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Abstract: Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two
or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects,
and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering
their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat
different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic
syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating
aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are
substantially relieved by dietary PPs. The present study explores the bioprotective properties and
associated underlying mechanisms of PPs. A detailed understanding of these natural compounds
will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans,
ultimately affirming their health benefits.

Keywords: phenolic compounds; natural sources; metabolic syndrome; bioprotective property;
therapeutic effect

1. Introduction

Metabolic diseases such as hyperglycemia, obesity, dyslipidemia, and hypertension are
now considered global problems of the world population [1,2]. Their occurrence increases
yearly, and nowadays, they are considered a significant danger for human beings as the
most prevalent disorders worldwide [3].

Metabolic syndrome (MtS) is a complex coexisting diagnosis including abdominal obe-
sity, increased blood pressure, elevated fasting glucose, reduced high-density lipoprotein-
cholesterol levels, and elevated triglyceride levels [4]. MtS increases the risk factors of
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cardiovascular diseases (CVD), which puts huge pressure on the healthcare economy of the
whole society [4]. Therefore, it is an urgent challenge for researchers to determine active
pharmaceutical ingredients to improve MtS and its complications.

Mts have a complex etiology, including several pathophysiological mechanisms and
factors that may cause the development of MtS, such as genetics, lifestyle, diet, and gut
microbiome state [5]. The molecular changes result from the interaction between environ-
mental and genetic factors, and oxidative stress and systemic inflammation significantly
contribute to MtS pathogenesis [1]. Thus, an effective method of combating MtS comprises
not only appropriate diet and physical activity but also consuming drugs and/or food
supplementation. Therefore, discovering new natural substances that could reduce the
symptoms of MtS through antioxidant and anti-inflammatory effects and the ability to
normalize lipid and carbohydrate metabolism are very important issues for researchers
and clinicians [1].

Oxidative stress and inflammation are common pathophysiology keys involved in the
development and progression of metabolic disorders [6]. Thus, finding appropriate natu-
ral compounds to mitigate metabolic disorder’s symptoms and prevent related diseases’
progression is necessary.

In recent years, polyphenols (PPs) have been considered the key plant-based bioactive
compounds against various diseases, including metabolic diseases, cardiovascular and
neurodegenerative disorders, and some varieties of cancer [7,8]. PPs are getting much
attention in the medical industry to treat different metabolic diseases due to their intrinsic
antioxidant and anti-inflammatory properties [9,10].

About eight thousand polyphenolic compounds have been recognized nowadays [11,12].
PPs are naturally occurring complexes in various plants, including herbs, tea, fruits, and
vegetables. In plants, these compounds play a key role in pigmentation, growth, ultraviolet
rays protection, and against pathogens. PPs are also an essential part of various chemical
industries for producing commodity chemicals, food additives, cosmetics, and paints [13].
Generally, PPs are known as plant secondary metabolites and can be categorized by the
presence of several phenolic groups [14]. These compounds are classified based on the
chemical complexity of their respective phenolic structure (flavonoids and non-flavonoids,
Figure 1) [15].
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It is interesting to note that polyphenolic compounds share a similar chemical structure.
The structure of naturally occurring PPs varies from simple molecules (phenolic acid) to
complex molecules (tannins) depending on the length of the chain attached [16]. PPs occur
primarily in conjugated form, with one or more sugar residues attached to hydroxyl groups,
although direct linkages to an aromatic carbon atom can be found [17,18]. PPs can also be
found in associations with other compounds, such as amines, carboxylic and organic acids,
and lipids; also common are their linkages with other phenols [18].

As PPs are found abundantly in the plant kingdom, their consumption in the human
diet is not much surprising. These compounds are found in almost every balanced diet,
especially where fruits and vegetables are mostly consumed [19]. However, quantitative
information on PPs for various foods is unavailable because of their diverse nature and other
factors responsible for altering their concentration in the diet. PPs possess similar properties,
but their complex linkage with other compounds makes their separation challenging.
Ample research has been done on different samples from various sources (foods, beverages,
and plants). Thus, a deep understanding of these naturally occurring compounds and their
associated biosynthesis will open new avenues to design special dietary plans enriched
with PPs that ultimately strengthen respective health benefits. Considering the antioxidant
and anti-inflammatory features of PPs, these compounds can be employed to treat various
diseases associated with metabolic disorders [1].

Treatments of MtS may involve the design of natural drugs and special food products
enriched with high-quality PPs or by the controlled drug and/or supplement delivery
system, which can lead to the health improvement of the human population. Besides
this, Siroma et al. supposed that scientific studies regarding ingestion of PPs and other
natural nutrients could improve global food education in different countries to help schools,
families, and businesses to reduce obesity, hyperglycemia, and other metabolic diseases [20].

This review aims to provide deep insight into the effect of different PPs on preventing
and healing major metabolic disorders through reviewing the results of different preclinical
and clinical studies. It should be noted that intact delivery of PPs to specific organs and
tissues is challenging, which causes their poor bioavailability and ultimately reduces their
potential benefits. Therefore, this review also describes experimental studies to highlight
the importance of nanotechnology-based delivery systems to enhance target delivery and
bioavailability. Furthermore, this review also highlights the importance of the chemical
structure of PPs in their biological activities. To the best of our knowledge, this is the first
review article that summarized the beneficial effects of polyphenols in metabolic disorders
along with better ways of their effective delivery and interconnectedness of chemical
property information.

2. Polyphenols in the Prevention and Treatment of Different Metabolic Disorders
2.1. Oxidative Stress and Inflammation

Oxidative stress is one of the health conditions which occurs due to an imbalance of
free radicals (oxygen or nitrogen species) and the defensive ability of the body to respond to
reactive species to heal the respective disorder [21]. The production of significant reactive
oxygen (ROS) and nitrogen species is one of the consequences of the normal functioning of
alive intracellular structures [22]. The structural damage of various proteins, cell tissues,
permeable membranes, and nucleic acids is due to exposure to highly reactive oxygen-
based species such as hydrogen peroxide and superoxide anions [23]. To counter this
oxidative stress, body cells continuously express several species, such as enzymes, to
detoxify the resulting reactive species and ultimately heal the damage in the respective
region. Species released by the body cells to encounter oxidative stress may come from
enzymes, bacterial cells, mammalian cells, and PPs. In oxidative stress, the mechanism of
cell damage occurs due to the different chemical actions of oxygen-based free radicals [24].
These reactive species may come from various sources by the abnormal metabolic system
(aerobic metabolism) that may generate undesirable reactive species and cause cell death.
It is found that the intake of antibiotics is also a source of generating these species [25,26].
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2.1.1. Pre-Clinical Studies

The damaging effects of free radicals are counteracted by the organism’s antioxidant
defenses leading to redox homeostasis [27]. Oxidative stress occurs if the antioxidant
defense cannot counteract a high production of free radicals. As a result of the depletion of
intracellular antioxidants, consuming exogenous sources of molecules with antioxidant
properties such as PPs, coenzyme Q, vitamin C, or vitamin E is needed.

The antioxidant effects of PPs are mainly due to their redox potential, which allows
them to act as hydrogen donors or chelating agents of metal ions [27]. The use of PPs as a
redox-active species is well established [28]. Researchers have reported that PPs possess
antioxidative properties and can easily suppress oxidative stress, possibly resulting in
further inflammation. Generally, PPs scavenge most free radicals directly or suppress free
radical production by inhibiting NADPH oxidases and xanthine oxidase [29]. Many studies
showed that phytochemical substances enriched with PPs are excellent antioxidants to
fight against free radicals such as ROS. Thus, it is suggested that food rich (1 g/day) in
phenolic-based compounds is more favorable for disease prevention in human life [30].
Many researchers have reported using cocoa-based PPs and their associated flavonoids to
modulate oxidative stress [31]. However, the information on daily intake for these PPs is
not exactly available. Thus careful mechanistic studies are required to quantify these PPs in
the human diet [6]. Lignin is another source of rich PPs from sesame seed; oils have been
reported for antioxidative properties. However, the reason behind their actual antioxidant
properties is still unclear [32].

Other foods, such as black rice, which contains the C-glycosyl flavonoid, and black
tea, with its phenolic pigments, are excellent for antioxidative properties [33]. From these
studies, we can conclude that PPs from various dietary sources can suppress the evolution
of numerous diseases in the body and provide a healthy metabolic system due to their
featured antioxidative properties.

The antioxidant power of phenolic compounds is substantially proven [34]. Generally,
the beneficial role of PPs is attributed to their antioxidant effect able to inactivate reactive
oxidant species [35]. Overproduction of ROS can be associated with the nuclear factor-
κB-mediated inflammatory process in obesity [36]. Thus, such famous dietary sources of
PPs as green tea, chocolate, coffee, red wine, and various fruits and vegetables are highly
recommended as natural antioxidants.

Inflammation is a health condition in which blood cells provide a defensive response to
protect the body from foreign substances [37]. In simple terms, it is an automatic response
of our body’s defense system to an external substance with irritating capacities. The causes
of inflammation may include the attack of pathogens such as viruses, injuries from external
sources, such as scrapes, and irritation from chemicals or radiation on the skin [38,39].

Inflammation can be categorized from simple to severe and may even cause serious
health conditions to the normal human body. In this regard, our body also prepares
particular responses according to the reaction required by the respective region. In severe
inflammation, the body generally reacts in the form of a fever, indicating that the body
is preparing an active response to the foreign pathogen. The body’s response may also
include changes in blood composition. It is also found that inflammation is not always
favorable for the body. Sometimes, it leads to severe health conditions (bowel disease,
rheumatoid arthritis) during the fight against pathogens [40].

As is known, inflammation is key in developing chronic diseases, including diabetes,
cancer, arthritis, and cardiovascular and neurodegenerative diseases [41]. In this regard,
the biological activities of PPs are found to be very beneficial for treating various kinds
of inflammation either by dietary plans or by using external drug delivery enriched with
PPs [42]. Zamani-Garmsiri et al. described the significant role of PPs, such as caffeic, chloro-
genic, and ellagic acids, genistein, and silymarin, in decreasing low-grade chronic systemic
inflammation and related pathways [43]. Berry-derived PPs managed the inflammation via
different mechanisms, particularly inhibiting the transcriptional factor nuclear factor-κB
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(NF-κB) [44]. Since honey contains a distinctive amount of phenolic compounds, there is
an intense interest in their effects on inflammation-mediated diseases [41,45].

Various studies have reported the contribution of PPs in immunity response (modula-
tion in cytokines and gene expression) against inflammation [46]. For example, resveratrol
originated from grapes can modulate cytokines and suppress inflammatory disease. In
another study, researchers reported that curcumin from turmeric and mustard plants is a
source of a non-flavonoid polyphenol that can effectively suppress inflammatory mediators
such as cyclooxygenase (COX) [47–49]. In addition to the PPs mentioned above, gingerol,
caffeic acid, and quercetin can suppress severe inflammation [42,50,51]. Rodríguez-Ramiro
et al. reported that cocoa enriched with PPs and its bioactive properties could reduce severe
inflammation effects such as intestinal inflammation and avoid associated cancer [52]. In
growing medical research on inflammation, it is suggested that PPs play a potent role in
treating inflammation problems. Thus, careful investigation of these substances, either
from natural resources or biosynthetic routes, will provide new ways for inflammation
research originating from various diseases and ultimately improve public health.

Generally, PPs can modulate inflammation and immunity through various pathways
involving NOD-like receptors, Toll-like receptors, NF-κB, inducible enzymes, proinflam-
matory chemokines, cytokines, and adhesion molecules [53]. Several in vitro and in vivo
studies have reported the health-promoting effects of flavanol-rich foods (mainly green
tea, cocoa, or grape seeds) and isolated flavanols (epigallocatechin gallate, epicatechin,
procyanidins) play an important role in the protection against obesity, diabetes, and MtS.
They can modulate the immune system, inflammatory status, and gut microbiota due to the
presence of 4-5 hydroxyl groups in their molecules, which provide them with prominent
antioxidant potential [53].

2.1.2. Clinical Studies

A recent meta-analysis of random clinical trials demonstrated the effective role of PPs
on oxidative stress and inflammation. The findings of this meta-analysis described the
potential role of PPs in increasing tacrolimus (TAC) levels [54]

2.2. Insulin Resistance/Hyperglycemia

Insulin resistance is the most common MtS in which body cells (fat, liver, and respective
muscles) cannot provide an effective response to insulin and cannot consume glucose from
the blood to produce energy [53]. Insulin resistance leads to the destruction of insulin-
producing pancreatic B-cells.

This MtS can further complicate the health problems such as a rise in blood pressure,
obesity, unbalanced cholesterol levels, and diabetes problems [55]. This type of syndrome
can easily be identified by regular glucose checkups and other corresponding analyses to
check the glucose tolerance level in the human body. The origin of this MtS may come
from various sources such as the family history of the disease, dietary habits, smoking, age,
and others [56]. In addition to a high blood sugar level, diabetes mellitus often has mani-
festations of metabolic disorders such as obesity, dyslipidemia, and hypertension, which
increase the risk of cardiovascular and cerebrovascular diseases and increase mortality [57].

2.2.1. Pre-Clinical Studies

Due to the anti-inflammatory and other favorable medical features of PPs, these
compounds have been widely studied for metabolic disorders, such as insulin resistance
and associated diabetes problems [58,59]. In this concern, several reports have been done to
find favorable use of PPs extracted from various resources to treat insulin resistance [60,61].
Anhe et al. reported that polyphenolic-rich extracts of cranberry could successfully improve
insulin resistance and other health problems, including obesity and inflammation in the
animal and human body [62]. In various in vivo and in vitro studies on different animals,
it is observed that PPs present in green tea can modulate sensitivity towards insulin due
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to the presence of epigallocatechin, which is known as one of the best health-improving
markers [63].

2.2.2. Clinical Studies

Perez et al. investigated the effect of Aloe Vera extract enriched with PPs on insulin
resistance [64]. The analysis was based on body weight, dietary intake, and plasma
composition. Based on the achieved results, they suggested that Aloe Vera extract can
be an effective strategy to control insulin resistance. However, quantitative analysis of
this extract is still needed to introduce this strategy at the commercial medical level. In
a study by Hokayem et al., a mixture of PPs from grapes can effectively help to avoid
fructose-based oxidative stress and further risk of insulin resistance [65]. In 2008, Anderson
confirmed chromium and PPs extracted from cinnamon’s effective role in improving insulin
sensitivity. According to his clinical trials, the subjects with the aqueous intake of cinnamon
showed excellent improvement in metabolic disorders such as glucose tolerance and insulin
resistance [66].

Based on the literature, we can predict that the ongoing interest in PPs from different
natural resources could further induce these compounds as stepping pillars of special diets
for various diseases. Therefore, consuming PP-containing food is considered an important
supplement in antidiabetic therapy [1]. Shahwan et al. found that PPs such as quercetin,
resveratrol, and epigallocatechin-3-gallate enhanced glucose uptake in the adipocytes and
muscles in type 2 diabetes by activating the AMP-activated protein kinase pathway [67].
Resveratrol, a natural polyphenol detected in more than 70 plants in large doses (≥1000 mg),
significantly reduced blood glucose levels [57]. Generally, phenolic compounds can reduce
oxidative stress and protein glycation, inhibit the activity of dipeptidyl peptidase and other
enzymes related to carbohydrate metabolism, improve pancreatic β-cell functions and
increase insulin secretion [68].

2.3. Obesity

Obesity, or a body having a higher weight than normal (as per BMI index), is one of the
major problems in the new generation and society [69]. Over 1/3 of the world’s population
is obese [1]. Obesity is closely linked with several health disorders, such as adipocyte
hypertrophy, insulin resistance, diabetes mellitus, systematic inflammation, non-alcoholic
fatty liver disorder, coronary heart diseases, cardiovascular diseases, and cancer [20,70,71].

2.3.1. Pre-Clinical Studies

The potential use of PPs by in vivo studies suggested favorable results for obesity if
these compounds are introduced in cell cultures. This problem is also mostly associated
with MtS and causes further health problems such as diabetes and other intestinal problems.
Therefore, it is necessary to maintain the weight measurement according to the respective
BMI for a normal body. For weight loss, there is a need to burn extra calories stored in the
form of body fat [72]. This can be done either by natural fat-burning compounds or by
taking an external supplement that can effectively modulate fat burning. In natural fat-
reducing compounds, PPs are known as the best fat burners that induce weight loss by only
carefully adding these compounds to the respective diet [73]. As already mentioned, these
substances can naturally be found in fruits such as apples, pears, and other green leaves.

2.3.2. Clinical Studies

As oxidative stress and inflammation play a key role in the etiology of obesity, the
healing effect of phenolic compounds due to their antioxidant and anti-inflammatory
properties was proven in experimental studies [70]. PPs are associated with every type
of MtS, from simple fat burn to a healthy heart. Dulloo et al. reported that treating
epigallocatechin gallate (90 mg) with a small amount of caffeine could increase energy
consumption, ultimately resulting in weight loss due to a higher rate of fat oxidation [74].
Guo et al. reported that the intake of PPs can effectively reverse obesity and other metabolic
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disorders [75]. They suggested that the long-term intake of a PP-enriched dietary plan
is one of the best strategies to lose weight, ultimately offering effective protection from
diseases such as heart attack.

As was noticed in the middle of the 20th century, the Mediterranean diet can pre-
vent some chronic diseases related to consuming food, such as coronary heart disease,
obesity, etc. [76]. Polyphenol-rich diets, including the Mediterranean ones, which foster
the usage of a variety of polyphenol-containing products, could be an effective dietary
means of improving the health of patients with MtS [36,77]. Blueberries are PP-rich fruits
(flavonoids and organic and phenolic acids), even though the Vaccinium plant has been the
subject of continuous research to provide a modulated function for obesity. Other PPs such
as curcumin and resveratrol have also been reported for anti-obesity to avoid associated
metabolic disorders [78]. Considering the anti-obesity features of PPs, introducing these
compounds in the dietary plan will provide new medical research to deal with various
diseases. As is known, seaweed has been consumed for centuries as a source of valuable
bioactive compounds [79]. Their PPs can transform white adipose tissue into “brown” and
enhance energy consumption [80].

However, more clinical trials are required to confirm the capability of PPs in the weight
loss process and quantify their intake of dietary meals [81]. It is also important to consider
that long-term and high dosages of PPs can adversely affect human health. Thus far, there
is no exact clue for the safe consumption of these compounds to treat obesity and other
metabolic disorders [82]. As obesity is a low-grade chronic inflammation causing insulin
resistance, PPs can reduce the risk of type 2 diabetes by reducing obesity [83].

2.4. Liver Intoxication

The liver is one of the vital internal organs of the body responsible for regulating
more than 500 functions occurring in the human body. The liver’s most important function
is to detoxify and neutralize the toxins coming into the body to avoid further health
complications [84]. When it comes to liver cleansing, there are several home or market-
wide methods available. However, many of these methods are not even tested on a clinical
basis or are not regularized by the national drug authorities [85]. Liver detoxification is
also associated with the metabolic system.

2.4.1. Pre-Clinical Studies

Many studies have been reported to analyze the effect of dietary intake on the detoxifi-
cation of the metabolic and liver system. Various reports suggest that dietary nutrients can
effectively modulate the metabolic system to detoxify toxins in living cells [86,87]. Different
toxins in the human body can lead to various chronic diseases such as diabetes, obesity,
and heart problems. Therefore, the dietary intake of the corresponding host may have
a key role in preventing toxins [88,89]. A wide range of flavonoids showed promising
therapeutic effects in liver damage caused by various toxins. Baicalin, which is found in
the herbal drug Scutellariae radix, a well-known flavonoid, can effectively alleviate liver
damage, mainly by suppressing the signaling pathway and its downstream effectors of
inflammatory responses [90].

The PP-enriched fraction from the leaves of Microcos paniculata exhibited a signif-
icant hepatoprotective effect. It was found that the fraction demonstrated strong free
radical scavenging activities and a hepatoprotective impact due to the dual regulation of
ROS/mitogen-activated protein kinase (MAPKs)/apoptosis axis and Nrf2-mediated antiox-
idant response [91]. Curcumin from the Curcuma longa rhizome can inhibit inflammation
and apoptosis signaling to treat endotoxemia-induced liver failure.

The compound improved levels of antioxidant enzymes and inhibited the activation
of the MAPK/NH2-terminal kinase c-Jun cascade in rat liver. In addition, curcumin re-
duces serum cytokines such as IL-6, IL-1 β, and tumor necrosis factor-α. It improves liver
apoptosis by suppressing the phosphatidylinositol-3-kinase/protein kinase B signaling
pathway (PI3K/AKT) and inhibition of expression of the cyclic AMP-element binding
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protein (CREB)/caspase [92]. Another study showed that a polyphenolic extract of Hi-
biscus sabdariffa L. could improve liver steatosis and have a hepatoprotective effect by
reducing mitochondrial dysfunction [93]. Silymarin, a mixture of flavonolignans obtained
from Silybum marianum Gaertneri, has been demonstrated to reduce liver damage and
inflammation caused by bisphenol A [94,95]. Resveratrol, a naturally occurring polyphenol
with multiple pharmacological properties, including anticancer, antioxidant, antidiabetic,
antinociceptive, and antiasthmatic activities, has significant hepatoprotective effects on liver
damage. Resveratrol’s mechanisms are associated with inflammation inhibition, enhancing
the apoptosis of necrotic hepatocytes, and suppressing oxidative stress [96]. The geraniin
and amariin, two ellagitannins from Phyllanthus amarus, have demonstrated remarkable
properties to protect the mouse liver from alcoholic cytotoxicity by reducing antioxidant
enzymes, inhibiting lipid and protein oxidation, stopping the formation of 8-hydroxy-
2-deoxyguanosine and modulating Bcl-2-associated X/Bcl2 against apoptosis [97]. The
hepatoprotective effect of polyphenolic extract from Trigonella foenum graecum (Fabaceae)
seeds against experimentally induced ethanol-induced hepatic injury and apoptosis was
comparable with those of silymarin as a known hepatoprotective agent [98]. Lim et al.
established the antioxidant properties of Amomum cardamomum L. (Zingiberaceae) ethanol
extracts in doses of 100 and 200 mg/kg in vivo against CCl4-induced acute liver dam-
age using HepG2 hepatocarcinoma cells [99]. Serum levels of key enzymes (glutamic
oxaloacetic transaminase, glutamic pyruvic transaminase, and alkaline phosphatase) were
significantly increased after using the ethyl acetate fraction of the extract [99]. Chlorogenic
acid was a promising therapeutic agent to prevent drug-induced acute hepatotoxicity due
to acetaminophen overdose [100]. Hussain et al. revealed the positive effects of herbal
complexes enriched with hydroxycinnamic acids from Cinnamomum cassia and cinnamic
acid on non-alcoholic liver diseases in the induced obesity mouse model [101].

2.4.2. Clinical Studies

There is an urgent need for special clinical trials based on the selection of diet plans
to achieve maximum benefits during the liver detox process. In this concern, PPs have
proved their capability to detoxify the liver and corresponding metabolic system effectively.
The abundance of PPs in nature makes their role more prominent in medical research and
has attracted much attention from health care units [102]. In polyphenolic compounds,
flavonoids are the most abundant ones. They are usually found in herbs, tea, soy, and
vegetables and possess several favorable health features, such as detoxifying various
enzymatic activities in the metabolic system [103]. Detoxifying and oxidative stress pre-
ventive abilities of flavonoids might be explained by their impact on mitochondria-ER
stress-proteasome, as well as autophagy and apoptosis pathways [104]. However, the
chemopreventive features of PPs largely depend on their intake and bioavailability among
selected subjects. In this regard, many naturally occurring PPs such as anthocyanins (from
grapes), flavonols (from dietary plants) [105,106], flavanones (from oranges) [107], and
isoflavones (from soybean) [108] have been studied to detoxify various toxins present in
the human body effectively. PPs from other herbal sources such as red wine, green tea [109],
and black rice [110] is also a good source of detoxification for the liver as these compounds
perform antioxidant properties effectively in the living system. It has been shown that
the consumption of orange juice, containing a large number of flavonoids, lowers the
level of total cholesterol and increases liver cells’ antioxidant capacity compared with the
control group [111]. PPs have been shown to have various pharmacological effects on
oxidative stress, insulin resistance, lipid metabolism, and inflammation, which are the most
important pathological processes in the etiology of liver disease [112,113].

In studies on human hepatoblastoma cancer cells, Buffalo rat liver cells (BRL-3A,)
and human liver cancer cells (HL-7702), it was found that isoorientin (also known as
homoorientin) has a marked hepatoprotective effect, which can be mediated by complexes
of the respiratory chain and the activity of detoxifying phase II enzymes [114].
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The above studies with excellent healthy features of PPs suggest that a careful and
quantitative intake of these compounds must be accomplished in the human diet to detoxify
the metabolic system naturally.

2.5. Aging

The idea of extension in life and a beautiful appearance is necessary for every human
body to reverse the effects of aging. This effect can be achieved in several ways, either by
using different medicines and supplements or by the dramatic physical changes in the body.
Thus far, no such dramatic changes have been clinically observed that can prove effective
for the subject. In this concern, various remedies are available over the counter, such as
home remedies or allopathic medicines. In the medical industry, antiaging products and
their corresponding cosmetic sector have promising contributions within the industry [115].
The consumption of these products is in demand worldwide. Consumers continually desire
not only the long-term effects of these agents but also require a response after application to
the target. Many cosmetic industries have introduced soft focus and lifting effect concepts
considering consumer demand.

In the first one, results are observed in long-term applications, while in the lifting
effect, an immediate effect of the proposed cosmetics is offered [116]. In various cosmetics,
many naturally occurring compounds are used as skin mediators and healing agents. In
these naturally occurring compounds, phenolic-based compounds have a very promising
demand as antiaging and for other skin diseases such as skin cancer [117,118]. The antiox-
idative features of phenolic compounds enable extensive usage of these substances in the
cosmetic industry as antiaging agents. Many phenolic compounds have been extracted
from various sources, such as potato peels, apples, papaya, rosemary, Crataegus spp., and
Ginkgo biloba, and their applications have been investigated for antiaging purposes [119].

Aging is associated with an increased risk of developing diabetes mellitus, neurode-
generation, cardiovascular diseases, osteoarthritis, or cancer [120]. Natural antioxidants
might prevent aging-related pathologies via different signaling systems involving ROS
and nitrogen species scavenging, with the Nrf2/Keap1-ARE system and the pathway
mTOR/Foxo/SIRT1 [121]. However, to enhance the antiaging effect of PPs, various inter-
mediates (ethanol and weak acids) are used to achieve maximum benefits [122]. In the
cosmetic industry, the most used PPs are anthocyanins, phenolic acids, and flavonoids
because of their excellent antioxidant activity. Anthocyanins are mostly found in colored
vegetables and fruits, while flavonoids and phenolic acids are mostly found in various seed
sources. Although the use of these compounds is much broader, their extraction and separa-
tion are key challenges in commercializing these compounds in medical research [123,124].

2.5.1. Pre-Clinical

Recently, Papaevgeniou and Chondrogianni demonstrated the medical properties of
PPs on Caenorhabditis elegans (a multicellular model organism) that can ultimately provide
better health by favoring the metabolism process [125]. In a study, the use of PPs from
Rosa rugosa tea for antiaging properties was confirmed by Zhang et al. [126]. They suggested
that the presence of 23 different phenolic compounds in Rosa rugosa flower showed excellent
antioxidant properties to avoid DNA damage and possess combat action towards aging.
From the inherent anti-inflammatory and antioxidative properties of PPs, we can conclude
that PPs play a vital role in the cosmetic industry. Further investigation into their extraction
and separation can provide a promising future for these compounds.

2.5.2. Clinical Studies

For years, the beneficial antioxidant and anti-aging effects of dietary PPs including
curcumin, resveratrol, epigallocatechin-3-gallate, oleuropein, punicalagin, myricetin as well
as ferulic and rosmarinic acids have been reported [27]. Yamagata and Yamori concluded
that isoflavones from soybean as phytoestrogens exert beneficial effects on MtS, increasing
the risk of death due to the progression of arteriosclerosis [127]. Natural PPs such as
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resveratrol, quercetin, epigallocatechin gallate, and apigenin have advantages in healthy
aging compared to synthetic drugs for inducing autophagy due to their intrinsic safety and
bio-compatibility [120]. Generally, many flavonoids and other PPs can promote health and
longevity [128].

2.6. Carcinogenesis

Carcinogenesis or oncogenesis is the formation of various cancer types involving a
multistep and complex process of normal cell division to malignant ones (cancer cells).
Different biological alterations generally identify these processes at genetic, internal cellular,
and epigenetic levels. These further cause cell division in dead cells and can occur in almost
all body tissues under several circumstances [129]. The general theory of carcinogenesis
suggests that DNA mutation is a major cause of developing cancer cells. However, only a
few mutations can cause cancer cells while others cannot [130]. Carcinogenesis occurs due
to human exposure to carcinogens, which can be chemical, biological, radiative, or viral
substances. During the process of carcinogenesis, it is observed that the imbalance response
of cytokines and their growth in the normal human body also plays a key role in the
formation of cancer cells and their further progress by altering the cell cycle proteins [131].
The anticancer effects of natural phytochemicals, such as PPs, relevant to the modulation of
cytokine signaling pathways in various cancer cells are evident from many reports.

2.6.1. Pre-Clinical Studies

Various types of PPs have been reported to suppress the carcinogenic process occurring
in the human body [132]. Green tea is a popular useful beverage consumed worldwide,
especially in Asian countries (Pakistan, India, China, Japan, and others); it is a source
of rich phenolic compounds [133]. The value of green tea is that it provides catechins
to the body, which are compounds that contain phenolic rings and a large number of
OH groups, which gives them high antioxidant activity. Epigallocatechin-3-gallate is of
great importance in providing the medicinal properties of green tea. Epigallocatechin
3-gallate, a polyphenolic component from green tea infusion, possesses anti-inflammatory
and anti-cancer properties [134]. In different carcinogenesis models—chemical, genetic,
UV, and irradiation—a significant anti-carcinogenic effect of green tea extract has been
established [135,136].

Yang et al. reported the effective capability of tea-based PPs, such as tea catechins, to
suppress carcinogenesis and inflammation processes in the human body [137]. However,
the mechanism by which polyphenol disrupts undesirable biological alterations is still
unclear. The use of tea catechins to treat carcinogenesis in animals and humans has been
studied and employed successfully. Many researchers have reported the mechanism of
red wine phenols for carcinogenesis suppression, such as tumors in mice and colon cancer
in rats [138]. The fruits of feijoa (Feijoa sellowiana Berg.) also contain a large number of
bioactive compounds, including PPs, which have anti-tumor activity [139]. Glycycoumarin,
isolated from licorice, exhibits antitumor activity by directly affecting the protein kinase
(TOPK) of the oncogenic kinase T-LAK derived from cells [140]. In experiments in vitro and
in vivo, it was found that curcumin modulates the activity of many signaling pathways,
affects the cell cycle, induces apoptosis, enhances the detoxification of several carcinogens,
and prevents the development of several tumors [141].

Chemopreventive effects of PPs include anthocyanins, epigallocatechin gallate, ellagi-
tannins, punicalagin, quercetin, resveratrol, and theaflavin for the treatment of melanomas
mediated by several signaling pathways against skin carcinogenesis and metastasis [142].
Matsuno et al. revealed that resveratrol and related compounds could improve genome
stability in mouse embryonic fibroblasts by protecting the cells against the induction of
mutations [143]. It could contribute to the suppression of cancers caused by genomic
instability. The anti-inflammatory effects of the flavonol quercetin on colon carcinogene-
sis were studied after inducing by azoxymethane/dextran sodium sulfate in mice [144].
Quercetin also significantly reduced the number and size of colon tumors. Oral admin-
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istration of rosmarinic acid (100 mg/kg body weight) to experimental hamsters with
7,12-dimethylbenz(a)anthracene-induced oral carcinogenesis completely prevented tumor
formation. The authors suggested that rosmarinic acid suppresses oral carcinogenesis by
improving the status of lipid peroxidation and antioxidants and stimulating the activity
of detoxification enzymes [145]. This natural polyphenol dose-dependently inhibited the
cell growth and propagation of human oral cancer cells [146]. Rosmarinic acid is very
specific for the plants of the Nepetoideae Burnett. Sa subfamily of the Lamiaceae Martinov
family [147,148]. Rao and co-authors considered that an appropriate diet is an effective
approach to preventing cancer and lifestyle-associated diseases; pigmented varieties of
cereals (rice, barley, oats, and sorghum) containing anthocyanins, protocatechualdehyde,
etc., were discussed as important chemopreventive agents [149].

2.6.2. Clinical Studies

Many clinical trials have demonstrated that tea PPs can prevent and treat colorectal
cancer developed through different mechanisms such as the impact of genomic abnormali-
ties, oxidation stress, dysbiosis, and diet. Tea PPs inhibit the growth of colorectal cancer
by modulating the gut microbiota and improving the immune system [150]. Several PPs
extracted from various sources, such as fruits, beans, cocoa, vegetables, and olives, have
been studied for skin cancer [151]. Generally, PPs suppress DNA damage by inhibiting
ROS formation that ultimately terminates cancer cell production, activating survival or
autophagic and pro-apoptosis mechanisms [152]. Recently, it has been suggested that
phytochemicals, including PPs, can provide an effective approach to treating cancer caused
by UV rays [153]. The extract of these phytochemicals can be included in cosmetics to avoid
skin problems and counteract carcinogenesis. Grapes are also one of the best sources that
contain a rich amount of PPs that can effectively take part in combating carcinogenesis [132].
Lower morbidity due to cancer in Japan and China, compared with the European countries
and the USA, might be explained, in particular, by the traditional diet of these countries,
containing high contents of soy products. Soy is rich in isoflavones, which have estrogen-
like activity (phytoestrogens) and render both estrogenic and antiestrogenic effects. The
main isoflavone of soy is genistein, a polyphenol with a large number of hydroxyl groups
which causes its high antioxidant activity. Genistein is a promising natural substance for
preventing hormone-dependent tumors [154,155].

Curcumin, obtained from the roots of the Curcuma longa, also causes significant re-
search interest [156]. Curcumin is used as a part of traditional Indian cousin. The presence
in the molecule of two phenolic rings with hydroxyl groups and a large number of double
bonds can contribute to the powerful antioxidant properties of curcumin.

2.7. Cardiovascular Diseases

The past few years have witnessed an extreme transformation in habits, pushing
modern populations away from a natural diet and toward unhealthy foods and a sedentary
lifestyle. The risk of developing CVDs has increased due to the integration of the modern
lifestyle with a persistent intake of harmful intoxicants, including tobacco and misuse of
drugs [157].

CVDs are a group of several heart-related complications, such as hypertension, heart
failure, hyperlipidemia, acute coronary syndrome, peripheral artery disease, and stroke.
Inflammation, atherosclerosis, immune responses, and any physical damage are the most
common causes linked to the pathogenesis of heart stroke and failure. Furthermore, in-
creased ROS generation results in altered molecular pathways and endothelial dysfunction;
both play a significant role in the etiology of CVDs [158]. Several chemical-based drugs,
such as antiplatelet drugs and cholesterol-lowering agents, are extensively utilized for
CVDs treatment. However, these drugs pose several harmful effects.

Consequently, the use of herbal products is expanding rapidly in the 21st century [159].
Most plant species have remarkable safety records, making them a unique candidate for
treating heart-related diseases [160]. PPs are the most promising plant compounds which
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showed significant cardioprotective properties due to their antioxidant potential. Recently,
several research studies have evaluated their anti-atherosclerotic and immunomodula-
tory properties through pre-clinical and clinical trials. These studies highlight the impor-
tance of polyphenolic compounds as a natural way of reducing the risk of developing
CVDs [161–163].

2.7.1. Pre-Clinical Studies

Kleemann et al. conducted in vitro (on cultured HuH7 hepatoma cells) and in vivo
(2 mice models: humanized inflammation model and humanized atherosclerosis model)
studies to check the anti-inflammatory role of quercetin on CVDs [164]. The results of this
research indicated positive effects on inflammatory risk factors such as human C-reactive
(CRP) and fibrinogen proteins, mitigating atherosclerosis and, ultimately, CVDs. Luo et al.
recently demonstrated that by lowering the levels of p47phox and NADPH-related free
radical formation, quercetin greatly reduced endothelial dysfunction and atherosclerosis,
which is a key role for polyphenols in heart diseases [165]. Another study showed that
pretreatment of the induced cardiomyocyte damage model reduces oxidative stress and
improves cell viability and cardiomyocyte damage [166].

Naringin, another important polyphenol, also showed significant potential cardiopro-
tective effects. According to an in vivo study, naringin treatment in mice decreased mito-
chondrial tricarboxylic acid enzyme activity at different doses, i.e., 10, 20, and 40 mg [167].
Naringin’s cardioprotective role is also linked to its potent ability to block the ROS-
activated MAPK signaling pathway linked to hyperglycemia [168–170]. In the pulmonary
thromboembolism-induced pulmonary hypertension model, resveratrol (2 doses: 10 mg/kg)
down-regulated the monocyte chemoattractant protein-1 (MCP-1) and P-p38MAPK and
thus substantially decreased baseline arterial blood pressure [171]. In most preclinical
investigations, resveratrol improved diastolic pressure, cardiovascular remodeling, cardiac
function, and systemic blood circulation. It prevented heart fibrosis in mice and rats with
stress-overburden-induced heart failure models [172].

The anti-atherosclerosis effects of curcumin were studied in the ApoE−/−/LDLR−/−

mice model by administration of 0.3 mg per day. The results of this study revealed that
curcumin prevented the development of atherosclerosis even if it had no exceptional thera-
peutic efficacy on mice’s body mass and serum lipids [173]. Both in vitro and in vivo studies
demonstrated the therapeutic action of salvianolic acid for CVDs [174–176]. Compared
to control, catechin-rich water (50 g per day) was given to 40 ApoE defective mice for six
weeks, resulting in a 39% decrease in atherosclerosis. LDL levels dropped by 31%, and
oxidation susceptibility decreased [177]. Administration of 10 and 15 mg/kg of caffeic
acid significantly boosted nitric oxide absorption, improved catalase activity, decreased
glutathione, and reduced malondialdehyde concentration in rats [178].

2.7.2. Clinical Studies

Several clinical studies have also been conducted to evaluate the effective role of PPs
on CVDs. A pilot study conducted by Mankowski et al. examined the activity of resveratrol
at higher doses on cardiovascular risk biomarkers in obese geriatrics subjects. Results of a
pilot study involving obese geriatrics patients revealed that a higher dose of resveratrol
(300 mg), when compared to placebo, substantially increased both total plasminogen
activator inhibitor (tPAI) and circulating vascular cell adhesion molecule-1 (sVCAM-1).
Higher doses of resveratrol were also associated with an increase in other biomarkers,
including oxidized low-density lipoprotein (oxLDL), soluble ICAM-1, and soluble E-selectin
(sE-selectin) [179]. In a cohort trial with 5115 participants over 20 years, Reis et al. addressed
the remarkable effectiveness of green tea for coronary heart disease [180]. Additionally,
large-scale cancer nutrition cohort prevention research findings indicate that consuming
polyphenolic substances, particularly flavan-3-ols, might effectively lower the risk of
CVDs [181,182].
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Several observational and experimental studies have demonstrated the link between
consuming a diet high in polyphenols and the decreased risk of developing heart ill-
nesses [183]. Results of a multicentered randomized clinical trial reported that consuming
a polyphenol-rich diet for five years reduced the death rate in CVD patients by 37% and
improved the survival rate [184]. Similarly, cohort clinical research, including an elderly
population (>65 years old), revealed that long-term consumption of polyphenols enhances
the average life span of old cardiac patients [184]. Stilbenes and lignans are reported to be
the most efficient among all polyphenols, which decreased the overall death rate [7].

2.8. Other Health Problems

In the fourth century B.C., Hippocrates emphasized the importance of diet in health
and disease, saying, “death sits in the bowels” [185]. Many in vivo studies and human
trials suggest that gut microbiota dysbiosis is involved in gastrointestinal diseases and
obesity, diabetes, and other MtS [35]. Recent data have revealed the ability of foods rich in
polyphenols to modulate intestinal dysbiosis present in various diseases by reducing the
number of potential pathobionts [35].

2.8.1. Pre-Clinical Studies

Bouyahya et al. analyzed numerous in vivo and clinical trials [44]. They concluded
that berry-derived PPs possess significant therapeutic properties and alleviate diseases
related to abnormal gut microbiota, including inflammation and colon cancer. Shabbir et al.
found that curcumin, quercetin, and catechins could improve gut health and help alleviate
the rate of MtS [186]. Duarte et al. have ascertained that gut microbiota in the presence of
PPs plays a fundamental role in controlling obesity, possibly through brown adipose tissue
activation [70].

As is known, hyperlipidemia is a risk factor for the development of CVDs [187].
Atherogenic dyslipidemia associated with a pro-inflammatory state in MtS could increase
the risk of fatty liver, neurodegenerative diseases, and even certain types of cancers [188].
PPs can cause/lipoprotein metabolism in humans. It was found that rosmarinic acid can
significantly decrease total plasma cholesterol and triglytriglycin levels as well as body
weight in fat-fed mice [187]. Numerous in vivo and in vitro studies demonstrated that
apigenin and other PPs were effective against metabolic disease due to their antioxidant
and anti-inflammatory properties [189,190].

Such PPs as flavonoids, stilbenes, phenolic acids, and methylxanthines from cocoa
beans are known to be mostly responsible for the health benefits of dark chocolate, in
particular preventing neurodegenerative and cardiovascular diseases [191]. Flavonoid
compounds were suggested as the best PPs due to their several healing effects synergetic
with stem cells in treating neurodegenerative diseases [192]. Phlorotannins from brown
seaweeds are promising natural compounds to tackle neurodegeneration [193,194]. Some
kinds of tea can reduce fat accumulation in experimental animals by increasing lipid
metabolism [195].

2.8.2. Clinical Studies

Pourhabibi-Zarandi et al. found that curcumin supplementation (500 mg once a
day for eight weeks) improved such metabolic parameters as glycemic index, lipid pro-
file, inflammatory factors, and obesity values in women with a diagnosis of rheumatoid
arthritis [196].

Table 1 summarizes the current state of the Mts treatments with PPs from clinical studies.
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Table 1. The current state of the Mts treatments with polyphenols from clinical studies.

PPs Type and Main Features of Treatment Pathologies and Mechanism of Action Refs.

Oxidative Stress and Inflammation

Oleuropein, hydroxytyrosol, curcumin,
resveratrol, epigallocathechin

Cell protection (redox homeostasis) through the activation of
vitagene signaling pathways [33,197]

Grape products containing PPs (resveratrol,
proanthocyanidin, quercetin, etc.)

Significant increase in the levels of total antioxidant capacity and
oxygen radical absorbance capacity as well as improving various
enzymatic systems such as superoxide dismutase or glutathione

peroxidase (dependently on the dosage)

[54]

Genistein, silymarin caffeic acid,
chlorogenic acid, ellagic acid

Healing chronic inflammation is the key pathomechanism of
obesity-related metabolic disorders (insulin resistance,

type 2 diabetes, and cardiovascular diseases)
[43]

PPs from cocoa, fruits, and vegetables Alleviating the oxidative damage and inflammation parameters [6,7,10,83]

Diabetes

Aloe Vera extract (enriched with PPs), PPs
from grapes,and cinnamon Control of insulin resistance [64–66]

Quercetin, resveratrol and
epigallocatechin-3-gallate

Enhancing glucose uptake in the adipocytes and muscles in type
2diabetes by the activation of the AMP-activated protein

kinase pathway
[67]

Resveratrol Reducing blood glucose levels [57]

PPs from fruits and vegetables Protecting pancreatic β-cells and activating glucose/lipid
metabolism pathways, affecting glucose absorption and uptake [67,83]

Obesity

Epigallocatechin gallate Increasing energy consumption and weight loss due to a higher
rate of fat oxidation [74]

The total PP content (measured in urine
samples using the Folin–Ciocalteu method) Long-term intake of PPs led to significant loss of weight [75]

Curcumin and resveratrol Anti-obesity effect to avoid associated metabolic disorders [78]

Brown seaweed PPs
Effective regulation of metabolic disorders via correction of fat
function (transforming white adipose tissue into “brown” and

enhancing energy consumption)
[80]

PPs from fruits and vegetables Reducing lipid accumulation and regulating intestinal microflora [83]

Liver Intoxication

Silymarin/Silybin Hepatoprotection, preventing and treatment of chronic liver disease [85]

Flavonoids
(anthocyanins, flavonols, flavanones

and isoflavones)

Detoxifying and oxidative stress preventive abilities of flavonoids
through regulation of the autophagy and apoptosis pathways as

well as by impact on mitochondria-ER stress-proteasome
[104–108]

Foods’ PPs (whole-foods approach)
It affects the activity of detoxification pathways, including Nrf2

signaling, phase I cytochrome P450 enzymes, phase II conjugation
enzymes, and metallothionein

[102]
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Table 1. Cont.

PPs Type and Main Features of Treatment Pathologies and Mechanism of Action Refs.

Aging

Resveratrol Vascular dysfunction in aging [67]

Resveratrol, quercetin, curcumin
and catechins

Modulation of some of the evolutionarily conserved hallmarks of
aging, such as oxidative damage, cell senescence, and autophagy [117]

Flavonoids, curcumin and resveratrol Disruption of age-associated deterioration in physiological function [123]

Isoflavones from soybean Anti-arteriosclerotic effect [127]

Flavonoids and tannins
Modulating genes associated with stress defense,
drug-metabolizing enzymes, detoxification, and

transporter proteins
[188]

Carcinogenesis

Epigallocatechin and other tea PPs Chemopreventive effects on colorectal cancer [150]

Pomegranate fruit extract, green tea PPs,
grape seed proanthocyanidins, resveratrol,

genistein, silymarin, and delphinidin

Inhibition of photocarcinogenesis (melanoma, squamous cell
carcinoma, basal cell carcinoma) [151,153]

Isoflavones from soybean Prevention of prostate and breast cancer [154,155]

Cardiovascular Diseases

Resveratrol Increasing total plasminogen activator inhibitor and circulating
vascular cell adhesion molecules [179]

Green tea PPs Prevention the coronary heart disease [180]

Cocoa flavanols Improving the levels of biomarkers for cardiometabolic disorders [181,182]

Lignans, flavonoids, and
hydroxybenzoic acids

Diminishing risk of major cardiovascular disorders (ischemia,
myocardial infarction, stroke) [9]

Rheumatoid Arthritis

Curcumin Improving metabolic parameters and inflammatory factors in
women with rheumatoid arthritis [196]

3. Proposed Panel of Polyphenols

It should be mentioned that PPs possess the ability to facilitate the MtS at different
levels (Table 2). Several subclasses of flavonoids have proven free-radical scavenging activ-
ity and another valuable therapeutic potential: catechins (e.g., gallocatechin, epicatechin,
epigallocatechin), flavones (e.g., luteolin, apigenin), flavanones (e.g., hesperidin, narin-
genin), anthocyanidins (e.g., cyanidin, delphinidin, pelargonidin), flavonols (e.g., quercetin,
rutin, myricetin), and isoflavones (e.g., genistein) [198]. For instance, anthocyanins are
water-soluble pigments that exist mainly in glycosylated forms. They are responsible for
fruits and vegetables in red, purple, and blue colors [199]. The glycoside forms of cyanidin,
delphinidin, pelargonidin, malvidin, peonidin, and petunidin are the major anthocyanins
in plants [44,199].
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Table 2. The main polyphenols and underlying mechanisms of their pharmacological activity in MtS
treatment and prevention.

The Common
Name of

Polyphenolic
Compound

Structural Formula
and IUPAC Name

Class of
Phenolic

Compounds
Main Sources

Main Targets of Action
(Metabolic Diseases

and States)
Refs.
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(1E,6E)-1,7-Bis(4-hydroxy-3-
methoxyphenyl)hepta-1,6-diene-3,5-

dione

Curcuminoids
(diarylhep-

tanoid)

Turmeric
(Curcuma longa)

rhizome

- Antioxidant, anti-
inflammatory,
anti-obesity, hep-
atoprotective,
anti-atherosclerotic,
and anti-diabetic
properties

- It can effectively sup-
press inflammatory
mediators such as
cyclooxygenase

- Inhibiting the in-
flammation and
apoptosis signaling
for the treatment of
endotoxemia (liver
failure)

- Improving gut
health, glycemic
index, lipid profile,
and obesity values

- Treatment of chronic
diseases (diabetes,
gastrointestinal,
neurological, car-
diovascular, several
types of cancer)

[49]
[67]
[78]
[156]
[141]
[186]
[196]
[203]
[204]
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with diabetes (by the 
activation of the amp-

activated protein kinase 
pathway) 

- Maintenance of 
genome stability 
- Autophagy 
inducers in aging 

research 

Curcumin  
(1E,6E)-1,7-Bis(4-hydroxy-3-

methoxyphenyl)hepta-1,6-diene-3,5-
dione 

Curcuminoids 
(diarylheptanoid) 

Turmeric 
(Curcuma 

longa) rhizome 

- Antioxidant, anti-
inflammatory, anti-

obesity, 
hepatoprotective, anti-

atherosclerotic, and anti-
diabetic properties 

- It can effectively 
suppress inflammatory 

mediators such as 
cyclooxygenase 

- Inhibiting the 
inflammation and 

apoptosis signaling for 
the treatment of 

endotoxemia (liver 
failure) 

- Improving gut 
health, glycemic index, 

lipid profile, and obesity 
values 

- Treatment of 
chronic diseases 

(diabetes, 
gastrointestinal, 

neurological, 
cardiovascular, several 

types of cancer) 

[49] 
[67] 
[78] 

[156] 
[141] 
[186] 
[196] 
[203] 
[204] 

Quercetin 

 
3,3′,4′,5,7-Pentahydroxyflavone 

Flavonoids 
(flavonols) 

Fruits and 
vegetables 
(mainly of 
yellow or 

orange color) 

- Capability to 
suppress oxidative stress 

and severe 
inflammation, 

- Enhancing glucose 
uptake in the muscles 

and adipocytes, 
inducing autophagy 
- Improving gut 

health 
- Suppressing colon 
carcinogenesis through 
its anti-inflammatory 

effects 

[42] 
[61] 

[105] 
[106] 
[120] 
[144] 
[186] 
[202] 
[205] 
[206] 
[207] 

3,3′,4′,5,7-Pentahydroxyflavone

Flavonoids
(flavonols)

Fruits and vegetables
(mainly of yellow or

orange color)

- Capability to sup-
press oxidative
stress and severe
inflammation,

- Enhancing glucose
uptake in the mus-
cles and adipocytes,
inducing autophagy

- Improving gut
health

- Suppressing colon
carcinogenesis
through its anti-
inflammatory effects

[42]
[61]
[105]
[106]
[120]
[144]
[186]
[202]
[205]
[206]
[207]

Epigallo-
catechin
gallate
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Epigallo-
catechin gallate 

 
(2R,3R)-3′,4′,5,5′,7-

Pentahydroxyflavan-3-yl 3,4,5-
trihydroxybenzoate 

Flavonoids 
(catechins) Green tea 

- Strong antioxidant 
and anti-inflammatory 

properties 
- Modulating 

sensitivity towards 
insulin in case of type 2 

diabetes 
- Improving the 
dyslipidemia state 
- Anti-obesity 

influence (stimulating 
weight loss) 

- Inhibiting 
carcinogenesis, inducing 

autophagy 

[53] 
[63] 
[67] 

[120] 
[134] 
[135] 
[136] 
[186] 

Anthocyanins 
 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-
6-(hydroxymethyl)oxane-3,4,5-triol 

chloride 
(Cyanidin-3-glucoside) 

Flavonoids 
(anthocyanins) 

Berries and 
flower corollas 
(in red, blue, 

or purple 
colors) 

- Management of 
various metabolic 

disorders, including 
diabetes, obesity, high 

blood pressure, and 
neurodegeneration 
- Preventing free 

radical production 
- Protecting β-cells 

[199] 
[208] 
[209] 

Genistein 
 

4′,5,7-Trihydroxyisoflavone 

Flavonoids 
(isoflavone) 

Mainly 
Fabaceae plants 
(soy-beans in 

particular) 

- Suppression of 
free radicals 

- Inhibition of 
inflammation 

- Promotion of 
apoptosis 

- Prevention of 
hormone-dependent 

tumors through 
modulation of steroidal 

hormone receptors 

[108] 
[127] 
[210] 

Naringenin 

 
(2S)-4′,5,7-Trihydroxyflavan-4-one 

Flavonoids 
(flavanone) 

Citrus fruits 
(oranges, 
lemons, 

grapefruits, 
etc.) 

- Strong anti-
inflammatory and 
antioxidant effects, 
- Treatment of 
diabetes, obesity, 

hypertension, and other 
manifestation of MtS 
- Improving lipid 

metabolism 

[169] 
[211] 

Apigenin 

 

Flavonoids 
(flavone) 

Celery, 
parsley, 

Lamiaceae 
plants 

- Effectiveness 
against cardiometabolic 

diseases due to the 

[120] 
[189] 
[212] 
[213] 

(2R,3R)-3′,4′,5,5′,7-Pentahydroxyflavan-
3-yl

3,4,5-trihydroxybenzoate

Flavonoids
(catechins) Green tea

- Strong antioxi-
dant and anti-
inflammatory
properties

- Modulating sensitiv-
ity towards insulin
in case of type 2 di-
abetes

- Improving the dys-
lipidemia state

- Anti-obesity influ-
ence (stimulating
weight loss)

- Inhibiting carcino-
genesis, inducing
autophagy

[53]
[63]
[67]
[120]
[134]
[135]
[136]
[186]

Anthocyanins
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(2R,3R)-3′,4′,5,5′,7-

Pentahydroxyflavan-3-yl 3,4,5-
trihydroxybenzoate 

Flavonoids 
(catechins) Green tea 

- Strong antioxidant 
and anti-inflammatory 

properties 
- Modulating 

sensitivity towards 
insulin in case of type 2 

diabetes 
- Improving the 
dyslipidemia state 
- Anti-obesity 

influence (stimulating 
weight loss) 

- Inhibiting 
carcinogenesis, inducing 

autophagy 

[53] 
[63] 
[67] 

[120] 
[134] 
[135] 
[136] 
[186] 

Anthocyanins 
 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-
6-(hydroxymethyl)oxane-3,4,5-triol 

chloride 
(Cyanidin-3-glucoside) 

Flavonoids 
(anthocyanins) 

Berries and 
flower corollas 
(in red, blue, 

or purple 
colors) 

- Management of 
various metabolic 

disorders, including 
diabetes, obesity, high 

blood pressure, and 
neurodegeneration 
- Preventing free 

radical production 
- Protecting β-cells 

[199] 
[208] 
[209] 

Genistein 
 

4′,5,7-Trihydroxyisoflavone 

Flavonoids 
(isoflavone) 

Mainly 
Fabaceae plants 
(soy-beans in 

particular) 

- Suppression of 
free radicals 

- Inhibition of 
inflammation 

- Promotion of 
apoptosis 

- Prevention of 
hormone-dependent 

tumors through 
modulation of steroidal 

hormone receptors 

[108] 
[127] 
[210] 

Naringenin 

 
(2S)-4′,5,7-Trihydroxyflavan-4-one 

Flavonoids 
(flavanone) 

Citrus fruits 
(oranges, 
lemons, 

grapefruits, 
etc.) 

- Strong anti-
inflammatory and 
antioxidant effects, 
- Treatment of 
diabetes, obesity, 

hypertension, and other 
manifestation of MtS 
- Improving lipid 

metabolism 

[169] 
[211] 

Apigenin 

 

Flavonoids 
(flavone) 

Celery, 
parsley, 

Lamiaceae 
plants 

- Effectiveness 
against cardiometabolic 

diseases due to the 

[120] 
[189] 
[212] 
[213] 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-6-
(hydroxymethyl)oxane-3,4,5-triol

chloride
(Cyanidin-3-glucoside)

Flavonoids
(anthocyanins)

Berries and flower
corollas (in red, blue,

or purple colors)

- Management of vari-
ous metabolic disor-
ders, including dia-
betes, obesity, high
blood pressure, and
neurodegeneration

- Preventing free radi-
cal production

- Protecting β-cells

[199]
[208]
[209]

Genistein
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Epigallo-
catechin gallate 

 
(2R,3R)-3′,4′,5,5′,7-

Pentahydroxyflavan-3-yl 3,4,5-
trihydroxybenzoate 

Flavonoids 
(catechins) Green tea 

- Strong antioxidant 
and anti-inflammatory 

properties 
- Modulating 

sensitivity towards 
insulin in case of type 2 

diabetes 
- Improving the 
dyslipidemia state 
- Anti-obesity 

influence (stimulating 
weight loss) 

- Inhibiting 
carcinogenesis, inducing 

autophagy 

[53] 
[63] 
[67] 

[120] 
[134] 
[135] 
[136] 
[186] 

Anthocyanins 
 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-
6-(hydroxymethyl)oxane-3,4,5-triol 

chloride 
(Cyanidin-3-glucoside) 

Flavonoids 
(anthocyanins) 

Berries and 
flower corollas 
(in red, blue, 

or purple 
colors) 

- Management of 
various metabolic 

disorders, including 
diabetes, obesity, high 

blood pressure, and 
neurodegeneration 
- Preventing free 

radical production 
- Protecting β-cells 

[199] 
[208] 
[209] 

Genistein 
 

4′,5,7-Trihydroxyisoflavone 

Flavonoids 
(isoflavone) 

Mainly 
Fabaceae plants 
(soy-beans in 

particular) 

- Suppression of 
free radicals 

- Inhibition of 
inflammation 

- Promotion of 
apoptosis 

- Prevention of 
hormone-dependent 

tumors through 
modulation of steroidal 

hormone receptors 

[108] 
[127] 
[210] 

Naringenin 

 
(2S)-4′,5,7-Trihydroxyflavan-4-one 

Flavonoids 
(flavanone) 

Citrus fruits 
(oranges, 
lemons, 

grapefruits, 
etc.) 

- Strong anti-
inflammatory and 
antioxidant effects, 
- Treatment of 
diabetes, obesity, 

hypertension, and other 
manifestation of MtS 
- Improving lipid 

metabolism 

[169] 
[211] 

Apigenin 

 

Flavonoids 
(flavone) 

Celery, 
parsley, 

Lamiaceae 
plants 

- Effectiveness 
against cardiometabolic 

diseases due to the 

[120] 
[189] 
[212] 
[213] 

4′,5,7-Trihydroxyisoflavone

Flavonoids
(isoflavone)

Mainly Fabaceae
plants

(soy-beans in
particular)

- Suppression of free
radicals

- Inhibition of inflam-
mation

- Promotion of apop-
tosis

- Prevention
of hormone-
dependent tumors
through modula-
tion of steroidal
hormone receptors

[108]
[127]
[210]
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Epigallo-
catechin gallate 

 
(2R,3R)-3′,4′,5,5′,7-

Pentahydroxyflavan-3-yl 3,4,5-
trihydroxybenzoate 

Flavonoids 
(catechins) Green tea 

- Strong antioxidant 
and anti-inflammatory 

properties 
- Modulating 

sensitivity towards 
insulin in case of type 2 

diabetes 
- Improving the 
dyslipidemia state 
- Anti-obesity 

influence (stimulating 
weight loss) 

- Inhibiting 
carcinogenesis, inducing 

autophagy 

[53] 
[63] 
[67] 

[120] 
[134] 
[135] 
[136] 
[186] 

Anthocyanins 
 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-
6-(hydroxymethyl)oxane-3,4,5-triol 

chloride 
(Cyanidin-3-glucoside) 

Flavonoids 
(anthocyanins) 

Berries and 
flower corollas 
(in red, blue, 

or purple 
colors) 

- Management of 
various metabolic 

disorders, including 
diabetes, obesity, high 

blood pressure, and 
neurodegeneration 
- Preventing free 

radical production 
- Protecting β-cells 

[199] 
[208] 
[209] 

Genistein 
 

4′,5,7-Trihydroxyisoflavone 

Flavonoids 
(isoflavone) 

Mainly 
Fabaceae plants 
(soy-beans in 

particular) 

- Suppression of 
free radicals 

- Inhibition of 
inflammation 

- Promotion of 
apoptosis 

- Prevention of 
hormone-dependent 

tumors through 
modulation of steroidal 

hormone receptors 

[108] 
[127] 
[210] 

Naringenin 

 
(2S)-4′,5,7-Trihydroxyflavan-4-one 

Flavonoids 
(flavanone) 

Citrus fruits 
(oranges, 
lemons, 

grapefruits, 
etc.) 

- Strong anti-
inflammatory and 
antioxidant effects, 
- Treatment of 
diabetes, obesity, 

hypertension, and other 
manifestation of MtS 
- Improving lipid 

metabolism 

[169] 
[211] 

Apigenin 

 

Flavonoids 
(flavone) 

Celery, 
parsley, 

Lamiaceae 
plants 

- Effectiveness 
against cardiometabolic 

diseases due to the 

[120] 
[189] 
[212] 
[213] 

(2S)-4′,5,7-Trihydroxyflavan-4-one

Flavonoids
(flavanone)

Citrus fruits (oranges,
lemons, grapefruits,

etc.)

- Strong anti-
inflammatory
and antioxidant
effects,

- Treatment of di-
abetes, obesity,
hypertension, and
other manifestation
of MtS

- Improving lipid
metabolism

[169]
[211]

Apigenin
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Epigallo-
catechin gallate 

 
(2R,3R)-3′,4′,5,5′,7-

Pentahydroxyflavan-3-yl 3,4,5-
trihydroxybenzoate 

Flavonoids 
(catechins) Green tea 

- Strong antioxidant 
and anti-inflammatory 

properties 
- Modulating 

sensitivity towards 
insulin in case of type 2 

diabetes 
- Improving the 
dyslipidemia state 
- Anti-obesity 

influence (stimulating 
weight loss) 

- Inhibiting 
carcinogenesis, inducing 

autophagy 

[53] 
[63] 
[67] 

[120] 
[134] 
[135] 
[136] 
[186] 

Anthocyanins 
 

(2S,3R,4S,5S,6R)-2-[2-(3,4-
dihydroxyphenyl)-5,7-

dihydroxychromenylium-3-yl]oxy-
6-(hydroxymethyl)oxane-3,4,5-triol 

chloride 
(Cyanidin-3-glucoside) 

Flavonoids 
(anthocyanins) 

Berries and 
flower corollas 
(in red, blue, 

or purple 
colors) 

- Management of 
various metabolic 

disorders, including 
diabetes, obesity, high 

blood pressure, and 
neurodegeneration 
- Preventing free 

radical production 
- Protecting β-cells 

[199] 
[208] 
[209] 

Genistein 
 

4′,5,7-Trihydroxyisoflavone 

Flavonoids 
(isoflavone) 

Mainly 
Fabaceae plants 
(soy-beans in 

particular) 

- Suppression of 
free radicals 

- Inhibition of 
inflammation 

- Promotion of 
apoptosis 

- Prevention of 
hormone-dependent 

tumors through 
modulation of steroidal 

hormone receptors 

[108] 
[127] 
[210] 

Naringenin 

 
(2S)-4′,5,7-Trihydroxyflavan-4-one 

Flavonoids 
(flavanone) 

Citrus fruits 
(oranges, 
lemons, 

grapefruits, 
etc.) 

- Strong anti-
inflammatory and 
antioxidant effects, 
- Treatment of 
diabetes, obesity, 

hypertension, and other 
manifestation of MtS 
- Improving lipid 

metabolism 

[169] 
[211] 

Apigenin 

 

Flavonoids 
(flavone) 

Celery, 
parsley, 

Lamiaceae 
plants 

- Effectiveness 
against cardiometabolic 

diseases due to the 

[120] 
[189] 
[212] 
[213] 

4′,5,7-Trihydroxyflavone

Flavonoids
(flavone)

Celery, parsley,
Lamiaceae plants

- Effectiveness against
cardiometabolic dis-
eases due to the an-
tioxidant and anti-
inflammatory prop-
erties

- Inducing autophagy,
- Anticancer effect

[120]
[189]
[212]
[213]

Luteolin
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4′,5,7-Trihydroxyflavone antioxidant and anti-
inflammatory properties 

- Inducing 
autophagy, 

- Anticancer effect 

Luteolin 

 
3′,4′,5,7-Tetrahydroxyflavone 

Flavonoids 
(flavone) 

Celery, carrot, 
parsley, 
broccoli, 
oranges, 

chamomile tea, 
and Lamiaceae 
plants (thyme, 

oregano, 
rosemary, etc.) 

- Prominent 
antioxidant and anti-
inflammatory effects 
- Treatment of 

glycolipid metabolism 
disorders (in case of 

obesity and diabetes) 

[46] 
[198] 
[214] 

Silybin 
 

Silybin A 
(2R,3R)-3,5,7-Trihydroxy-2-[(2R,3R)-
3-(4-hydroxy-3-methoxyphenyl)-2-
(hydroxymethyl)-2,3-dihydro-1,4-
benzodioxin-6-yl]-2,3-dihydro-4H-

chromen-4-one 

Flavonolignan 
(silymarin group) 

Milk thistle 
(Silybum 

marianum) 
fruits. 

Silymarin is a 
flavonoid 
mixture in 

which silybin 
is the major 

one. 

- Antioxidative, 
anti-inflammatory, 

antiapoptotic, 
hepatoprotective 

properties, 
- Preventing and 
treatment of chronic 

liver disease 

[43] 
[94] 
[95] 

Phlorotannins 
 

Tetrafucol A, 
[11,21:23,31:33,41-Quaterphenyl]-
12,14,16,22,24,26,32,34,36,42,44,46-

dodecol 

Oligomer of 
phloroglucinols 

(a fucol-type 
phlorotannin) 

Brown 
seaweeds 

- Counteracting 
high free radicals 

production 
- Ability to activate 

the transformation of 
white adipose tissue to 

“brown” 
- Tackling 

neurodegeneration 

[79] 
[80] 

[193] 

Rosmarinic acid  
(2R)-3-(3,4-Dihydroxyphenyl)-2-

{[(2E)-3-(3,4-dihydroxyphenyl)prop-
2-enoyl]oxy}182propanoic acid 

Hydroxycinnamic 
acids 

Mainly 
Lamiaceae 

plants 
(especially 
from the 

Nepetoideae 
subfamily) 

- Antioxidant and 
anti-inflammatory 

actions, 
- Ability to decrease 

the blood glucose, 
triglyceride, and plasma 
total cholesterol levels 

significantly 

[147] 
[187] 
[215] 

Hydroxytyrosol 
 

4-(2-Hydroxyethyl)benzene-1,2-diol 

Phenylethanoid 
(phenolic 

compound) 

Olive oil  
(in the form of 

oleuropein) 

- Inhibiting 
oxidative stress and 

inflammation, 
- Improving MtS 
parameters in case of 

excessive body weight, 
insulin resistance, and 

hypertension 

[216] 
[217] 

3′,4′,5,7-Tetrahydroxyflavone

Flavonoids
(flavone)

Celery, carrot, parsley,
broccoli, oranges,

chamomile tea, and
Lamiaceae plants
(thyme, oregano,

rosemary, etc.)

- Prominent an-
tioxidant and
anti-inflammatory
effects

- Treatment of gly-
colipid metabolism
disorders (in case
of obesity and
diabetes)

[46]
[198]
[214]

Silybin
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- Inducing 
autophagy, 
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Luteolin 

 
3′,4′,5,7-Tetrahydroxyflavone 

Flavonoids 
(flavone) 

Celery, carrot, 
parsley, 
broccoli, 
oranges, 

chamomile tea, 
and Lamiaceae 
plants (thyme, 

oregano, 
rosemary, etc.) 

- Prominent 
antioxidant and anti-
inflammatory effects 
- Treatment of 

glycolipid metabolism 
disorders (in case of 

obesity and diabetes) 

[46] 
[198] 
[214] 

Silybin 
 

Silybin A 
(2R,3R)-3,5,7-Trihydroxy-2-[(2R,3R)-
3-(4-hydroxy-3-methoxyphenyl)-2-
(hydroxymethyl)-2,3-dihydro-1,4-
benzodioxin-6-yl]-2,3-dihydro-4H-

chromen-4-one 

Flavonolignan 
(silymarin group) 

Milk thistle 
(Silybum 

marianum) 
fruits. 

Silymarin is a 
flavonoid 
mixture in 

which silybin 
is the major 

one. 

- Antioxidative, 
anti-inflammatory, 

antiapoptotic, 
hepatoprotective 

properties, 
- Preventing and 
treatment of chronic 

liver disease 

[43] 
[94] 
[95] 

Phlorotannins 
 

Tetrafucol A, 
[11,21:23,31:33,41-Quaterphenyl]-
12,14,16,22,24,26,32,34,36,42,44,46-

dodecol 

Oligomer of 
phloroglucinols 

(a fucol-type 
phlorotannin) 

Brown 
seaweeds 

- Counteracting 
high free radicals 

production 
- Ability to activate 

the transformation of 
white adipose tissue to 

“brown” 
- Tackling 

neurodegeneration 

[79] 
[80] 

[193] 

Rosmarinic acid  
(2R)-3-(3,4-Dihydroxyphenyl)-2-

{[(2E)-3-(3,4-dihydroxyphenyl)prop-
2-enoyl]oxy}182propanoic acid 

Hydroxycinnamic 
acids 

Mainly 
Lamiaceae 

plants 
(especially 
from the 

Nepetoideae 
subfamily) 

- Antioxidant and 
anti-inflammatory 

actions, 
- Ability to decrease 

the blood glucose, 
triglyceride, and plasma 
total cholesterol levels 

significantly 

[147] 
[187] 
[215] 

Hydroxytyrosol 
 

4-(2-Hydroxyethyl)benzene-1,2-diol 

Phenylethanoid 
(phenolic 

compound) 

Olive oil  
(in the form of 

oleuropein) 

- Inhibiting 
oxidative stress and 

inflammation, 
- Improving MtS 
parameters in case of 

excessive body weight, 
insulin resistance, and 

hypertension 

[216] 
[217] 

Silybin A
(2R,3R)-3,5,7-Trihydroxy-2-[(2R,3R)-3-

(4-hydroxy-3-methoxyphenyl)-2-
(hydroxymethyl)-2,3-dihydro-1,4-
benzodioxin-6-yl]-2,3-dihydro-4H-

chromen-4-one

Flavonolignan
(silymarin

group)

Milk thistle (Silybum
marianum) fruits.

Silymarin is a
flavonoid mixture in
which silybin is the

major one.

- Antioxidative,
anti-inflammatory,
antiapoptotic,
hepatoprotective
properties,

- Preventing and treat-
ment of chronic liver
disease

[43]
[94]
[95]

Phlorotannins
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- Inducing 
autophagy, 

- Anticancer effect 

Luteolin 

 
3′,4′,5,7-Tetrahydroxyflavone 

Flavonoids 
(flavone) 

Celery, carrot, 
parsley, 
broccoli, 
oranges, 

chamomile tea, 
and Lamiaceae 
plants (thyme, 

oregano, 
rosemary, etc.) 

- Prominent 
antioxidant and anti-
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Rosmarinic acid  
(2R)-3-(3,4-Dihydroxyphenyl)-2-
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Hydroxycinnamic 
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(especially 
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Hydroxytyrosol 
 

4-(2-Hydroxyethyl)benzene-1,2-diol 

Phenylethanoid 
(phenolic 

compound) 

Olive oil  
(in the form of 

oleuropein) 

- Inhibiting 
oxidative stress and 

inflammation, 
- Improving MtS 
parameters in case of 

excessive body weight, 
insulin resistance, and 
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Tetrafucol A,
[11,21:23,31:33,41-Quaterphenyl]-
12,14,16,22,24,26,32,34,36,42,44,46-

dodecol

Oligomer of
phlorogluci-

nols
(a fucol-type

phlorotannin)

Brown seaweeds

- Counteracting high
free radicals produc-
tion

- Ability to activate
the transformation
of white adipose tis-
sue to “brown”

- Tackling neurode-
generation

[79]
[80]
[193]
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Table 2. Cont.

The Common
Name of

Polyphenolic
Compound

Structural Formula
and IUPAC Name

Class of
Phenolic

Compounds
Main Sources

Main Targets of Action
(Metabolic Diseases

and States)
Refs.
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oxidative stress and 
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[216] 
[217] 

(2R)-3-(3,4-Dihydroxyphenyl)-2-{[(2E)-
3-(3,4-dihydroxyphenyl)prop-2-

enoyl]oxy}182propanoic
acid

Hydroxycinnamic
acids

Mainly Lamiaceae
plants (especially

from the Nepetoideae
subfamily)

- Antioxidant and
anti-inflammatory
actions,

- Ability to decrease
the blood glu-
cose, triglyceride,
and plasma total
cholesterol levels
significantly

[147]
[187]
[215]
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[216] 
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4-(2-Hydroxyethyl)benzene-1,2-diol

Phenylethanoid
(phenolic

compound)

Olive oil
(in the form of

oleuropein)

- Inhibiting oxidative
stress and inflamma-
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- Improving MtS
parameters in case
of excessive body
weight, insulin
resistance, and
hypertension

[216]
[217]
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(2E)-3-(4-hydroxy-3-
methoxyphenyl)prop-2-enoic

acid

Hydroxycinnamic
acids

(phenolic
compound)

Mainly Apiaceae
plants (Angelica

sinensis, genus Ferula,
etc.)

- Lowering stored
fat in human
adipocytes,

- Reversing in-
sulin resistance,
dyslipidemia,
hyperglycemia,
inflammation, and
oxidative stress

[207]
[220]
[221]

Berry-derived PPs are mainly obtained from the fleshy fruits of strawberry, blueberry,
mulberry, currant, raspberry, blackberry, barberry, rosehip, and gooseberry [44]. Berries are
rich sources of pigments, particularly anthocyanins (up to 5 g/kg), which are responsible
for their red, blue, or purple colors. They also contain flavonols, phenolic acids, tannins,
etc. Due to their ability to cross the blood-brain barrier, PPs with low molecular weight
have beneficial antioxidant effects.
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The potential benefits of PPs on human health make them the best micronutrients
obtained from plant foods. These active principles possess excellent antioxidant and anti-
inflammatory properties that ultimately favor the metabolic system of the human body
and can avoid various chronic diseases (Figures 2 and 3). Epidemiologic and related case
studies on mouse and human diets demonstrate that daily intake of PPs can easily prevent
and provide efficient treatment for severe metabolic diseases that may cause complicated
health conditions.
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It could be concluded that a single source of PPs, not always and not everywhere,
can fulfill an effective role. Generally, the benefits of PPs involve the mechanism of bioac-
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tive scavenger theory in which free radicals are potentially absorbed by these healthy
compounds and converted into a stabilized complex [222].

Recent studies suggested that various phenolic compounds can be made artificially
or with the help of natural supplements that can influence and terminate the growth of
pathogens in the gut. Thus, a careful investigation is required to provide mechanistic
studies of various phenolic compounds.

4. Effective Delivery of Polyphenols to the Target

People are particularly interested in dietary PPs as there is a growing belief that their
constant intake is healthy for the body. However, before reaching the target tissues, in-
gested PPs are substantially degraded in the digestive system or other sites, reducing their
beneficial effects. Furthermore, some PPs are photosensitive and rapidly oxidized into unde-
sirable forms. Although polyphenolic substances have been found to have several benefits,
their pharmaceutical use in humans is currently restricted due to these limitations [223–226].
In recent years, several attempts have been made for intact distribution or delivery of PPs
to target organs and tissues. Conversion into inactive forms by microbes, pH, enzymes, and
the blood-brain barrier are the most common obstacles encountered by PPs before reach-
ing the target organ. To overcome these challenges, several delivery systems have been
introduced. Nanoparticles, liposomes, and microemulsions are the major delivery systems
for their effective biodistribution (Figure 2) [227,228]. The most investigated biodegrad-
able and biocompatible polymeric materials that enclose polyphenolic compounds are
nanomaterials. Nanoshells, nanocarriers, solid lipid nanoparticles, cyclodextrins, lipo-
somes, and micelles are the most commonly used nanoparticle-mediated delivery systems
for PPs [229,230]. There are several methods for delivering these nanoparticles: orally,
intravenously, intraperitoneally, and transdermally. Due to membrane adhesion and per-
meability properties, nanocarriers can transport relatively high concentrations of PPs to the
intestine, effectively maintain their integrity, and increase their effectiveness [231].

In an in vitro study, Mathew and colleagues showed that curcumin nanoparticles
enclosed in PLGA (poly lactic-co-glycolic acid) attached to Aβ clusters facilitated their
dissociation. This study opened the door to minimize the amyloid-plaque development
in Alzheimer’s by delivering curcumin-PLGA nanoparticles across the blood-brain bar-
rier [232]. In a rat model of 3-nitropropionic acid-induced Huntington’s disease, it was
observed that curcumin-encapsulated solid lipid nanoparticles effectively reduced mito-
chondrial dysfunction [233]. A remarkable research study demonstrated that solid-liquid
nanoparticles functionalized with the anti-transferrin receptor (OX26) monoclonal antibody
offered a reliable carrier to deliver the resveratrol and grape skin extract to target the
brain and treat neurodegenerative disease [234]. Oral administration of resveratrol-loaded
PLGA nanocarrier showed enhanced resveratrol bioavailability [235]. In another recent
study, resveratrol oral bioavailability was enhanced in Sprague Dawley rats by binding the
galactose ligand (N-oleoyl-d-galactosamine) on the surface of the resveratrol-loaded PLGA
nanoparticles [236].

The literature notably documented that using polyphenol-loaded nanocarriers has
increased their antioxidant and anti-inflammatory effects [237–241]. Therefore, although
there are several types of delivery systems that have been assessed through in vitro and
in vivo studies for improved bioavailability and target delivery of PPs in metabolic disease,
very few clinical trials involving humans have been conducted so far to assess the effect of
different delivery systems for PP delivery to target tissues and organs in metabolic diseases.
Future clinical studies should be conducted.

5. Effect of Chemical Structure on Biological Activities of Polyphenols

Chemical structures have a considerable impact on the bioavailability and particularly
the absorption of the compounds such as PPs, which in turn greatly influence the potential
of biological activities such as antioxidant properties [242,243]. The physicochemical and
biological characteristics of the substance may differ significantly even when only one of



Molecules 2022, 27, 6280 22 of 34

the factors is slightly altered. Similarly, every polyphenolic compound has a particular
structure that greatly impacts its relevant biological activities and properties [244].

Various mechanisms of radical scavenging activity, including the capacity for metal ion
chelation and sequestration, are significantly influenced by the conformation, substitution,
and total number of hydroxyl groups of polyphenol compounds [245,246]. The B-ring
hydroxyl (Figure 4) is the most important factor in scavenging ROS and RNS since B-ring
hydroxyl provides hydrogen and electron to hydroxyl, peroxyl, and peroxynitrite radicals
stabilizes these radicals, and generates a rather stable flavonoid radical [247].
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The lipid peroxidation is greatly inhibited by a 3′,4′-catechol structure in the B-ring.
Because of this property, flavonoids are the most potent antioxidants of peroxyl, superoxide,
and peroxynitrite radicals [245]. In vitro studies have displayed epicatechin and rutin as
potent antioxidants and lipid peroxidation blockers [248]. An orthosemiquinone radical
that is a potent scavenger is produced due to oxidation on the B-ring of PPs bearing catechol
groups. Flavones without the catechol system undergo oxidation and produce unstable
radicals with little antioxidant capability [249]. According to the research, PPs with an
unsaturated 2-3 bond conjugated to a 4-oxo group are effective antioxidants compared
to PPs with either one or both properties missing. The resonance action of the aromatic
nucleus occurs due to the linkage of A- and B-rings, which gives the polyphenol radical
stability [250]. Antioxidant activity is greatly influenced by the presence, arrangement,
form, and total quantity of glycosidic bonds in polyphenols [251].

Similarly, the antibacterial potential of polyphenols depends on the formation of a
complex between proteins of bacteria through hydrogen and covalent bonding [252,253].
According to a study, the B-ring of PPs may form complexes or establish hydrogen bonds
with the nucleic acid bases, which would further prevent bacteria from synthesizing DNA
and RNA [254,255]. For a flavanone to have anti-MRSA (methicillin-resistant Staphylococ-
cus aureus) action, the A-ring must be 5,7-dihydroxylated, and the B ring must be 2′,4′- or
2′,6′-dihydroxylated [256]. PPs’ structure-function link is the perfect illustration of their
main biological functions. A wider collection of chemical compounds with comparable
structural characteristics should be the subject of further study to check the interconnect-
edness of structure and activity. Such research will offer knowledge that can be utilized
to develop physiologically significant compounds that can be employed as medicines,
antioxidants, or inflammatory agents in the pharmaceutical, food, and medical industries.

6. Synergetic Interaction of PPs and Some Challenging Issues for Their Applications

Niewiadomska et al. noted that there is no universal polyphenolic compound for
improving all pathological effects [1]. Even though most PPs can improve lipid and
glucose profiles, the administration of specific phenolic compounds leads to certain changes.
At the same time, combining related PPs may provide synergistic effects and lead to
more significant health benefits. It was found that purified phytochemicals isolated from
medicinal plants may be less effective than their combination due to the synergistic impact
sets of interacting compounds [188].
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Medical research on pathogen chemoprevention is paying close attention to PPs for
their actual health characteristics at the molecular level. For instance, the chemopreventive
compounds may include pharma drugs (tamoxifen) and natural antioxidants such as PPs or
a combination of both to provide micronutrients to fight against pathogens in the metabolic
system. Rodríguez-Vera et al. highlighted that PPs and stem cell therapies have exhibited
improvements in in vitro and in vivo models of metabolic and neuronal diseases [192].

Lewandowska et al. reported the synergetic combinations of various PPs as an an-
ticancer drug in combination with synthetic drugs [257]. Brahmbhatt and coworkers
investigated the synergetic interaction of different PPs (gingerols:6,8,10 and shogaol) [258]).
The results of this study suggested that a synergetic combination of these PPs can provide
excellent chemopreventive measures against various types of cancers. Gundala et al. re-
ported enhanced (100-fold to the parent one) biochemical activity of polyphenolic extracts
by using a new fractionation process [259]. Various studies have reported that a syner-
getic combination of different Chinese medicines containing a combination of phenolic
compounds can actively boost the immune system and the digestive system, ultimately
favoring metabolic disorder prevention [260,261]. Many other synergetic interactions of
various phenolic compounds have been investigated for inflammatory diseases. Morre et al.
reported ten-fold better biochemical activity after combining epigallocatechin gallate with
epigallocatechin and other phenolic presents in the extract [262].

Furthermore, researchers have also investigated the synergetic interaction of grape
extracts with green tea phenolic compounds and reported their mutual extraordinary
chemopreventive properties for MtS associated with cancer [263]. Kurin et al. reported
an interaction-based study of phenolic compounds from three kinds of red wine and
their corresponding mixed extracts [264]. They reported that a synergetic combination
of PPs can provide better antioxidant activity than the individual one. In the next study,
Kurin et al. reported an effective treatment approach for atherogenesis by interacting
with various PPs (quercetin, ethyl gallate, and resveratrol) obtained from grapes [264]. In
studies, the interaction of grape-based phenolic with ethanol is also evident in treating
inflammation problems [202]. Scheepens et al. reported an extensive review of designed
synergetic interactions of PPs to improve their bioavailability and ability to combat various
diseases [265]. The designed modification may enhance the bioavailability of various
oral PPs. Based on literature studies, it is clear that the synergetic interactions of various
PPs play a vital role in chemopreventive measures and need more careful quantitative
investigation for its promising future in medical research.

Thus, natural PPs have great antioxidant and anti-inflammatory potential, which
broaden their medical applications to treat MtS marked by low-grade chronic inflammation.
Despite such advantages as low cost and a vast range of plant resources, some issues of
using PPs are still challenging [15]. For instance, the content of PPs in the different plant
raw materials varies significantly. Other extraction methods, drug delivery systems, and
different bioavailability further limit experimental reproducibility and clinical trials of PPs.
Finally, different genetic backgrounds and lifestyles could also lead to various effects of PP
intake in humans.

Resveratrol, curcumin, anthocyanins, and many other natural PPs are known
for their therapeutic potential in metabolic disorders and possess limited
bioavailability [156,186,204,209,266,267]. Therefore, advanced delivery systems such as
nano-formulations enhance polyphenols’ clinical potential and therapeutic effectiveness.

The optimal doses and duration of flavanols administration for obtaining a benefi-
cial effect in humans on major metabolic disorders should be further investigated [53].
Generally, the appropriate amounts and delivery methods of PPs should be scheduled
for preventing or alleviating MtS [15]. Due to the differences between animal and human
models, further clinical trials are needed to elucidate the effects of polyphenolic compounds
on MtS patients.
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7. Conclusions

In growing medical and pharmaceutical research, PPs are one of the best naturally
occurring compounds possessing several health benefits and play a vital role as natural
chemopreventives of metabolic disorders with accelerating aging, such as elevated blood
sugar, obesity, dyslipidemia, hypertension, liver intoxication, colon cancer, and neurode-
generation. The excellent biological activities of PPs and their scavenging features towards
free radicals and toxins have provided a new road map to medical research. Thus far, many
phenolic compounds have been investigated that can play a key role in preventing and
treating various metabolic disorders at their level. However, the synergetic interactions
of individual PPs with other phenolic compounds and synthetic drugs are also receiving
much attention to improve bioactivities and their corresponding bioavailabilities at oral
levels. The literature study reveals that the abundance of PPs possessing different chemical
structures and biological fate makes them challenging as a health marker for long-term
benefits. There is a dire need for mechanistic studies at clinical levels that can quantify the
required dosages of individual PPs and their synergetic combinations. Regular consump-
tion of PPs can help to alleviate many MtS manifestations. Thus, the main focus should
be on scientific evidence to provide safe consumption guidelines for these compounds
to achieve excellent benefits. Considering various inherent health markers of phenolic
compounds, their intake should be included in special diet plans, and further clinical trials
could be taken.
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244. Glevitzky, I.; Dumitrel, G.A.; Glevitzky, M.; Pasca, B.; Otřísal, P.; Bungau, S.; Cioca, G.; Pantis, C.; Popa, M. Statistical Analysis

of the Relationship Between Antioxidant Activity and the Structure of Flavonoid Compounds. Rev. Chim. 2019, 70, 3103–3107.
[CrossRef]

245. Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships.
J. Nutr. Biochem. 2002, 13, 572–584. [CrossRef]

246. Pandey, A.K.; Mishra, A.K.; Mishra, A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian
spice plant Cinnamomum tamala. Cell. Mol. Biol. 2012, 58, 142–147.

247. Cao, G.; Sofic, E.; Prior, R.L. Antioxidant and Prooxidant Behavior of Flavonoids: Structure-Activity Relationships. Free Radic.
Biol. Med. 1997, 22, 749–760. [CrossRef]

248. Kerry, N.L.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein
oxidation in vitro. Atherosclerosis 1997, 135, 93–102. [CrossRef]

249. Pannala, A.S.; Chan, T.S.; O’Brien, P.J.; Rice-Evans, C.A. Flavonoid B-Ring Chemistry and Antioxidant Activity: Fast Reaction
Kinetics. Biochem. Biophys. Res. Commun. 2001, 282, 1161–1168. [CrossRef] [PubMed]

250. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free
Radic. Biol. Med. 1996, 20, 933–956. [CrossRef]

251. Ratty, A.; Das, N. Effects of flavonoids on nonenzymatic lipid peroxidation: Structure-activity relationship. Biochem. Med. Metab.
Biol. 1988, 39, 69–79. [CrossRef]

252. Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [CrossRef]
253. Mishra, A.K.; Mishra, A.; Kehri, H.; Sharma, B.; Pandey, A.K. Inhibitory activity of Indian spice plant Cinnamomum zeylanicum

extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Ann. Clin. Microbiol. Antimicrob.
2009, 8, 9. [CrossRef]

254. Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris
and Staphylococcus aureus. Phytochemistry 1987, 26, 2231–2234. [CrossRef]

http://doi.org/10.1080/10408398.2019.1630358
http://www.ncbi.nlm.nih.gov/pubmed/31257900
http://doi.org/10.1021/acs.jafc.1c05012
http://doi.org/10.1007/s12017-013-8261-y
http://doi.org/10.3390/molecules22020277
http://doi.org/10.1517/17425247.2014.890588
http://doi.org/10.2147/IJN.S164235
http://doi.org/10.1021/jf2050137
http://doi.org/10.1088/0957-4484/25/48/485102
http://doi.org/10.3390/nano9111629
http://doi.org/10.1007/s10529-022-03234-1
http://www.ncbi.nlm.nih.gov/pubmed/35229222
http://doi.org/10.3390/foods9020207
http://doi.org/10.3390/ijms19092624
http://www.ncbi.nlm.nih.gov/pubmed/30189583
http://doi.org/10.1007/s00204-020-02689-3
http://www.ncbi.nlm.nih.gov/pubmed/32180036
http://doi.org/10.37358/rc.19.9.7497
http://doi.org/10.1016/S0955-2863(02)00208-5
http://doi.org/10.1016/S0891-5849(96)00351-6
http://doi.org/10.1016/S0021-9150(97)00156-1
http://doi.org/10.1006/bbrc.2001.4705
http://www.ncbi.nlm.nih.gov/pubmed/11302737
http://doi.org/10.1016/0891-5849(95)02227-9
http://doi.org/10.1016/0885-4505(88)90060-6
http://doi.org/10.1128/CMR.12.4.564
http://doi.org/10.1186/1476-0711-8-9
http://doi.org/10.1016/S0031-9422(00)84689-0


Molecules 2022, 27, 6280 34 of 34

255. Tsuchiya, H.; Iinuma, M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua.
Phytomedicine 2000, 7, 161–165. [CrossRef]

256. Haraguchi, H.; Tanimoto, K.; Tamura, Y.; Mizutani, K.; Kinoshita, T. Mode of antibacterial action of retrochalcones from
Glycyrrhiza inflata. Phytochemistry 1998, 48, 125–129. [CrossRef]

257. Lewandowska, U.; Gorlach, S.; Owczarek, K.; Hrabec, E.; Szewczyk, K. Synergistic Interactions Between Anticancer Chemother-
apeutics and Phenolic Compounds and Anticancer Synergy Between Polyphenols. Adv. Hyg. Exp. Med. 2014, 68, 528–540.
[CrossRef] [PubMed]

258. Brahmbhatt, M.; Gundala, S.R.; Asif, G.; Shamsi, S.A.; Aneja, R. Ginger Phytochemicals Exhibit Synergy to Inhibit Prostate Cancer
Cell Proliferation. Nutr. Cancer 2013, 65, 263–272. [CrossRef] [PubMed]

259. Gundala, S.R.; Yang, C.; Lakshminarayana, N.; Asif, G.; Gupta, M.V.; Shamsi, S.; Aneja, R. Polar biophenolics in sweet potato
greens extract synergize to inhibit prostate cancer cell proliferation and in vivo tumor growth. Carcinogenesis 2013, 34, 2039–2049.
[CrossRef]

260. Liu, W.; Li, S.-Y.; Huang, X.-E.; Cui, J.-J.; Zhao, T.; Zhang, H. Inhibition of Tumor Growth in vitro by a Combination of Extracts
from Rosa Roxburghii Tratt and Fagopyrum Cymosum. Asian Pac. J. Cancer Prev. 2012, 13, 2409–2414. [CrossRef] [PubMed]

261. Liu, J.; Henkel, T. Traditional Chinese medicine (TCM): Are polyphenols and saponins the key ingredients triggering biological
activities? Curr. Med. Chem. 2002, 9, 1483–1485. [CrossRef]

262. Morre, D.M.; Sun, H.; Cooper, R.; Chang, J.; Janle, E.M. Tea Catechin Synergies in Inhibition of Cancer Cell Proliferation and of a
Cancer Specific Cell Surface Oxidase (ECTO-NOX). Pharmacol. Toxicol. 2003, 92, 234–241. [CrossRef]

263. Morré, D.M. Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions. Cancer Lett. 2006,
238, 202–209. [CrossRef] [PubMed]

264. Kurin, E.; Atanasov, A.G.; Donath, O.; Heiss, E.H.; Dirsch, V.M.; Nagy, M. Synergy Study of the Inhibitory Potential of Red Wine
Polyphenols on Vascular Smooth Muscle Cell Proliferation. Planta Med. 2012, 78, 772–778. [CrossRef]

265. Scheepens, A.; Tan, K.; Paxton, J.W. Improving the oral bioavailability of beneficial polyphenols through designed synergies.
Genes Nutr. 2009, 5, 75–87. [CrossRef]

266. Saleem, Z.; Rehman, K.; Akash, M.S.H. Role of Drug Delivery System in Improving the Bioavailability of Resveratrol. Curr. Pharm.
Des. 2022, 28, 1632–1642. [CrossRef] [PubMed]

267. Ullah, R.; Khan, M.; Shah, S.A.; Saeed, K.; Kim, M.O. Natural antioxidant anthocyanins—a hidden therapeutic candidate in
metabolic disorders with major focus in neurodegeneration. Nutrients 2019, 11, 1195. [CrossRef] [PubMed]

http://doi.org/10.1016/S0944-7113(00)80089-6
http://doi.org/10.1016/S0031-9422(97)01105-9
http://doi.org/10.5604/17322693.1102278
http://www.ncbi.nlm.nih.gov/pubmed/24864104
http://doi.org/10.1080/01635581.2013.749925
http://www.ncbi.nlm.nih.gov/pubmed/23441614
http://doi.org/10.1093/carcin/bgt141
http://doi.org/10.7314/APJCP.2012.13.5.2409
http://www.ncbi.nlm.nih.gov/pubmed/22901230
http://doi.org/10.2174/0929867023369709
http://doi.org/10.1034/j.1600-0773.2003.920506.x
http://doi.org/10.1016/j.canlet.2005.07.011
http://www.ncbi.nlm.nih.gov/pubmed/16129553
http://doi.org/10.1055/s-0031-1298440
http://doi.org/10.1007/s12263-009-0148-z
http://doi.org/10.2174/1381612828666220705113514
http://www.ncbi.nlm.nih.gov/pubmed/35792129
http://doi.org/10.3390/nu11061195
http://www.ncbi.nlm.nih.gov/pubmed/31141884

	Introduction 
	Polyphenols in the Prevention and Treatment of Different Metabolic Disorders 
	Oxidative Stress and Inflammation 
	Pre-Clinical Studies 
	Clinical Studies 

	Insulin Resistance/Hyperglycemia 
	Pre-Clinical Studies 
	Clinical Studies 

	Obesity 
	Pre-Clinical Studies 
	Clinical Studies 

	Liver Intoxication 
	Pre-Clinical Studies 
	Clinical Studies 

	Aging 
	Pre-Clinical 
	Clinical Studies 

	Carcinogenesis 
	Pre-Clinical Studies 
	Clinical Studies 

	Cardiovascular Diseases 
	Pre-Clinical Studies 
	Clinical Studies 

	Other Health Problems 
	Pre-Clinical Studies 
	Clinical Studies 


	Proposed Panel of Polyphenols 
	Effective Delivery of Polyphenols to the Target 
	Effect of Chemical Structure on Biological Activities of Polyphenols 
	Synergetic Interaction of PPs and Some Challenging Issues for Their Applications 
	Conclusions 
	References

