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Abstract: Polyphenolic compounds (PC) are among the most abundant secondary metabolites in
nature. They are widely distributed in the world and can be found in fruits, cereals, tea, coffee,
and beverages. Due to their structural diversity, polyphenols have many different properties and
biological effects. They are resistant to the acid of the gastric tract, and very few are hydrolysed or
absorbed in the stomach. Significant portions of ingested polyphenols reach the large intestine
and interact with the local bacteria, the so-called gut microbiota. Epidemiological studies confirm
that moderate and prolonged intake of foods rich in polyphenols could prevent the development
of cancer and chronic diseases, such as cardiovascular, neurodegenerative, type 2 diabetes, and
obesity. The current work aims to provide an updated overview on the nature and occurrence of
polyphenols, quantification methods, bioaccessibility and bioavailability, and impact on human
health, namely through interactions with the gut microbiota.
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1. Introduction
1.1. General Aspects on Polyphenols

Polyphenols can act as antioxidants, mainly due to the electron-donating phenolic
groups in their structures. Several studies have investigated the antioxidant function
of polyphenols in the prevention of oxidative stress-related cellular and extracellular
damage [1–6]. Polyphenols provide a variety of functions, including antioxidant, an-
timicrobial, anti-inflammatory, anti-angiogenic, and anti-tumour [5,7–10]. They have
been identified to display various mechanisms of action in the reduction of inflamma-
tory responses in the human body [3,5,11–13]. In line with those properties, the use of
polyphenols as an intervention for the inflammatory response, especially relating to the
gut microbiome, may significantly reduce the risk of disease onset [2,14–16].

Nevertheless, the bioavailability of polyphenols is significantly lower than the
bioavailability of antioxidant vitamins and pro-vitamins (vitamin E, vitamin C, and
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carotenoids). It depends, among other things, on molecule dimensions, level of polymer-
ization, presence and kind of sugar in the molecule, and on the compound hydrophobic-
ity [17,18]. The bioavailability of many dietary polyphenols is very low, mostly excreted
into faeces after being transported into the gut [2,19].

Polyphenols are known for their broad-spectrum applicability in the prevention
of dreadful diseases, such as cardiovascular, neurodegeneration, and cancer [7,20,21].
Enzyme-assisted modification of dietary polyphenols may improve their bioactivity,
related to the role of intestinal microbiota and bioavailability [22–24]. Further detailed
insight on polyphenols will be provided in the ensuing sections of this review.

1.2. Human Gut Microbiota: Composition and Role

The gastrointestinal compartment that spans over 250–400 m2, is colonized by an
estimated amount of 10 to up to 100 trillion microorganisms, most of them bacteria,
the so-called gut microbiota. This bacterial load is packed into a few dm3 of volume;
hence, it classifies among the densest ecosystems known [25–27]. It has been estimated
that human gut microbiota harbours 500 to 1000 species of bacteria, along with an
undetermined number of other microorganisms [28], where most bacteria belong to
four bacterial phyla Firmicutes (64%), Bacteroidetes (23%), Proteobacteria (8%), and
Actinobacteria (3%). Firmicutes and Bacteroidetes phyla are the majority of the gut
microbiota [29–31]. Recently, a massive culturing effort led to the identification of novel
264 genomes from 1520 tapped. The data were used to generate a collection termed
Culturable Genome Reference that is meant to significantly improve the knowledge
on the human gut microbiome [32]. A different approach, based on metagenomic
analysis combined with a phylogenetic evaluation of the (meta)genomes, resulted in
the identification of 4616 bacterial and 28 archaeal species, of which 66% and 31%,
respectively, were uncultured [33]. The work also provided a geographic distribution of
each species. Based on the data gathered, the authors organised the data in a collection
termed Unified Human Gastrointestinal Genome. Moreover, the authors assembled a
huge set of full-length protein sequences predicted from the almost 3 × 105 genomes
analysed, and established a catalogue named Unified Human Gastrointestinal Protein.
In addition to the intrinsic findings of the work, it is envisaged that the information will
be paramount in improving our knowledge relating genotypes to phenotypes in the
human gut microbiome. A relatively similar methodological approach was followed by
Leviatan and co-workers [34]. As a major outcome of their work, a collection termed
human gut microbiome genome reference set (the WIS reference set) was generated out
of ~3600 genomes that belong to 2365 genera and 628 families, of which ~300 of the
genomes were from unknown microbial species, most of which belong to the Prevotella
and Ruminococcus genus. The novel species novel depicted lower potential antibiotic
resistances than the known species. The work further established Firmicutes as the major
phylum in the human gut microbiome and Bacteroidetes as the runner-up phylum.

The composition of different bacteria present in the human gut is very diverse
within the population, varies within the tract of each individual, but once established is
spatially conserved, and is influenced by many factors (e.g., age, health, host genetics,
origin, diet, environment), and thus it can be said that each individual has its own unique
profile of microbial species [29,35–38]. Recent studies have highlighted the relevant role
that early gut microbiota has in human health in the long term. Hence, it has also been
established that factors related to pregnancy, e.g., gestational age, delivery mode, birth
weight, feeding types, antibiotic exposure, and the maternal microbiome, impact the
composition of the early life gut microbiota [39]. There is some controversy regarding
the timeline evolution of the profile of the microbiota from early age to adulthood [40,41].
Yet a recent study evaluated said profile within 1 to 4 months (infancy) and 6 to 10 years
(childhood) allowed us to establish that there is some consistency of gut bacterial clusters
in infancy, with a predominance of Bifidobacterium (phylum Actinobacteria) species and
strains, particularly in breast-fed infants, since this abundance is reduced in formula-fed
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infants. On the other hand, the number of bacterial clusters increased in childhood.
Still, these profiles were shown to be influenced by several parameters, both related to
pregnancy and to extrinsic factors besides already referred breastfeeding, such as birth
weight, exposure to antibiotics or mode of delivery, among others [42].

The gut microbiota is involved in the absorption and biotransformation of indi-
gestible compounds and in the synthesis of vitamins. It also plays a key role in host
resistance against colonisation by pathogenic microorganisms, maintaining the energy
balance, and modulating immune functions [26,43–47]. The human gut microbiota has
also been shown to influence mental health, as compounds produced by the gut micro-
biota may reach the brain through the blood stream. Conversely, the brain may impact
the gut microbiota through neuronal and endocrine pathways [48,49].

1.3. Scope of the Review

The challenge of this review is to address the demands currently faced by polyphe-
nols; thus, it should contribute to the knowledge and application of polyphenols in
health promotion and disease prevention, as well as their impact on gut microbiota and
bioavailability. The review provides an updated overview of polyphenols, their classifica-
tion, their identification and quantification, their properties, and the impact of biological
activities on health benefits, supported with recent illustrative examples. Details on gut
microbiota and bioavailability of polyphenols are also addressed in this review.

2. Polyphenols

Polyphenolic compounds (PC) are among the most extensively studied phytochem-
icals. Up until now, several thousand polyphenols have been identified [50]. PC are
non-nutritive, secondary metabolites widespread in the plant kingdom that have a key
role in vegetable growth and survival against pathogens, predators, and ultraviolet (UV)
radiation [51,52].

The health benefits of dietary polyphenols have attracted much attention, mainly
due to their accessibility in our daily food intake [53,54]. Moreover, PC in foods may
affect the organoleptic properties, as they can contribute to the bitterness, astringency,
colour, flavour, odour, and oxidative stability of foodstuff [30,55].

There is some controversy involving the nomenclature of polyphenolic
compounds [50,56,57]. In fact, they are most often defined as compounds harbour-
ing an aromatic ring with at least one hydroxyl group. The structure can vary from
simple molecules to complex polymers with a high molecular weight, hence configuring
a division into different groups based on the number of phenolic rings enclosed [50,56].
On the other hand, it has been suggested that the designation of “polyphenol” should be
limited to the structures showing at least two phenolic moieties, notwithstanding the
number of hydroxyl groups each harbours [57] (Figure 1). PC derives from two metabolic
pathways: the shikimic acid pathway, in which mainly phenylpropanoids are formed,
and the acetic acid pathway, in which simple phenols are formed [58]. Most PC are
formed through the shikimic acid pathways, but the combination of both pathways leads
to the formation of flavonoids [59]. More recently, it has been advised that polyphenols
should be defined as plant secondary metabolites developed from the shikimate-derived
phenylpropanoid and/or polyketide pathways, harbouring more than one phenolic
moiety, and lacking nitrogen-based functional groups in their basic structure [54,57,60].
On the other hand, according to IUPAC nomenclature, phenols must depict one hydroxyl
group on a benzene ring or other arene ring [54].

PC may occur either as glycosides with different sugar units associated at different
positions of the polyphenol skeleton or associated with organic acids or both. Phenolic
compounds, or polyphenols, constitute one of the most numerous and widely distributed
groups of substances in the plant kingdom, with more than 9000 phenolic structures
currently known [61]. Accordingly, they are common and diverse constituents of foods
of plant origin [62–64].
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“Polyphenol” is used to refer to flavonoids, tannins, and phenolic acids and their various
chemically modified or polymerized derivatives [65].

The phenolic compounds are mainly structural components of cell walls, and most of
them are toxins and antifeedants of plant defence, colouring ingredients of flowers and fruits,
and antioxidants of bark and seeds [54]. The concentration of PC is influenced by many factors
that include ripeness at the time of harvest, environmental factors, processing, and storage [66].
Polyphenols suppress the generation of free radicals, thus reducing the rate of oxidation by
either inhibiting the formation of free radicals or deactivating the active species and precursors
of free radicals [56,67]. As antioxidants, polyphenols may protect cell constituents against
oxidative damage and, therefore, limit the risk of various degenerative diseases associated
with oxidative stress. In fact, they have important roles in plant defence mechanisms against
viruses, bacteria, fungi, and herbivores [53,68].
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Polyphenols are the most abundant antioxidants in the human diet and are widespread
in fruits, vegetables, cereals, olives, dry legumes, chocolate, and beverages, such as tea,
coffee, and wine [68].

2.1. Classification

Polyphenols are divided into several classes according to the number of phenol
rings that they contain and the structural elements that bind these rings to one another.
They are classified into two main groups: flavonoids and non-flavonoids. The flavonoids
can be divided into six subclasses (Figure 2): flavonols, flavones, isoflavones, flavanones,
anthocyanidins, and flavanols [30,57,62–64,68,69]. The non-flavonoids’ main subclasses
are phenolic acids, lignans, and stilbenes.

The term flavonoid derives from the Latin “flavus,” which means “yellow”. Besides
their physiological roles in plants, flavonoids have a relevant role in the human diet,
where they are the most plentiful class of polyphenols, with more than 9000 different
structures identified. Flavonoids are low-molecular weight compounds widely dis-
tributed in plants, especially in fruits and vegetables, although they are not considered
nutrients. Accordingly, flavonoids can be found in foods and beverages such as arti-
chokes, berries, cherries, citrus fruits, grapes, parsley, soybeans, tea, and wine, yet the
richest sources are onions (up to 1.2 g/kg fresh weight) [57,66,67,70].

The carbon atoms of flavonoids are arranged in a C6–C3–C6 configuration with
two aromatic rings (A and B) covalently bound to three carbon atoms, thus leading
to the formation of an oxygenated heterocycle ring C (Figure 2). The vast diversity of
flavonoid structures arises from the various combinations of multiple hydroxyl groups,
methyl groups, glycosides, and acylated group substituents on the basic C6–C3–C6
backbone [71,72].

Flavonoids can occur in nature as glycosides, as aglycones, or as acetylated, methy-
lated, prenylated, and sulphated derivatives. They can be ascribed to each of the
six subclasses, anthocyanins, flavanols (flavan-3-ols), flavanones, flavones, flavonols,
isoflavones, and according to the degree of oxidation of the central ring (ring C) and the
number and position of hydroxyl groups [73–75]. Flavonoids exhibit antioxidant proper-
ties and can protect cells against oxidative damage with biological activity, depending
on structural differences and glycosylation [71,76].

Isoflavones bear structural similarities to oestrogens, in particular to 17-β-oestradiol.
Isoflavones depict ring B attached to ring C at the C3 position of the latter ring and exhibit
hydroxyl groups in the C7 and C4’ positions, akin to oestradiol. As isoflavones can bind
to oestrogen receptors, they are classed as phytoestrogens. They are mostly found in
legumes, e.g., chickpeas, fava beans, or soybeans. The latter is acknowledged as the most
plentiful source of isoflavones, where daidzein, genistein, and glycitein, the three most
important molecules of this subclass, are included. These occur mostly as glycosides
through conjugation with glucose, given the heat sensibility of isoflavones. This often
leads to the hydrolysis of the aglycone form during processing and storage. Given that
beans are rooted in the diets of numerous cultures, isoflavones have a significant impact
on human health [58,76–80].

The subclasses of flavones, flavonols, and flavanones are the most common and
vastly widespread in the plant kingdom (Figure 2). Flavones and particularly their
3-hydroxy derivatives flavonols, including their glycosides and derivatives modified
on all three rings, make these the largest subclasses among all polyphenols. Myricetin,
kaempferol, and quercetin are among the most widespread flavonols, which are present
in the skins of grapes, apples, and blueberries, among other fruits and vegetables. Over
250 glycosidic combinations have been identified for each of the two latter flavonol
aglycones [45,76–78].
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Flavanols or flavan-3-ols, often referred to as catechins, differ from most flavonoids
since they lack a double bond between C2 and C3, and a C4 carbonyl in Ring C. Combined
with these features, the hydroxylation at C3 generates two chiral centres (on C2 and C3),
hence four possible diastereomers [71,72,76–78].

Flavanones have a 2,3-dihydroflavone skeleton, although they lack a double bond
between C2 and C3, thus conveying chirality to the former position. As an outcome,
the B ring is not planar, unlike typically conjugated flavones, a feature that is sup-
posed to influence the biological activity of flavanones. They are usually glycosylated
by either a disaccharide or a glucoside at C7 to yield flavanone glycoside, and they
can be found in high titres in citrus fruits, tomatoes, and some aromatic plants (e.g.,
mint). They contribute significantly to the daily intake of flavonoids, exceeding that of
other polyphenols, and their bioavailability also surpasses that of either flavonols or
flavan-3-ols [51,57,67,81].

Anthocyanidins and anthocyanins are two of the subclasses of flavonoids, where
the former corresponds to the aglycone form and the latter corresponds to the gly-
coside form. Anthocyanidins, coloured, medium-sized molecules, are classed into
3-deoxyanthocyanidins, 3-hydroxyanthocyanidins, and O-methylated anthocyanidins, de-
pending on the presence of hydroxy or methoxy groups bound to the ringed scaffold.
Anthocyanins are often found as anthocyanidin glycosides, mostly through condensation
with monosaccharides, although di- or trisaccharides may also be bound; additionally,
acylated anthocyanins can also be found as an outcome of acylation with organic acids.
Anthocyanins are available in several fruits and vegetables and are used as natural
colourants in processed foods (red, blue, and purple pigments with low toxicity). Still,
their colour is strongly influenced by structure and environmental factors, e.g., tempera-
ture, light, and pH. Most notably, anthocyanins are red in an acidic environment, yet
they shift to blue or purple in an alkaline medium [71,76,82,83]. Anthocyanins have
been shown to display antidiabetic, anti-inflammatory, and antimicrobial activities and
to contribute to the prevention of cardiovascular and neurodegenerative diseases [83].
The health and therapeutic effects of anthocyanins are by far associated with their an-
tioxidative activities, to which the glycosylated B-ring structure of anthocyanin strongly
contributes. Anthocyanidins have higher antioxidant activity than anthocyanins, as
the C-ring of the latter bears an extra sugar at C-3, opposite to the former´s single
sugar [71,76,82]. However, while glycosylation decreases antioxidant activity, acylation
of anthocyanins with phenolic acid has the opposite effect [71,76,82,84].

The non-flavonoid PC can be divided into two different classes of phenolic acids
based on C1–C6 and C3–C6 backbones, which correspond to benzoic and cinnamic
acid hydroxy derivatives, respectively, and they are often found in bound form such as
amides, esters, and glycosides [85]. They have antioxidant activity as chelators and free
radical scavengers, with special impact on peroxyl, hydroxyl radicals, and peroxynitrites.
Hydroxybenzoic acids are mostly found bound with cell wall fractions, e.g., lignins,
and to a minor extent in soluble form (conjugated with sugars or organic acids). Well-
known hydroxybenzoic acids include gallic, syringic, p-hydroxybenzoic, and vanillic
acids. Their titre in plants is generally low, safe for some berries and vegetables (e.g.,
horseradish, onions) [86]. Hydroxycinnamic acids, examples of which are caffeic acid,
chlorogenic acid, coumaric acid, ferulic acid, and isoferulic acid, are found in all parts
of plants; their concentration is highest in ripe fruits and vegetables. One of the most
abundant hydroxycinnamic acids, chlorogenic acid, which occurs in high concentrations
in coffee, is formed by the combination of caffeic and quinic acids. The bound phenolic
acids can be hydrolysed by enzymes or endure acid or alkaline hydrolysis. In addition
to their antioxidant role, chlorogenic acid and caffeic acid are also likely to inhibit
the formation of mutagenic and carcinogenic N-nitroso compounds, therefore they are
supposed to have an inhibitory effect on the N-nitrosation reaction in vitro [67,68,76].
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Stilbenes are a small class of plant secondary metabolites derived from the phenyl-
propanoid pathway, some of which are associated with mechanisms of defence in the
plant. They are found in several edible plants, e.g., some berries, grapes, and peanuts,
and have a distinct structure consisting of two aromatic rings linked by an ethylene
molecule. The main representative of stilbenes is resveratrol (cis and trans), which is
found in high concentrations in the fresh skin of red grapes. This particular stilbene has
been thoroughly studied in the last two decades, which highlighted that its intake brings
health benefits due to its cardiovascular, chemopreventive, antiobesity, antidiabetic, and
neuroprotective properties [67,68,87–91]. Notwithstanding, other stilbene compounds,
e.g., pterostilbene, a resveratrol analogue, have been suggested to display improved
neuroprotective effects as compared to resveratrol [87,92].

Lignans are plant secondary metabolites synthesised by oxidative coupling of two
phenylpropane units and occur mostly in the free form, with the glycosylated form oc-
curring sparingly; oleaginous plants, and particularly their seeds (e.g., flaxseed, sesame,
linseed, and sunflower) are rich in lignans, but fibrous plants, e.g., rye, whole wheat, veg-
etables, and fruits are also dietary sources of lignan, albeit at minor amounts [85,93,94].
It has been shown that the gut microbiota is able to transform dietary lignans through
deglycosylation and demethylation into human lignan agents such as enterodiol and
enterolactone. These may act as therapeutic agents in cancer chemotherapy and neurode-
generative diseases, features that in recent years have raised major interest in lignans
and synthetic derivates [57,67,95,96].

2.2. Occurrence

Natural polyphenols have been identified in a multitude of foods and plants, e.g.,
cereals, coffee, fruits, medicinal plants, microalgae, tea, vegetables, and wildflowers, to
quote a few representative examples, to which algae, herbs and spices, and nuts can be
added [52,97–102]. Some examples are given in Table 1.

Table 1. Some examples of relevant PC and related sources.

PC Class PC Subclass Example and Source Reference

Flavonoids Anthocyanins Cyanidin/peonidin
(blackberries, cranberries) [103]

Flavanols
Catechin, epicatechin gallate,

epicatechin,
epigallocatechin-3-gallate

[104]

(green tea and green tea extracts)

Flavanones
Naringenin (grapefruit),

hesperetin (oranges) eriodictyol
(lemons)

[105]

Flavonols
Fisetin (strawberries, apples),

rutin (green tea, apple, berries,
peaches)

[106]

Flavones Diosmetin (vetch), tricin (rice
bran) [106]

Isoflavones

Biochanin (red clover, soya,
alfalfa sprouts, peanuts,

chickpeas), daidzein (soybeans,
tofu)

[106]

Non-flavonoids Lignans

Matairesinol and
secoisolariciresino (whole-grain

cereals, e.g., barley, rye, and
wheat)

[107]

Phenolic acids
Caffeic acid (olives, coffee beans,

fruits, potatoes, carrots),
cinnamic acid (cinnamon)

[108,109]

Stilbenes Resveratrol (grapes, red wine) [110]
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Plant PC mostly occur in conjugated forms, where one or more sugar residues are
linked to hydroxyl groups. Still, the sugar can also be bound directly to an aromatic
carbon. Within sugar residues, glucose is foremost found, yet other monosaccharides,
di- and oligosaccharides have also been identified. Conjugation with other compounds,
e.g., acids, either carboxylic or organic, amines, and lipids, as well as binding with other
phenols of occur [52,97,111].

The polyphenol composition of plants and foods is far from fully established, but
consistent efforts have been made to gain detailed information and establish a database
to allow for timely updates, Phenol-Explorer (http://phenol-explorer.eu/ (accessed on
5 November 2022)) [99,112,113]. Nevertheless, numerous factors, e.g., environmental
factors, geographic location, ripeness at the time of harvest seasonality, and storage
conditions may affect the polyphenol content of plants and foods [52,68,97,114,115].

2.3. Physical Properties

Polyphenol compounds are in part responsible for determining the sensory and
nutritional characteristics of foods that contain plant components. PC display a vast
diversity of physical properties depending on their structure. PC absorb strongly in the
UV region of the spectrum, those coloured absorb intensely in the visible region of the
spectrum. Absorption features vary depending on the PC class. Accordingly, some PCs
act as pigments such as yellow (e.g., flavones, flavonols), orange (e.g., flavanones), red,
blue, and purple (e.g., anthocyanins) [63,116,117]; other PC are related to food flavour
(e.g., epicatechin, quercetin, resveratrol, taxifolin); and others are potent odorants, such
as eugenol and vanillin, due to their volatile nature [63,118]. However, the most common
flavour perceptions associated with PC are bitterness and astringency, which are often felt
alongside each other, although involving different mechanisms [119], and are typically
associated with condensed tannins, also termed proanthocyanidin [12,30,114,120]. Still,
in a recent work involving eleven red wines and four white wines, it was reported that
the total phenolic content and the polymeric tannin content displayed strong positive
correlations with perceived astringency, whereas the proanthocyanidin content only
showed a moderate correlation with the perceived astringency. Overall, it was suggested
that polymeric flavan-3-ols are the main contributor to astringency in wines [121].

Normally PC are soluble in organic polar solvents unless they are completely
glycosylated, etherified, or esterified, others are water-soluble. Typically, but not always,
their solubility in water increases along with the number of hydroxyl groups [63,122].

Polyphenols are present in food both in free form and/or bound to polysaccharides
and/or proteins. Notably, the intake of polyphenols present as bound compounds and
their recovery in the insoluble fraction exceeds by far the proportion of free polyphenols
in many foods. The content of non-extractable polyphenols (mainly hydrolysable tannins
and proanthocyanidins associated with dietary fibre and proteins) in some fruits has
been found to be almost ten-fold that of free polyphenols [63,115]. Structural differences
between different polyphenols impact their extractability, e.g., the solubility of different
polyphenols in different solvents affects the extraction efficiency and ultimately antioxi-
dant activity, since the latter typically correlates with the titre of PC in the extracts. PC
are also sensitive to temperature; hence, they may undergo unwanted reactions, e.g.,
Maillard reactions during processing. These matters have to be attended to throughout
post-harvesting and processing and can be assessed in detail elsewhere [118,123–125].

2.4. Identification and Quantification

Different methods and techniques have been developed and implemented for the
identification and quantification of polyphenols, from spectrophotometry to chromatog-
raphy, capillary electrophoresis, circular dichroism, mass spectrometry, near-infrared
spectroscopy (NIR), nuclear magnetic resonance (NMR), and optical rotatory dispersion.
Some key advantages and limitations of key strategies for the quantification of polyphe-

http://phenol-explorer.eu/
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nols are summarised in Table 2. Detailed insight can be found elsewhere, in reviews
specifically dedicated to the analysis of PC [98,126–130].

Table 2. A brief overview on the advantages and limitations of some methods for the analysis of PC.

Technique Advantages Limitations

Spectrophotometry

Simple, and low-cost, can be used
for the determination of the total
PC titre. Colorimetric methods
have been developed to estimate
que titre of given classes or
sub-classes of PC. Quick
screening of numerous samples.

Low specificity and
sensitivity.

Gas chromatography

High selectivity and specificity.
Traditionally connected to an FID
detector, and its connection to an
MS detector vastly expands its use
and eases fingerprinting profile.

Application requires volatile
compounds or
derivatization to improve
volatility.

Thin-layer chromatography
Allows the detection and
identification of multiple PC in a
short analysis time.

Quantification is
questionable and there is
limited resolution.

High-performance liquid
chromatography

The most used technique for the
separation and detection of PC.
Highly flexible, different types of
solid and liquid phases can be
used; can be connected to a vast
array of detectors: e.g., UV-visible,
DAD (similar to the former but
enabling simultaneous
measurement of multichannel
absorption wavelengths), and
fluorescence (limited to PC that
emit fluorescence). Additionally,
it is combined with tandem MS to
enable high sensitivity and
selectivity and eventually
provides structural information.

Relatively expensive,
particularly when MS is
involved. Optimization of
the analytical method can be
time consuming.

Capillary electrophoresis

Provides a higher resolution than
HPLC. Can be coupled with UV,
fluorescence, amperometric, and
MS detectors. Low limit of
detection.

Only allows the
determination of
compounds that are volatile
and not highly polar.
Relatively new analytical
technique. MS
incompatibility with some
types of CE.

Near infrared spectorscopy

Advanced, accurate, and
non-destructive technique.
Abridges visible and infrared
regions (wavelength range of 780
to 2500 nm).

Relatively low
dissemination. Low
sensitivity and requires the
development of a
multivariate calibration.

Nuclear magnetic resonance

Non-destructive, high flux, and
short analysis time. Easy to
operate. Reproducibility and
accuracy comparable to
traditional chemical analysis
methods.

Relatively new. Low
sensitivity, unable of
quantitative analysis of trace
substances, and long
analytical spectrum.

DAD—diode array detector; FID—flame ionization detector; and MS—mass spectrometry detector.
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UV-visible spectrophotometric methods are simple, deliver results rapidly, and
enables extreme parallelization, hence simultaneous evaluation of multiple samples.
Therefore, they are vastly used [98]. Among these methods, the Folin–Ciocalteu assay is
one of the most popular for the quantification of different classes of PC and to assess
total phenolic content [131–134]. It is considered particularly suitable if gallic acid is
used as a standard [135]. Although cheap and simple, Folin–Ciocalteu may overestimate
PC titre as some chemicals involved in the formulation may react with compounds other
than PC. Moreover, it does not allow the accurate estimation of a given PC titre without
a separation method [98,136].

Hence, more specific and necessarily more complex analytical methods have been
introduced, mostly relying in liquid chromatography [98,137], coupled to UV-detection
and fluorescence detection in sequence for the estimation of stilbenes in grape juices [138];
fluorescence detection and UV-detection for the determination of different PC in paprika
samples [139] and in apples [140], respectively; and diode array detection (DAD) for
the determination of catechins, flavonoids, and phenolic acids [141], and tandem mass
spectrometry [136,142], e.g., for the determination of trace and micro PC such as phenolic
acids and lignans [143]. The latter detection method additionally provides structural
information regarding unknown compounds. Liquid chromatography, however, of-
ten requires large volumes of solvents and lengthy separation times [144]. Thin-layer
chromatography (TLC) methods, which are less complex and costly than liquid chro-
matography, have also been reported and enabled the simultaneous detection of several
PCs in a short timeframe [98]. Gas chromatography (GC) has also been used for the quan-
tification of PC, namely anthocyanins, flavonoids, phenolic acids, and tannins [98,126].
A major limitation of this technique is the low volatility of most PC; hence, derivati-
zation prior to analysis to produce volatile derivatives is most often required [98,145].
Traditionally, the detection was performed by a flame ionisation detector (FID) [18,146],
but coupling GC to a mass spectrometer is increasingly being used on account of the
high selectivity and sensitivity [98,145]. Capillary electrophoresis (CE), a high-resolution
technique where ions are separated according to their electrophoretic mobility as they
flow through a capillary column, has also been used for quantification of PC [144,147].
Some recent examples include coupling CE to: UV for the determination of flavonoids in
honey [148]; a diode array detector (DAD) for the determination of diverse PC in carob
pekmez, a molasses-like syrup [149]; and MS [150] for the determination of flavonoids
in citrus fruits. The latter deemed particularly useful to broaden the range of PC that can
be directly identified [18]. Still, CE has been suggested to fail to differentiate molecules
with close charge-to-mass ratios [98]. Alongside these mainstream analytical techniques,
NMR [151] and NIR [152] are non-destructive methods that provide structural informa-
tion besides quantification and are increasingly being used. NIR comprises a wavelength
range from 780 to 2526 nm. Upon receiving this type of radiation, modifications in
the vibrational and rotational modes of molecules occur. Given the uniqueness of each
sample, those modes and concomitant spectra are also unique, making NIR a highly
sensitive and precise method. Additionally, NIR is fast, hardly requires sample prepara-
tion, it is non-invasive, enables online or inline measurements and several parameters
can be detected simultaneously. Due to the large output of variables, data processing
requires multivariate statistical methods. Recent examples of the application of this
technique involve the combined determination of PC and assessment of their antioxidant
activity [153–155]. NMR relies on the energy that nuclei with spin quantum numbers
other than zero exchange under the action of a constant and alternating magnetic field.
Detection is carried out at a low field, consistent with a magnetic field strength under
0.5 T. This has a lower detection accuracy than high-field NMR, typically used in the
medical area, yet the cost of the equipment is much lower, therefore enabling its dis-
semination. Both solid and liquid samples can be processed by NMR, which can be
used to simultaneously determine more than one analyte and provide vast structural
information. Accordingly, this technique has proved particularly useful in the evaluation
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of complex food samples [151,156]. More recently, an altogether different approach for
the separation and quantification of phenolic acids and flavonoids in tea and honey
was presented, which combines chemiluminescence (CL) detection with a microfluidic
environment in a microchip framework. Separation was performed in a microcolumn
packed with magnetic zinc-imidazole resin. The analytes eluted were detected by a CL
system using acidic KMnO4 as an oxidant and HCHO to enhance CL emission [157].

Metabolomics, a methodology that focuses on the qualitative and quantitative
assessment of small (under 1.5 kDa) molecules and enables the comparison between
samples, has been used to identify and quantify PC in foods, investigate the interaction
of PC with the gastrointestinal tract, and evaluate PC role as biomarkers. Metabolomics
relies on the use of analytical techniques such as NMR, electrospray ionisation-linear ion
trap quadrupole-Orbitrap-mass spectrometry (ESI-LTQ-MS), high-performance liquid
chromatography coupled to photodiode-array detection and electrospray ionization/ion
trap mass spectrometry (HPLC-DAD-ESI-MS), ion trap with time-of-flight (IT-TOF),
ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrom-
etry (UPLC-Q-TOF-MS), and gas chromatography time-of-flight mass spectrometry
(GC-TOF-MS) [158,159]. In a recent example, HPLC-DAD-ESI-MS analysis enabled the
identification of galloyl and caffeoyl quinic acids, ellagitannins, and ellagic acid- and
flavonoid-derivatives in maqui (Aristotelia chilensis). Moreover, HPLC-MS analysis al-
lowed to differentiate PC content in spring basal leaves of maqui and in vitro leaves
extract, the latter missing quercetin unlike the former. The study allowed to establish
maqui leaves as a sound source of PC that can ultimately be used in nutraceuticals and
drugs as antioxidants, but it also allowed to define some guidelines towards the effective
production of maqui leaves secondary metabolites [160]. In another recent example,
ultrahigh resolution liquid chromatography orbitrap MS analysis (UHPLC-ESI-OT-MS)
allowed the identification of several flavonoids and diverse phenols upon metabolite
profiling of Larrea divaricata Cav and L. nitida Cav resins. The PC-rich extracts exhibited
antioxidant and antibacterial activity [161]. Metabolite profiling of extracts from Wein-
mannia trichosperma Cav (Cunoniaceae) using UHPLC-ESI-OT-MS led to the identification
of isoastilbin, neoisoastilbin, and neoastilbin. The titres of these flavonols were later
established by HPLC, and their antioxidant activity was established. The work helped
to establish the potential use of this plant as a source of valuable secondary metabolites
for nutraceuticals and pharmaceutical industries [162]. Further examples, as well as
detailed insight on the use of metabolomics for the identification and quantification of
PC, can be found in dedicated reviews recently published [158,159,163].

Proteomics evaluates the interactions of different proteins with each other and
the roles played by them within an organism [164]. Proteomics includes either two-
dimensional gel-electrophoresis and isoelectric focusing (gel-based, time-consuming
methods) or gel-free methods, such as time-of-flight mass spectrometry (TOF-MS), elec-
trospray mass spectrometry (ESI-MS), and capillary electrophoresis mass spectrometry
(CE-MS), and this technology has been used to gain insight on protein–PC interac-
tions [158,159,163]. Proteomic analysis was used to establish the inhibitory effect of
pentagalloyl glucose on some proteins highly expressed in neurodegenerative diseases,
namely eptin-7, ataxin-2, and adenylosuccinate synthetase isozyme 2 [165]. In more
recent work, proteomic analysis was used to establish a correlation between the PC
expression level of peanuts and protein expression. The authors were able to observe
that the overexpression of the phenylpropanoid pathway enhanced PC biosynthesis.
Ultimately, the work allowed the identification of recombinant peanut lines with ap-
pealing antioxidant features [166]. Further examples and detailed insight on the use
of proteomics for understanding the functional role of PC can be found in dedicated
reviews recently published [158,159,163].

Proteomics and metagenomics are two of the five omics-based approaches used
to study the functional activities of polyphenols, the remaining being genomics, tran-
scriptomics, and lipidomics [167]. The whole has been termed foodomics and provides a
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holistic approach in the field of food and nutrition sciences [168]. Genomics is used in the
identification of polyphenol genes and thus contributes to the development of PC-rich
food materials and to the evaluation of gut microbiota upon ingestion of PC [158,159].

In a recent work, genome-wide association studies (GWAS), a methodology that
encompasses whole-genome resequencing of each individual in a population with high
genetic diversity, enabled the identification of candidate genes for the production of
several relevant PC, e.g., quercitrin, epicatechin, catechin, chlorogenic acid, and 4-O-
caffeoylquinic acid, in apples. The results were envisaged to help breeders enhance
the nutritional value of apples [169]. As another recent example, quantitative trait lo-
cus (QTL), a methodology that identifies the position of genes controlling quantitative
traits in the genome, was used to identify the loci responsible for phenotype variance
in the synthesis of phenolic compounds in Asian plum (Prunus salicina L.) skin and
flesh. Again, the work was foreseen to assist in the development of breeding strategies
towards the generation of fruit varieties with high PC titres and hence, high antioxidant
activity [170]. Aiming to gain insight on the effect of quercetin on cellular functions,
Atrahimovich and co-workers relied on the use of massive parallel DNA-sequencing
technologies. The authors were able to establish that quercetin plays a regulatory tran-
scription action in the expression of genes accountable for cell cycle, differentiation, and
development [171]. Further examples of the use of genomics towards the elucidation of
the functional activity of PC can be found elsewhere [158,159,163,172]. Transcriptomics
addresses the transcription of genes in cells and transcription regulation in the cell at
the RNA level and is a useful tool to understand interactions between PC and genes.
As a recent example, RNA-sequencing was used during berry development to assess
events related to PC accumulation that affect antioxidant capacity. Given the results,
the authors suggested that the reactions underlying the modification of flavonoids, e.g.,
hydroxylation, methylation, and glycosylation, were noticeably activated in a specific
genotype, leading to the synthesis of more biologically active flavonoid derivatives [173].
In another recent example, RNA sequencing enabled the identification of several struc-
tural and regulator genes putatively involved in the synthesis of phenolic compounds
in tomato. Moreover, the authors established the key role of chalcone synthases in the
control of the accumulation of phenolic compounds in tomato genotypes [174]. Further
examples can be found in a recent review [163].

Lipidomics focuses on the identification of modifications in lipid metabolism and
lipid-mediated signalling processes related to the regulation of cellular homeostasis [163].
A classic example involved the evaluation of the effect of supplementation of aronia-
citrus PC-rich juice on lipid peroxidation markers [175]. In a more recent study, diet
supplementation with PC given to a population of lactating women was shown to mod-
ulate human milk lipids [176]. Further examples of the interaction between lipidomics
and PC can be found elsewhere [177]. Often, a multi-omics approach is used to study
the functional activity of PC [178]. In a recent example, genomics, transcriptomics,
and metabolomics were combined to provide detailed insight into chayote evolution,
including aspects related to PC synthesis and profile [179]. In another recent example,
transcriptomics and metabolomics were combined to identify several key metabolites,
including PC, with antioxidant activities in the fruits of Rosa roxburghii Tratt at different
developmental stages or in fruits of different genotypes and to provide insight on the
mechanisms of PC synthesis [180].

3. Biological Activities of Polyphenols and Health Benefits

Oxidative stress is considered to play a pivotal role in the pathogenesis of aging and
several degenerative diseases, such as atherosclerosis, cardiovascular disease, type II
diabetes, and cancer. Several studies describe polyphenols as having many activities and
properties, including antioxidant, anticarcinogenic, anti-inflammatory, modulators of im-
mune system response, and protectors of the cells against free radical damage [181,182].
Body cells and tissues are continuously threatened by the damage caused by free rad-
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icals and reactive oxygen species (ROS), which are produced during normal oxygen
metabolism or are induced by exogenous damage. Flavonoids can act because of an-
other mechanism, through the interaction with various enzyme systems. They have
been reported to possess many useful properties, including anti-inflammatory activity,
oestrogenic activity, enzyme inhibition, and antimicrobial activity [29,78]. Irrespective
of their specific nature and intended role, for the biological activity of PC to be ad-
vantageously used, their structure must be preserved, and they have to be available
for systemic circulation (bioavailability). The preservation of the structure strongly
depends on the PC extraction and enrichment methods (e.g., classic liquid extraction,
supercritical extraction, pressurised liquid extraction, membrane technology for pu-
rification) as described elsewhere [183,184], but the outcome of those treatments also
impacts bioavailability, since the latter depends on the interaction with the food matrix,
besides the metabolic processes mediated by the liver, intestine, and microbiota [185].
Additionally, PC metabolites produced either in vivo or in vitro may have improved
biological activity [185,186]. Adequate formulations, namely through PC encapsula-
tion [187,188] or PC conjugation [189], e.g., with gellan gum [190], and the advantageous
use of synergistic effects [191–194], have been shown to increase the biological activity
of PC. Despite the well-acknowledged benefits of PC in health, as neatly summarised in
a recent review [7], some side effects and toxicity associated with PC consumption have
also been reported [7,195,196]. These are typically associated with intakes in dosages
largely exceeding what is recommended, namely in Western diets [7,195] and have been
summarised as carcinogenicity/genotoxicity, the estrogenic effect of isoflavones, thyroid
toxicity, interactions with pharmaceuticals, and negative nutritional effects, the latter
namely through the lack of proper synergistic effects with other dietary items [7,196,197].
Specific details can be found elsewhere [7,196,197]. Still, it is highlighted that incon-
sistency of results in human studies are often observed, which can be ascribed to the
inter-individual variability in bioavailability and bioactivity of dietary polyphenols,
alongside with the heterogeneity of the populations study and the statistical approach of
the studies [7,195]. Some key aspects of the impact of the biological activity of PC on
human health are summarised in Table 3.

Table 3. Impact of PC biological activity in human health [97,198,199].

Antioxidant—free radical scavenging.
Anti-inflammatory—inhibition of tumour necrosis factor, modulation of enzyme activity, and

impact on neurodegenerative diseases.
Anti-carcinogenic—modulation of cancer cell signalling, promotion of apoptosis.

Antidiabetic—inhibition of key enzymes that regulate glucose absorption.
Antihypertensive—decrease the oxidative sensitivity of low-density lipoproteins, increase

vasodilation, and impact on cardiovascular diseases.
Anti-obesity—stimulate adipocyte apoptosis, promote lipolysis, and fat oxidation.

Antimicrobial—antibacterial activity through inactivation of efflux pump, destabilization of
cytoplasmic membrane, and synergic action with antibiotics.

3.1. Antioxidant Activity

Among the notable bioactivities of PC, the antioxidant activities have been widely
studied, including the scavenging of free radicals, inhibition of lipid oxidation, and
reduction of hydroperoxide formation, among others. Details on the different meth-
ods to assess antioxidant activity in vitro are discussed elsewhere in a comprehensive
review [200]. Transition metals can function in various oxidation processes, acting as
a catalyst in the autoxidation of many biomolecules. In many cases, oxidation can be
initiated by the hydroxyl radical (HO·) generated in the reaction between iron and hy-
drogen peroxide, known as the Fenton reaction. Metals can also generate other ROS. PC
have the ability of chelating metals and controlling their prooxidant activity. Polyphe-
nols are known to be agents that can scavenge a wide range of ROS by mechanisms
that include direct scavenging of ROS, suppression of ROS formation by inhibition of
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enzymes involved in their production, inducing endogenous antioxidants enzymes,
regeneration of body antioxidants such as α-tocopherol and ascorbic acid, regulation
of signal transduction and up-regulation or protection of cellular antioxidant defence
systems. As antioxidants and anti-inflammatory agents, PC act at a local level when they
act directly during passage through the gastrointestinal tract, as well as at a systemic
level after their absorption [12,53,67,182,201,202]. Further details on the mechanistic
action of PC as antioxidants can be found elsewhere [203].

Almost every group of flavonoids (Figure 2) can act as antioxidants. Free radicals
can damage cells by lipid peroxidation, resulting in cellular membrane damage leading
to swelling and eventually death. Protection mechanisms of the body include enzymes
such as superoxide dismutase, catalase, and glutathione peroxidase and other non-
enzymatic materials such as glutathione, ascorbic acid, and α-tocopherol. Flavonoids
have an additive effect on endogenous scavenging compounds. Flavonoids are oxidised
by radicals, resulting in more stable, less reactive radicals. In other words, flavonoids
stabilise the ROS by reacting with the reactive compound of the radical. Some of the
flavonoids can directly scavenge superoxides, whereas other flavonoids can scavenge
the highly reactive oxygen-derived radical called peroxynitrite, also can chelate iron
removing a causal factor for development of free radicals. Another interesting effect
of flavonoids on enzyme systems is the inhibition of the metabolism of arachidonic
acid [182,201]. This feature gives flavonoids anti-inflammatory and antithrombogenic
properties. Selected flavonoids, namely quercetin, kaempferol, and myricetin, effectively
inhibited platelet aggregation in dogs and monkeys. Several studies have been published
to correlate the intake of PC through food ingestion and antioxidant activity both in vitro
and in vivo, although the former largely exceeds the latter [204–206]. As an example,
Zujko and Witkowska evaluated the total PC titre in different beverages (e.g., red and
white wine, different teas, orange juice, beer), several types of chocolate, and several nuts
and seeds (e.g., walnuts, sunflower seeds, pistachios) and determined the corresponding
antioxidant potential with the ferric reducing antioxidant power (FRAP) method. It
was possible to establish that in all cases the increasing PC titre resulted in increased
antioxidant potential. The highest values in each class tested were observed for red
wine, dark chocolate, and walnuts [207]. In another study, Lafarga and co-workers also
addressed the relationship between total PC titre and antioxidant potential, using the
FRAP and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods of dry and cooked pulses,
e.g., lentils, faba beans, chickpeas, and soy [208]. Again, the total PC titre correlated
positively with antioxidant potential with the best result being observed for faba beans.
Moreover, the authors established that cooking increased total PC titre and antioxidant
activity in methanolic extracts, which was attributed to cell disruption and improved
extraction of polyphenols. Finally, simulated gastrointestinal digestion led to a further
increase in total PC titre and antioxidant potential of the extracts evaluated, which was
attributed to enhanced bioaccessibility to PC. Recently, an in vivo study demonstrated
winemaking by-products from Syrah grapes, rich in anthocyanins, flavanols, flavonols,
and stilbenes (Figures 1 and 2), displayed higher antioxidant activity than red wine,
leading to lower very low-density lipoprotein cholesterol titres [209]. Previously, an ex
vivo had demonstrated that LDL-cholesterol oxidation (ex vivo) was lower in healthy
human subjects due to daily intake of daily intake of 3 g guarana seed powder containing
160 mg catechins [210]. A more recent ex vivo study showed that a nutraceutical formu-
lation based on a polyphenolic-rich extract from winemaking by-products (Taurisolo®)
displayed high oxidant power, given its action as a ROS scavenger agent. This action ulti-
mately triggered an increase of antioxidant enzyme activities in the intracellular medium,
which was tentatively related to the up-regulation of their gene expression [211]. Despite
the acknowledged antioxidant role of PC, their dietary intake at high doses, e.g., through
dietary supplementation, may have a deleterious effect, such as pro-oxidant activity,
production of ROS and hydrogen peroxide, and oxidative stress [212]. The authors also
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highlight the need for in vivo studies to corroborate information obtained in in vitro
studies and rule out negative effects that are not detected in the latter.

3.2. Neurodegenerative Protective Effects

Many neurodegenerative diseases, including Alzheimer’s disease, consist of dam-
age to cellular components such as DNA, lipids, and proteins. In these conditions,
oxidative stress is considered as a key regulatory factor. The oral administration of
green tea polyphenols and flavonoid-related compounds has been shown to inhibit iron-
induced lipid peroxide accumulation and age-related accumulation of neurotoxic lipid
peroxides. Accordingly, the risk of the development of Parkinson’s disease is reduced
by the consumption of polyphenols in the form of green tea [213,214]. Epidemiological
studies suggest that polyphenols may be effective in reversing neurodegenerative pathol-
ogy and age-related declines in neurocognitive performance [35,67,215–217]. Flavonoids
(Figure 2) may perform a key role in the enzyme and receptor systems of the brain,
exerting significant effects on the central nervous system. Flavonoids can inhibit en-
zymes such as aldose reductase and phosphodiesterase and prevent neurodegenerative
diseases. Preparations containing flavonoids as the main physiologically active agent
have been used for centuries by physicians and lay healers as tools to tackle human
disease. The release of arachidonic acid is a starting point for a general inflammatory
response. Flavonoids inhibit the metabolism of arachidonic acid through the enzyme
pathway, thus conveying flavonoids’ anti-inflammatory and anti-thrombogenic prop-
erties [69,77,78,218,219]. The positive effects of PC (both observed and potential) in
neurodegenerative diseases, including the use of PC-rich foods, have been described
in a recent comprehensive review [220]. In this work, the authors highlight that the
neuroprotective effect of PC can be either direct, through the action of PC that crosses
the blood-brain barrier, or indirect, through PC that influence the gut microbiota. The
latter rely on the two-way communication between the gut and the brain through the
neural, endocrine, and immune systems, the so-called brain-gut axis, to ultimately play a
neuroprotective role [220,221]. Some authors, however, suggest that care must be taken
when relating the intake of PC-rich foods, e.g., walnuts with protective neurodegenera-
tive effects [222]. Positive effects were only observed for some populations, and further
studies were suggested to fully understand the mechanisms of neuroinflammation in-
hibition in neurodegenerative diseases. Moreover, a large number of clinical trials are
needed to validate the translation of the observed effect to humans. A systematic review
performed by Colizzi, using as ref. [24] studies, failed to find enough evidence that
polyphenols have beneficial effects against Alzheimer’s disease. The author suggested
that further randomised control trials are needed for validation of the results, along with
other recommendations, so that it can be conclusively stated that PC can systematically
reduce the effects of Alzheimer disease [223]. Again, these conclusions highlight the
need for studies abridging suitable populations, adequate control trials, and proper
statistical data processing, so that generalisations can be made.

3.3. Cancer Protective Effects

PC can inhibit the metastasis of the cellular lines by different mechanisms, including
the removal of carcinogenic agents, modulation of cancer cell signalling, and cell cycle
progression, promotion of apoptosis, and modulation of enzymatic activities. In addition,
they have anti-inflammatory effects and can modulate apoptotic processes in the vascu-
lar endothelium. PC are protective and responsible for lowering tumour growth. This
type of beneficial effect was observed for various cancer sites, including the mammary
glands, skin, lung, and liver, and some sites of the digestive tract such as the intestine,
stomach, and mouth. Polyphenolic compounds provide chemoprevention by several
identified mechanisms, such as oxidation prevention, antiproliferation, detoxification of
enzymes, initiation of apoptosis or cell cycle arrest, host immune system regulation, es-
trogenic/antiestrogenic activity, and anti-inflammatory activity by producing alterations
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in cellular signalling [67,181,215–217,224–226]. Additionally, there is increasing evidence
suggesting that polyphenols are more bioavailable when considering their metabolites.
In addition, this raises the question of whether host metabolites and microbial catabolites
of polyphenolic compounds can retain some biological activities. In two recent reviews,
the role of dietary PC in cancer management was addressed [227,228]. Some key findings
are summarised in Table 4.

Table 4. Some examples of PC-rich foods in the management of different types of cancer.

Type of Cancer Observations

Prostate cancer

Tomatoes, red wine, green tea, turmeric and pomegranate,
rich in PC such as epigallocatechin gallate (EGCG) and
curcumin act through the downregulation of different
signal transduction pathways. Resveratrol, found in red
wine and grapes inhibits dehydrotestosterone-induced
progression of this type of cancer [229]. PC present in
green tea, namely EGCG, suppress progression of this
type of cancer through epigenetic induction of TIMP-3, an
inhibitor of matrix metalloproteinases [230].

Breast cancer
Dietary intake of PC for the prevention of this type of
cancer is controversial, as only high concentrations PC
inhibit estrogen metabolism [231].

Lung cancer
Anthocyanin-rich haskap berry extracts were shown to
decrease nitrosamine-induced DNA damage human lung
epithelial cells in vitro [232].

Colorectal cancer

Djulis, a cereal crop rich in PC exhibited chemopreventive
by regulating antioxidative and apoptotic pathways in
rats [233]. Anthocyanins present in black raspberries and
strawberries were shown to play a synergistic role in
several molecular events, e.g., suppression of cytokines
release, decreased oxidative stress, reduced genomic
instability, and inhibiting critical pathways [234].

3.4. Antidiabetic Effects

PC have an effect on the prevention and management of type 2 diabetes. The poten-
tial of PC as antidiabetic agents may be due to its inhibitory action in the gut for glucose
absorption, promotion of glucose uptake in peripheral tissue uptake, stimulation of in-
sulin and glucagon-like peptide 1 secretion, and suppression of glucose release from liver
[235,236]. Moreover, it is suggested that PC may inhibit aldose reductase, α-amylase, and
α-glucosidase [235], claim that seems to be supported by recent findings [235,237,238].
Again, the antidiabetic effect of dietary polyphenols is the subject of some controversy.
As reviewed in detail recently [239], some epidemiological research suggests that dietary
polyphenols might control and prevent T2D, e.g., PC from grape pomace [240,241], but
opposite opinions have been unveiled [239,242]. Such discrepancies have been related
to major variation between different populations and measurement errors in dietary
intake [239,243].

3.5. Cardiovascular Effects

Cardiovascular diseases, including coronary artery diseases, stroke, heart failure,
and hypertension, are the first cause of death globally [244]. Many naturally occur-
ring compounds and foods are promoted for the prevention of such diseases; studies
have demonstrated that consumption of PC reduces the risk of major cardiovascular
events. A broad range of epidemiological studies and human trials have shown that
a diet rich in polyphenols, based on balanced consumption of tea, vegetables, fruits,
and cocoa, increases the likelihood of cardiac safety [11,52,67,226,245–247]. For instance,
epidemiological studies summarised in a meta-analysis have suggested that there was
an 11% reduction in the risk of cardiovascular disease by having 3 cups of tea per
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day [248,249]. In addition, it has been proposed that the antioxidant properties of
polyphenols might protect vascular endothelial function against the deleterious conse-
quences of the oxidation of low-density lipoproteins (LDLs), as oxidised LDL can impair
endothelium-dependent vasorelaxation. PC play a meaningful role in reducing cardio-
vascular diseases through an improvement in vascular function and a modulation of
inflammation [11,52,67,226,245–247].

3.6. Obesity

Numerous clinical interventions have investigated the effects of polyphenol-rich
intake on anthropometric variables, namely weight, body mass index (BMI), waist cir-
cumference, and body fat mass. Clearly, clinical studies pointed towards significant
beneficial effects; the studies confirmed a significant reduction in body weight, BMI,
waist circumference, and body fat mass in men who took a green tea extract compared
with the control group. There are several potential mechanisms whereby polyphenols
may influence body weight and composition. According to the prevailing hypothesis,
polyphenols enhance energy expenditure, affect sympathetic nervous system activity,
and stimulate the oxidation of fat [75,250–252]. The anti-obesity role of dietary polyphe-
nols has been reviewed recently [251,253], where the contribution of several foods is
highlighted through several studies. The most significant foods for said role were: green
tea extracts, rich in EGCG, epicatechin, epigallocatechin, and epicatechin-gallate; berries,
rich in anthocyanins; onions, rich in quercetin; and soybeans, rich in isoflavones. In
a recent work, involving the intake of PC-rich foods by Iranian women, significant
negative associations were observed between: stilbenes and lignans intake and BMI;
beverages containing phenolic acids and hip circumference; total polyphenols intake
and weight-to-hip ratio; stilbenes intake and cholesterol level [254]. Again, it should
be highlighted that some results in the literature are conflicting, and ascribe this to
disparate study designs and lengths, variation of population and diversity of the dietary
polyphenols used [251].

3.7. Antimicrobial Activity

Polyphenols have been demonstrated to have potential antibacterial, antifungal,
and antiviral activities [75,215,218,255]. Indirectly, they affect the growth of some Gram-
negative bacteria, such as Escherichia coli and Pseudomonas fluorescens [67,225,235,256].
EGCG, extracted from green tea, was shown to bind directly to the peptidoglycan from
Staphylococcus aureus, impairing cell integrity and destroying the osmotic protection
of the cell wall. Moreover, EGCG inhibited penicillinase activity [257]. Antimicrobial
activity has also been ascribed to flavonoids (Figure 2), and the structures of flavonoids
having properties of antifungal, antiviral, and antibacterial activity have been isolated
and identified [69,77,78,218,219]. Green tea leaves, rich in EGCG, exhibited a mini-
mum inhibitory concentration (MIC) of 125 µg/mL in the case of multidrug-resistant
(MDR) E. coli, MDR S. aureus and their reference strains [258]. The antimicrobial role
of green tea against MDR E. coli was further reinforced in a more recent work [259].
Curiously, the size of green tea particles was shown to be a key parameter for their
antimicrobial activity, which was absent for those exceeding nano sizes. The authors
also noticed that EGCG correlated positively with an antibacterial effect against oral
microflora [260]. In another study, juices from cranberry, Japanese quince, and sea buck-
thorn displayed antimicrobial activity against several Gram-positive and Gram-negative
bacteria, which was associated with their high content of PC. Wild rose, chokeberry,
both rich in flavonoids, and elderberry juices, rich in anthocyanins, displayed activity
mostly against antimicrobial activity only against Gram-positive strains tested (safe for
Enterococcus faecalis and Clostridium perfringens) [261]. Studies have proven antifungal
activity against pathogens, such as Aspergillus, Candida, Cladosporium, and Penicillium
genera [218]. Despite the well-established antimicrobial role played by PC, due to their
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structural diversity (Figure 1), the mechanisms underlying their activities have not yet
been fully resolved [262].

4. Gut Microbiota and Polyphenols

Flavonoids have been shown to strongly interact with the gut microbiota [150].
Within flavonoids, the ubiquitous flavonols have been more extensively studied, with
their consumption estimated at ~25 mg/d in the United States [263]. Only about 5–10%
of the total flavonoids in the suggested intake of 1 g/day around the world are ab-
sorbed in the upper digestive system; the non-absorbed flavonoids interact with the
gut microbiota. An outcome of such interaction is the formation of common pheno-
lic intermediates such as phenyl propionic, phenylacetic, and benzoic acids with dif-
ferent levels of hydroxylation [67,264–266]. The metabolization of dietary polyphe-
nols, hence including flavonoids, has exhibited noticeable inter-individual variabil-
ity [264,265]. The individual ability to generate a specific polyphenol metabolite profile
is suggestive of specific microbiota enterotypes, with enthralling implications on immune
function [22,51,267,268].

Bacterial metabolism often decreases the activity of dietary compounds, yet occa-
sionally it may improve some properties [269]. Typically, the absorption of flavonoid
glycosides involves lactase phloridzin hydrolase (LPH) in the brush border of the small
intestine epithelial cells that cleaves the glycoside and enables the release of the aglycone,
which then migrates to the epithelial cells by passive diffusion. Another hydrolytic step
is mediated by cytosolic α-glucosidase within epithelial cells, the resulting aglycone then
enters the epithelial cells [35]. Glycosylated flavonoids are more available than aglycones.
Flavonoids and their metabolites that are able to reach the colon interact with the gut
microbiota by inhibiting the growth of some pathogens and promoting the growth of
beneficial genera such as Lactobacillus and Bifidobacterium [37,77,266,268,270,271].

The positive impact of PC can also be associated with anti-inflammatory metabo-
lites (e.g., ellagic acid) produced by the gut microbiota that contribute to decreasing the
symptoms of inflammatory bowel diseases. Alongside, fatty acids are also produced,
stimulating the growth of acid-forming bacteria that contribute to improving intestinal
conditions. Overall, these positive aspects are suggestive of a synergy between the im-
pacts of their metabolites on the enhancement of favourable microbial diversity, whereas
pathogenic organisms and other health-threatening factors are inhibited [272–274]. Key
issues on the impact of PC in gut microbiota are summarized in Table 5.

Table 5. Gut microbiota and PC: a summary of key issues [22,275].

Low level of adsorption, gut microbiota can metabolize PC, and easing their absorption and
increasing bioactivity.

Modulation of microbial environment, prebiotic role, and decreased pathogen colonization in the gut.
Production of PC-related beneficial metabolites.

Polyphenols-gut microbiota interplay on brain neuromodulation and impact on
neurodegenerative diseases.

5. Bioavailability of Polyphenols

The commonly accepted definition of bioavailability is the proportion of the nu-
trient that is digested, absorbed, and becomes available for use at the site of action.
Due to the vast diversity of their chemical structures, it is difficult to estimate the
total polyphenol content in foods. Moreover, besides food sources, the positive im-
pact of phenolic compounds on health depends also on their stability and on host
issues. The former relates to the raw material processing methods and nature of the
matrix used for incorporation; the latter relates to the microbiota and digestive en-
zymes. Bioavailability varies greatly among different polyphenols. According to Shiv-
ashankara and Acharya, bioavailability can be ranked in the following order: isoflavones
> flavanols > flavanones > flavonols > anthocyanins [276]. Additionally, high bioavail-
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ability of polyphenols does not necessarily correlate positively with high polyphenol
concentrations in food, with poor bioavailability resulting in decreased bioefficacy and
health effects [17,29,65,68,112,219,277].

The level of biotransformation endured by a PC in the gastrointestinal tract is
determined by two factors: one is structure-specific since the scaffold of the polyphe-
nol will only allow for some biotransformation to be performed by intestinal enzymes
and gut microbiota species; the second factor relates to the individual diversity of
intestinal microbiota, for while a set of biotransformations (e.g., deglycosylations)
can be performed by a wide array of gut microbial species and genera, others re-
quire particular enzymes that are only expressed by given species or strains [29,36–
38,266,268,270,278]. The ubiquity of deglycosylation is relevant in food matrices, since
the presence of a glucose residue in aglycones strongly reduces both the bioaccessibility
and bioavailability of phytochemicals. Additionally, bioaccessibility can be compro-
mised in some classes of polyphenols (e.g., catechins) that can form oligomers, also called
proanthocyanidins [29,36,38,266,278].

The in vivo effects of PC depend on their bioaccessibility and bioavailability after in-
gestion, together with their concentration. Bioavailability, or the fraction of the compound
that is digested, absorbed, and metabolized, depends heavily on estimates of the amount of
antioxidant absorbed [246]. Bioaccessibility is commonly defined as the amount of an ingested
nutrient that is available for absorption in the gut after digestion [279]. It is well established
that the physical state of the food matrix is paramount in the release, mass transfer, accessibility,
and biochemical stability of many food components, including PC. PC may interact with other
food components in the gut by binding to macromolecules such as fibre and forming chemical
complexes and colloidal structures that reduce or improve their bioavailability [36,246,266].

The aglycones can be absorbed from the small intestine. However, most polyphenols
are present in food in the form of esters, glycosides, or polymers that cannot be absorbed
in their native form. Instead, they must undergo hydrolysis by either intestinal enzymes
or the colonic microflora prior to their absorption. Overall, gut microbiota influences
the composition the bioavailability of PC and the PC influences the composition of gut
microbiota. A fraction of the PC can be degraded by the gut microbiota, and simple
aromatic acids are delivered as the outcome. Throughout absorption, PC are conjugated
in the small intestine and in the liver, a process that includes methylation, sulfation, and
glucuronidation, and ultimately increases the hydrophilicity and facilitates the urinary
elimination [66,266].

The structural differences between individual compounds affect their bioavailability.
Hence, polyphenols that are not absorbed in the small intestine arrive in the colon and
are thus available for biotransformation by the resident microbiota [66,67]. On the other
hand, passive diffusion of polyphenols into the gut wall is a relatively poor mass transfer
mechanism since most polyphenols are likely too hydrophilic to penetrate the gut wall.
Given that the pH of the small intestine varies within 5 to 8, the ionisation state, hence pKa,
of the compound influences passive diffusion, a mechanism also affected by molecular
weight and the number of hydrogen-bonding acceptor/donor [66,280–282]. Overall, it can
be suggested that only PC displaying low molecular weights and an adequate hydrophobic
and neutral charge are likely to be transported by passive diffusion [280,282]. Otherwise,
the membrane carriers that could be involved in polyphenol absorption have not been
identified. So far, the sole active transport mechanism that has been described is a Na-
dependent saturable transport mechanism involved in cinnamic and ferulic acid absorption
in the rat jejunum [66,283].

Since flavonoids occur predominantly as glycosides (except flavonols) of hydrophilic
nature, are not well absorbed in the intestine, their bioavailability is fairly low. This low
bioavailability, coupled with instability, oxidative degradation, and metabolic transfor-
mation, lower their bioactivity and limits their use as drugs or nutraceuticals. Recently,
considerable attention is being given to improve flavonoids’ bioavailability through
microencapsulation, nano delivery systems, and microemulsions, among others. The
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absorption of flavonoids’ glycosides in the stomach is very poor; although possible for
some flavonoids, such as quercetin and daidzein, most flavonoids resist acid hydrolyses
in the stomach. Polyphenols linked to a rhamnose moiety must reach the colon and be
hydrolysed by rhamnosidases of the microflora before absorption [66,267].

Prebiotics refer to a substrate that is selectively utilised by host microorganisms to
confer a health benefit. Thus, it refers to compounds that are non-digested by human
digestive enzymes that regulate positively the composition and activity of intestinal
microbiota. The new definition of prebiotics led to an increase in the list of compounds
considered prebiotics, not only the dietary fibres that were traditionally considered as
prebiotics, but also many molecules, including polyphenols. Some key issues on the
bioavailability of PC are summarised in Table 6.

Table 6. Some key issues on the bioavailability of PC.

Bioavailability of PC

Bioavailability is deeply influenced by the vast diversity of chemical structures of PC.
High PC titre in food does not necessarily correlate with high bioavailability.
Biotransformations promoted by the gut microbiota impact on bioavailability.

Bioavailability conditions the efficacy for the intended goal of a given PC.
Bioavailability is influenced by absorption and metabolism.

6. Conclusions

PC abridge a wide diversity of compounds that are vastly distributed in fruits cere-
als and beverages. They play important roles in human health, mainly the consumption
of food rich in PC is related with many human health benefits, mostly due to the antiox-
idant activity. Several analytical methods have been developed for the identification,
quantification, and evaluation of the bioactivity of PC. This has contributed to expanding
the range of PC and derived metabolites currently known. It has been established that
although PC are available in many diets, the health benefits depend not only on the
amount and nature of PC ingested but also on its bioavailability and bioaccessibility.

The limited bioavailability of PC present in food from fruit and vegetable matrices
is determined by their low bioaccessibility in the small intestine due to the physical and
chemical interactions of the PCs with the indigestible polysaccharides of cell walls. The
gut microbiota plays an important role in the bioavailability and bioaccessibility of PC.

Despite dedicated research efforts over the past 20 years on the impact of PC on
human health, further work is required to further ascertain the usefulness of PC in the
diet towards improvements in human health. The diversity of molecular structures
hampers the study of PC, in particular full insight on structure-activity relationships in
most pathologies; additionally, there is a scarcity of data on bioavailability and bioacces-
sibility. Both of these matters have been acknowledged, and further dedicated efforts are
foreseen in the near future to fill this gap. Additionally, since some inconsistencies have
been observed in epidemiological studies aimed to the impact of dietary polyphenols
on health, standard guidelines for the statistical approach to address this matter are to
be implemented. Improved methods to access oxidative damage in vivo are needed,
as are those to collect data on adsorption and excretion and thus gain a clearer picture
on the fate of PC and their metabolites resulting from interaction with gut microbiota.
Interactions between PC and receptor molecules, namely within the treatment of dis-
eases, need further highlighting. Recent findings on the microbiota-gut-brain-axis and
the impact of PC on the microbiota suggest that PC can be the basis for therapeutics
against brain degeneration. Methodologies to improve bioavailability/bioaccessibility,
stability, and protection of PC against oxidative damage and unwanted metabolization
as to allow formulations that enable the use of PC as drugs and/or nutraceuticals is
needed. As options to overcome poor bioavailability, should this be further confirmed
as a limiting step for therapeutic action, improved formulations, e.g., nanoparticle-based
using smart hydrogels, and rational design of analogues to produce drugs from natural
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PC are also likely approaches to be undertaken, albeit coupled with monitoring to rule
out the potential toxicity of the developed formulations/molecules.
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59. Wiciński, M.; Gębalski, J.; Mazurek, E.; Podhorecka, M.; Śniegocki, M.; Szychta, P.; Sawicka, E.; Malinowski, B. The Influence of
Polyphenol Compounds on Human Gastrointestinal Tract Microbiota. Nutrients 2020, 12, 350. [CrossRef]

60. Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741.
[CrossRef]

61. Fini, E.H.; Ayat, S.; Pahlavan, F. Phenolic Compounds in the Built Environment. In Phenolic Compounds-Chemistry, Synthesis,
Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen: London, UK, 2022.

62. Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333.
[CrossRef] [PubMed]
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