction (A = target, B = fingerprint of a 𝑃(𝐴)

molecule) the probability  of a compound to be active on target A is calculated from (𝑃(𝐴│𝐵) 𝑃
) = prior probabilities calculated based on fingerprints of known bioactive compounds active (𝐵│𝐴)

against target A in the  database,  = the relative frequency of target A considering all the other 𝑃(𝐴)

targets in the database, and P(B) = the probability of evidences across the entire database, as 

follows: 

𝑃(𝐴│𝐵) =
𝑃(𝐵│𝐴) ∙ 𝑃(𝐴)𝑃(𝐵)

The NB classifier uses the naïve assumption that all the features (evidences) are independent from 

each other and contribute independently to probability calculation. To calculate  given 𝑃(𝐴│𝐵)

multiple evidences ( ) one needs to estimate the product of the probability of each 𝐵 = 𝐵𝑖 = 1…𝐵𝑛
evidence given an event A ( ) and multiplied by the prior probability of 𝑃(𝐵│𝐴) = 𝑃𝐵1𝐴 ∙ 𝑃𝐵2𝐴.. ∙ 𝑃𝑛𝐴
an event A in the database. The probability for each of the evidences given event A is True ( ) 𝑃𝐵𝑖𝐴
can be calculated as follows, where  = count of ith evidence in a sample of event A in the 𝑁𝑖𝐴
database,  = total count of all evidences in a sample of an event A in the database. n = number of 𝑁𝐴
evidences and  = smoothing factor: 𝛼

𝑃𝐵𝑖𝐴 =
𝑁𝑖𝐴 +  𝛼𝑁𝐴 +  𝛼𝑛

When , the calculation is called Laplace smoothing. Parameter  is useful to avoid zero  𝛼 = 1 𝛼
probability resulting from the absence of the evidences in the sample. Further technical details 

about the NB classifier can be found in the Scikit-learn documentation and corresponding GitHub 

repository (https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py)

NN searches combined with NB Model 

For any given query molecule, the top 2000 NN are extracted from the database using MQN, Xfp, 

or ECfp4. A Naïve Bayes machine learning model is then built on the fly using ECfp4 fingerprints 
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of these 2000 NN as feature vectors and target names as class labels. This NB model, which is 

specific to the query molecule, is then used to predict the targets of the query compound.

Deep Neural Network Model

The deep neural network model was created using ECfp4 fingerprints of all the compounds in the 

database. The DNN model was built using Keras (version 2.0.9), a python based deep learning 

library with Tensorflow-gpu backend. The DNN model presented herein contains a 1,024D input 

layer corresponding to 1,024D ECfp4 fingerprints of molecules, two hidden layers containing 1,000 

and 500 neurons respectively, and a 1,720D binary vector as output layer (1: compound active 

against target, 0: compound not active against target) corresponding to 1,720 targets in the database. 

Rectified linear units (relu) were used as activation functions for the hidden layers with a drop-out 

rate of 20% to avoid model-overfitting, while a sigmoid activation function was used for the output 

layer. The model was trained using “adam” as optimizer and binary crossentropy as loss function. 

The numbers of epoch iterations and the batch size were set to 200 and 500 respectively. Initially, 

series of models were built and evaluated in 10-fold cross validation with progressive optimization 

of number of neurons and number of hidden layers in network.

PPB2 website

PPB2 front-end is implemented using Html, JavaScript and Bootstrap front-end web framework, 

while the PPB2 back-end is implemented using Flask Python web framework. PPB2 is publicly 

accessible at http://ppb2.gdb.tools/. The target prediction models/methods implemented in PPB2 

website are based on the entire database.

Recall and Precision in cross-validation study 

The target prediction performance of the different methods (see Figure 1) was measured using recall 

and precision parameters in a 10-fold cross validation study. For this study the records in the 

database (lines in the text file), were randomized and subdivided into 10 distinct sets of equal size. 
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Each of these 10 sets was then used as a test dataset with the remaining 9 sets being combined into 

the training dataset, replacing the database in the descriptions above. We carried out target 

prediction only for compounds associated with up to 10 targets (this corresponds to 342,706 

compounds out of 344,164 total compounds and 508,153 interactions out of 555,346 total 

interactions). For each compound in the test set we considered the top n predicted targets and 

evaluated whether the annotated targets for the compound could be recalled by the prediction. For 

each target x we calculated a) true positives (TP): the number of times target x was correctly 

predicted; b) false negatives (FN): the number of interactions of target x which were not predicted; 

c) false positives (FP): the number of times target x was wrongly predicted (found among top n 

predicted targets but not annotated for the compound).

We calculated overall recall, average recall, overall precision and average precision as 

follows: Overall recall: The number of true positives divided by the number of true positives plus 

the number of false negatives across all the targets (i) and all the 10 cross-validation runs (j) as 

shown in equation 1. Average recall: The average recall for each target across 10 cross-validation 

runs (equation 2). Similarly, the overall precision (equation 3) and average precision (equation 4) 

were calculated. Furthermore, targets were classified as per target class and overall recall, average 

recall, overall precision and average precision were calculated class-wise. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑟𝑒𝑐𝑎𝑙𝑙 =

∑𝑛𝑖 = 1
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗∑𝑛𝑖 = 1
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗 + ∑𝑛𝑖 = 1
∑10𝑗 = 1

𝐹𝑁𝑖,𝑗 ∙ 100

(1)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑎𝑙𝑙 =
1𝑛 𝑛∑𝑖 = 1

(
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗∑10𝑗 = 1
𝑇𝑃𝑖,𝑗 + ∑10𝑗 = 1

𝐹𝑁𝑖,𝑗) ∙ 100

(2)

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑𝑛𝑖 = 1
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗∑𝑛𝑖 = 1
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗 + ∑𝑛𝑖 = 1
∑10𝑗 = 1

𝐹𝑃𝑖,𝑗 ∙ 100

(3)
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1𝑛 𝑛∑𝑖 = 1

(
∑10𝑗 = 1

𝑇𝑃𝑖,𝑗∑10𝑗 = 1
𝑇𝑃𝑖,𝑗 + ∑10𝑗 = 1

𝐹𝑃𝑖,𝑗) ∙ 100

(4)

Where , , , , 𝑇𝑃 = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐹𝑃 = 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝐹𝑁 = 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑖 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑗 = 𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑛
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