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As natural functional bioactive ingredients found in foods and plants, polyphenols

play various antioxidant and anti-inflammatory roles to prevent the development

of disease and restore human health. The multi-target modulation of polyphenols

provides a novel practical therapeutic strategy for neurodegenerative diseases

that are di�cult to treat with traditional drugs like glutathione and cholinesterase

inhibitors. This review mainly focuses on the e�cacy of polyphenols on ischemic

stroke, Parkinson’s disease and Alzheimer’s disease, including in vivo and in

vitro experimental studies. It is further emphasized that polyphenols exert

neuroprotective e�ects primarily through inhibiting production of oxidative stress

and inflammatory cytokines, which may be the underlying mechanism. However,

polyphenols are still rarely used as medicines to treat neurodegenerative diseases.

Due to the lack of clinical trials, the mechanism of polyphenols is still in the stage

of insu�cient exploration. Future large-scale multi-center randomized controlled

trials and in-depth mechanism studies are still needed to fully assess the safety,

e�cacy and side e�ects of polyphenols.

KEYWORDS

polyphenols, antioxidant, anti-inflammation, neurodegenerative diseases, e�cacy,

mechanism

Introduction

Neurodegenerative diseases are a heterogeneous group of diseases characterized by

irreversible, progressive degeneration and death of neuronal cells (1). At present, the cause

of this kind of disease is still unclear and cannot completely cured yet, which poses a severe

challenge to human health and a substantial economic burden. Neurons present in the

body can maintain cellular homeostasis by dealing with different stressors (2). However,

two conditions usually lead to neuronal death. The first one is when multiple stressors

accumulate and exceed the cell’s ability to recover, various damages to cells will eventually

lead to neuronal death. The formation of higher-order aggregates is a significant cause

of neuronal stressor, and eventually triggers consequent cytotoxic events and cell death

(3–6). Another cause of neuronal death is the traumatic events, such as ischemic stroke,

which usually leads to a massive decrease in neuronal function in the affected area and
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subsequently induces acute neuronal cell death (7). In recent

years, the improvement of neurodegenerative diseases through

natural medicines such as polyphenols has increasingly become a

research hotspot.

Polyphenols are secondary plant metabolites with highly

diversified chemical structures (8). They are the largest class of

plant chemicals. The basic structure of polyphenols is to connect

at least one aromatic ring with one or more hydroxyl functional

groups (i.e., several hydroxyl groups on the aromatic ring).

Thousands of such polyphenol structures have been identified in

plants and foods, mainly including flavonoids (60%), phenolic

acids (30%), and other polyphenols, such as stilbene and lignans

(8, 9). Flavonoids can be divided into anthocyanins, flavan-3-oil,

flavonoids, flavanone, and other flavonoid subclasses. Phenolic

acid exists in free form in fruits and vegetables, and they often

exist in a conjugated state in bran and shell (10–12). Wine and

red wine contain stilbene in other polyphenols, and lignans are

found in many grains, such as sesame (13, 14). Polyphenols, as a

powerful antioxidant, can play an essential role in the treatment

of oxidative stress and neuroinflammation-related diseases. It

has been found that supplementing antioxidant vitamins and

enzymes, such as vitamins C, E, carotene, and other antioxidants,

can protect the organism against external stimuli, reduce and

eliminate the level of reactive oxygen species (ROS) (14, 15).

Recently, the side effects of traditional drugs used to treat

neurodegenerative diseases, such as cholinesterase inhibitors and

NMDA antagonists, have become more widely recognized (16).

Compared to other drugs, polyphenolic natural medicines are

often found in our daily diet, and they have fewer side effects.

Many plant foods that are common in our daily lives contain

polyphenols, such as tea, cocoa, fruits, and vegetables. In addition

to this, polyphenols have also been found in traditional Chinese

medicine (17).

The preventive and therapeutic effects of polyphenols on

neurodegenerative diseases have been investigated in previous

studies (18–20). Although there are relatively many studies on

polyphenols, the underlying core mechanism of polyphenols in

neurodegenerative diseases is still unclear. This review will focus on

the effects of polyphenols on neurodegenerative diseases, including

cerebral ischemic stroke (CIS), Parkinson’s disease (PD), and

Alzheimer’s disease (AD), which covers both in vitro and in vivo

studies. Furthermore, the underlying mechanisms that polyphenols

exert neuroprotective effects are also reviewed.

E�ects and mechanisms of
polyphenols in the treatment of
neurodegenerative diseases

As shown in Figure 1, the pathogenesis of neurodegenerative

diseases, as well as the core target and underlying mechanism of

polyphenols in the treatment of neurodegenerative diseases are

described, including cerebral ischemic stroke (CIS), Parkinson’s

disease (PD), and Alzheimer’s disease (AD). Table 1 further

illustrates the type of polyphenols, and the effects and mechanism

in vitro and in vivo experiments.

Cerebral ischemic stroke

Cerebral ischemic stroke is one of the leading causes of

disability in the world’s population. CIS is caused by the sudden

interruption of blood flow to the brain, leading to brain cell

death and neuronal damage (35). Because of the poor regenerative

capacity of the adult brain, neuronal damage is almost impossible to

reverse (36). Therefore, it is essential to reduce the loss of neurons

or tissues after CIS (37). Cerebral ischemia/reperfusion (I/R) injury

is an important risk factor for stroke because the process of I/R

may further aggravate the initial ischemic injury. For this reason,

the pathogenesis of CIS has not been fully clarified, and there is a

lack of effective treatments (38).

In vitro studies

Oxidative stress caused by excessive ROS production is closely

related to the pathogenesis of CIS. At the same time, oxidative

stress is one of the most important processes in brain I/R

injury and the main risk factor for neural cell apoptosis (39).

Excessive ROS production leads to neuronal dysfunction through

a variety of mechanisms, including inflammation, cell apoptosis

and necrosis (40), which is considered to be the main factor

leading to brain damage (41, 42). Resveratrol is a natural plant

antitoxin, which has neuroprotective, antioxidant, anti-cancer, and

anti-inflammatory properties (43–45). A study has found that

resveratrol exerts its protective effects against the damage of

oxygen glucose deprivation and reperfusion (OGD/R), at least

in part, by promoting mitophagy (23). Resveratrol attenuates

OGD/R-induced oxidative stress and preserves mitochondrial

function, exerting neuroprotective effects through PINK1/Parkin-

mediated mitophagy. Grape seed proanthocyanidins (GSP) are

one of the complex flavonoid polymers. Many studies show

that GSP have anti-inflammatory, anti-apoptotic, antioxidant,

and free radical scavenging properties (29, 46, 47). One study

established an OGD/R model using primary brain cell cultures

(48). They found that GSP could prevent the damages of OGD/R,

inhibit OGD/R-induced cell death and improve cell viability.

Pretreatment with GSP can efficiently prevent the cells from

almost all inflammatory factors. Another experiment identified the

main biological activity of TPE and TPB by high performance

liquid chromatography (HPLC) as phenolic acids after grading

and purification of crude extracts (21). It was found that TPE

and TPB facilitated the translocation of nuclear factor erythroid-

2 related factor 2 (Nrf2) to the nucleus and enhanced Nrf2

expression in the nucleus, restored OGD/R-induced oxidative

damage in BV2 microglial cells. Pelargonium is a polyphenol

extracted from phyllanthus amarus, which has a wide range of

biological and pharmaceutical activities, including antioxidant,

anti-inflammatory, antithrombotic, and other biological activities.

In addition, pelargonium has been found to activate the

nuclear factor erythroid-2 related factor 2/heme oxygenase-1

(Nrf2/HO-1) signaling pathway and protect PC12 cells from

cytotoxicity, as well as oxidative stress and apoptosis caused by

OGD/R (22).
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FIGURE 1

Polyphenols and neurodegenerative diseases. CIS is caused by the sudden interruption of blood flow to the brain, leading to brain cell death and

nerve damage. Subsequently, it causes microglia activation, elevates ROS, inward calcium flow, and calmodulin release, leading to neuronal death.

TPE, TPB, GSP, and diosmetin inhibited oxidative stress. GSP also inhibited calpain activation, and diosmetin exerted neuroprotective e�ects. PD is

caused by the aggregation of α-syn proteins into Lewy bodies, leading to decreased synaptic function, and further activation of microglia and

astrocytes. This leads to the release of inflammatory factors such as IL-β, TNF-α, and ROS, causing elevated levels of oxidative stress,

neuroinflammation and damage or apoptosis of DA neurons. α-M and scutellarin inhibited the aggregation of α-syn oligomers. Scutellarin and NAR

inhibited the activation of microglia. NAR inhibited the release of inflammatory factors. BAI inhibited the oxidative stress and neuroinflammation. AD

is caused by the deposition of Aβ42 aggregates, which activates microglia and astrocytes to release inflammatory factors and leads to

neuroinflammation as well as NFT. α-M inhibited the aggregation of Aβ42 oligomers. Curcumin and resveratrol inhibited the release of inflammatory

factors and neuroinflammation, thereby attenuating neuronal degeneration.

In vivo studies

Two-month-old male SD rats were modeled by middle cerebral

artery occlusion (MACO) (24), and rehabilitation training plus

resveratrol was used for treatment. It was found that resveratrol

improved the recovery of neurological and motor function

in MCAO rats through the silent mating type information

regulation 2 homolog-1 (Sirt1) signaling pathway, and activated

brain-derived neurotrophic factor/tyrosine kinase receptor b

(BDNF/TrkB) signaling pathways. By modeling the I/R injury

of male Wistar rats (48), it was found that the treatment of

GSP reduced the size of cerebral infarct and clearly improved

both behavioral and overall activities of rats as it allowed

to restore rearing and crossing scores to near control level.

Another study demonstrated that the TPE and TPB alleviated

the reduction of antioxidant enzyme activity in cerebral ischemia-

reperfusion injury, and exerted protective effects in MCAO

mice by inhibiting apoptosis and stimulating the Nrf2/HO-1

signaling pathway (21). Geraniin can reduce brain I/R damage by

inhibiting oxidative stress (22). Geraniin can activate Nrf2/HO-1

signal pathway, reduce I/R damage of the middle cerebral artery

occlusion-reperfusion (MCAO/R) in rats, significantly increase the

number of surviving neurons, and inhibit oxidative stress induced

by MCAO/R.

Therefore, polyphenols can inhibit oxidative stress to prevent

neurons against the damage of ROS, exerting neuroprotective

effects on CIS.

Parkinson’s disease

Parkinson’s disease (PD), a progressive motor dysfunction,

is defined as a significant loss and misfolding of dopaminergic
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TABLE 1 E�ects and mechanisms of polyphenols in the treatment of neurodegenerative diseases.

Compounds Disease Model E�ects and mechanisms References

In vitro In vitro In vitro In vitro

TPE and TPB CIS BV2 microglial cells Mice: MCAO Facilitated the

translocation of Nrf2 to the

nucleus and enhanced

Nrf2 expression in the

nucleus and restored

OGD/R-induced oxidative

damage

Alleviate the reduction of

antioxidant enzyme

activity in cerebral

ischemia-reperfusion

injury, exerted protective

effects in MCAOmice by

inhibiting apoptosis, and

stimulating the Nrf2/HO-1

signaling pathway

(21)

Geraniin PC12 cells SD rats: MCAO/R Protect PC12 cells from

OGD/R-induced

cytotoxicity and oxidative

stress, protect PC12 cells

from OGD/R-induced cell

apoptosis, activate of the

Nrf2/HO-1 signaling

pathway in vivo and in

vitro

Protects against I/R injury,

suppresses oxidative stress

induced by MCAO/R,

attenuates

MCAO/R-induced

neuronal apoptosis in vivo

(22)

GSP Primary brain

Neuron-astrocyte

cell: OGD/R

Wistar rats:

MCAO

GSP improved cell

viability, exerted a

powerful

anti-inflammatory effect as

it counteracted

OGD-induced

pro-inflammatory

cytokines expression or

anti-inflammatory

cytokines expression

GSP-induced calpain

activity inhibition or

enhancement of

neurotrophic factors such

as BDNF

(22)

Resveratrol Neurons: OGD/R SD rats: MCAO Inhibit the decrease of cell

viability and apoptosis

induced by OGD/R, and

activate the mitochondrial

phagocytosis induced by

OGD/R, improve the

recovery of motor

function.

Improve the recovery of

motor function

(23, 24)

Scutellarin PD α-Syn fibrillation:

Fe3+-and Al3+

induced

Inhibited the activation of

microglia and inhibited the

release of inflammatory

factors

(25)

CGA Enteroendocrine L

Cells

Male C57BL/6 J

mice

Increased intracellular

cAMP levels, increased the

release of GLP-1 and

GLP-1 release

Improves rotenone-

induced behavioral and

cognitive deficits in mice,

recovers rotenone-induced

oxidative damage to the

striatum and cortex of

Parkinson’s disease

(26)

NAR BV-2 cells SD rats Inhibited the Activation of

Microglia and NLRP3

Inflammasome

It can reduce the loss of

LPS-induced DA neurons

(27)

α-Mangostin

(α-M)

PC12 cell:

rotenone-induced

Male C57BL/6J

mice:

rotenone-induced

Promotes

autophagy-directed

clearance of α-Syn majorly

through the activation of

AMPK

It inhibits oxidative stress

in the cortex, improves

rotenone-induced

behavioral defects in mice

treated with rotenone,

alleviates

rotenone-induced striatal

DA ergic neuron

degeneration and

rotenone-treated SNc in

mice, and alleviates

rotenone-induced α-Syn

accumulation

(28)

(Continued)
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TABLE 1 (Continued)

Compounds Disease Model E�ects and mechanisms References

In vitro In vitro In vitro In vitro

Procyandin A2

(PCA2)

AD RAW264.7: LPS

stimulation

Mice: D-galactose-

induced aging

mice

Anti-inflammatory and

antioxidant effects

Down-regulate NLRP3

inflammatory body signal

pathway to inhibit

inflammation in brain

tissue

(10, 29)

Curcumin PC12 cell: Aβ

stimulation

Rats: damaged by

H2O2

The neuroprotective effect,

lower Aβ Oligomer

induced neurotoxicity,

reducing LPS- induced

neuroinflammation

Anti-oxidative properties

of AM, reduce senile

plaque and repair neuron

damage

(30, 31)

Baicalein Neuroblast:

Exposure to Aβ

Oxidative stress

model of

neuroblastoma

SH-SY5Y cell line

APP/PS-1 double

transgenic mice

Reduce oxidative stress and

neuroinflammation and

protect nerves. Reduced

ROS production, reduced

oxidative stress, inhibited

tau hyperphosphorylation,

and protected SH-SY5Y

cells from Aβ O Damage

Effectively improve

memory impairment and

restore cognitive function

(32)

Trehalose HAW cells:

overexpress the

APP695 gene

20E2 cells:

overexpress the

APP695 gene

Mice: Bilateral

intraventricular

injection Aβ

fragment.

It affects App Processing

and Decreases Aβ

Blocked Aβ Deposition

and microglial activation

(33)

Resveratrol PC12 cells: Add

Aβ1−42 to the

culture medium

induction.

Mice:

SIRT1Dex4/Nestin-

Cre mice Rats:

Ovariectomized

(OVX)+ d-

galactose (d-gal)

Prevent neuronal damage,

inhibit Aβ1−42, Induces

apoptosis, reduces

oxidative status, and

alleviate mitochondrial

damage

Improve the impaired

learning and memory in

neurodegenerative

diseases, and protect the

memory decline in AD

through its antioxidant

activity

(34)

(DA) neurons in the substantia nigra (SN), α-Synuclein (α-Syn)

aggregation in louis corpuscles, as well as motor dysfunction

(static tremor, rigidity, and motor retardation) and non-motor

symptoms (autonomic nervous dysfunction, cognitive impairment,

depression, REM sleep behavior, etc.) that appears several years

before the onset of the motor phenotype (49–54). Studies

have found that most PD patients are sporadic, and the rest

are mostly related to gene mutations caused by mitochondrial

dysfunction. About 50% of early-onset PD patients have mutations

in Parkin (55–57).

In vitro studies

α-Syn is one of the first genes found to be associated with PD.

Research proves that α-Syn and Nrf2 deficiency aggravates protein

aggregation, neuroinflammation, and neuronal death (58). A study

has found that scutellarin can effectively inhibit metal-induced and

uninduced α-Syn’s fibrosis (25), and stabilize partially folded α-

Syn intermediate to form an SDS-resistant high-order oligomer.

Baicalin (BAI) is an important flavonoid compound. Another study

by human cell line pLVX-Tet3G-α-synuclein SH-SY5Y found that

BAI could protect DA neurons against ROS and decrease C/EBPβ

and α-Syn expression in pLVX-Tet3G-α-synuclein SH-SY5Y cells

(59). Alpha-mangostin (AM), a polyphenolic xanthone obtained

from Garcinia Mangostana L, can activate the autophagy in PC12

cells, playing roles in clearance of α-Syn (28). Chlorogenic acid

(CGA) is a polyphenolic compound with antioxidant and anti-

inflammatory properties. CGA initiated the SIRT1/NF-κB signaling

pathway and inhibited OGD/R-induced inflammation, oxidative

stress, and neuronal apoptosis by upregulating MIR497HG to

suppress miR-29b-3p expression (60). Naringin (NAR) is a natural

flavone contained in citrus fruits and grapefruit, which has a lot of

pharmacological activities. A study has proved that NAR protects

DA neurons from lipopolysaccharide (LPS)-induced neurotoxicity

by inhibiting the activation of inflammatory corpuscle signals of

microglial NOD-like receptor pyrin domain containing 3 (NLRP3)

and the subsequent release of proinflammatory factors (27).

In vivo studies

A study of rotenone-induced male C57BL/6J mice proved

that AM improved the behavioral deficiency induced by rotenone

(28), and offset the oxidative stress in striatum and cortex,

and decreased the degradation of DA neurons. DA can regulate

innate immunity and inhibit systemic inflammation through

different subtypes of dopamine receptor (DR) (61). DA also

inhibits neuroinflammation in the brain through astrocyte DR2

and downstream signal transduction (62). Neuroinflammation

is related to DA neurodegeneration and is a critical factor

in the pathogenesis and progression of PD (63–66). A study

Frontiers inNutrition 05 frontiersin.org

https://doi.org/10.3389/fnut.2023.1139558
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2023.1139558

modeled adult male C57BL/6 mice using LPS (67), and found

that BAI could inhibit the activation of hippocampal glial

cells and cytokine release, inhibit SIRT1 and downregulate

the expression of high mobility group protein 1 (HMGB1) in

microglial cells, preventing LPS-induced cognitive dysfunction

and neuroinflammation, and producing neuroprotective effects.

Another study modeled the male C57BL/6 mice via 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) (59), and found BAI

protected dopaminergic neurons and rescued motor dysfunction.

Chlorogenic acid (CGA) could downregulate rotenone-induced

phosphorylated α-Syn levels by upregulating PI3K/AKT signaling

pathway and inactivating GSK-3β via GLP-1, which improved

rotenone-induced dopaminergic neurodegeneration and α-Syn

accumulation in the substantia nigra, and enhanced striatal

dopaminergic mean density of nerve fibers and eventually

prevented rotenone-induced motor and cognitive impairments

(26). NAR regulates PQ-induced DRD2, DAT, LRRK2, SNCA, β-

linked protein, cystathionine-3 and BDNF genes, alleviates the loss

of dopaminergic neurons (68). By modeling adult male Sprague-

Dawley rats through LPS (27), it has been shown that NAR

ameliorates LPS-induced decrease in TH protein expression and

inhibits the activation ofmicroglia andNLRP3 inflammasome, thus

protecting DA neurons.

Therefore, it has been evidenced that polyphenols can

disintegrate upstream α-Syn aggregation and inhibit the further

development of PD. Moreover, polyphenols can also inhibit

inflammation, reduce oxidative stress, play a neuroprotective role

in regulating downstream events to protect DA neurons, and

hinder the progression of PD.

Alzheimer’s disease

AD is a neurodegenerative disease, which is the most common

type of dementia. AD can lead to progressive cognitive decline,

irreversible loss of memory and cognitive function, and interfere

with daily activities. Its main characteristics are Aβ deposition

of aggregates in extracellular amyloid plaques (senile plaques),

followed by degenerated neurons containing neurofibrillary tangles

(NFT), which are mainly composed of hyperphosphorylated

microtubule-associated protein Tau and synaptic loss (1, 2, 69–73).

In vitro studies

The occurrence of AD is closely related to neuroinflammation.

Some studies have found that neuroinflammation and microglia

activation exist in the early stage of AD (74). In the AD

model, microglia and astrocytes have been proven to produce

various proinflammatory cytokines (3–5, 75). Resveratrol is

a polyphenol commonly found in grape skins (Vitaceae).

More and more studies have shown that resveratrol has anti-

inflammatory, antioxidant, and anti-diabetes effects and can

improve cognitive decline. Resveratrol has been proven to exert

inhibitory activity on neuroinflammation and can inhibit the

release of proinflammatory factors from microglia and astrocytes

(76–78). Microglia can eliminate Aβ sediment and activate

phagocytosis to restore tissue homeostasis (79, 80). However, when

activation becomes chronic, microglia release excessive cytotoxic

mediators, including proinflammatory cytokines, chemokines,

complement components, ROS, and nitrogen species, which will

cause neuronal cell degeneration (81, 82). Curcumin was first

isolated from Curcuma longa L. in 1870 as a low molecular

weight polyphenol compound. Studies have shown that curcumin

has many beneficial pharmacological effects, including anti-cancer,

anti-virus, anti-arthritis, anti-oxidative stress, anti-inflammatory,

and neuroprotective properties (83). Inhibiting inflammation-

promoting factors released by microglia are important targets

of curcumin in treating AD. It has been shown that curcumin

and its analogs cur 6 and cur 16 inhibit the secretion of pro-

inflammatory mediators IL-1β and TNF-α released by microglia

after stimulation of HMW Aβ42Os (32). The senile plaque can

induce AD, and the “amyloid cascade hypothesis” is the most

accepted hypothesis of AD etiology (2). Aβ42 oligomer is a soluble

and diffusible Aβ species that play a key role in synaptic loss

and synaptic damage in individuals with mild cognitive decline

and can further trigger synaptotoxicity and neurotoxicity, glial cell

proliferation, and activation, inflammation, or cell death (3–7, 84).

Aβ also has the ability to bind to pattern recognition receptors on

glial cells (including astrocytes and microglia), and it contributes to

the progression and severity of AD (32, 85, 86). α-Mangostin (α-M)

is a kind of polyphenol flavone from polygonatumodoratum, which

has been proven to be effective for clearness of Aβ. It was found

that α-M favored Aβ fiber generation, decomposition, uptake, and

degradation, which reduced Aβ neurotoxicity induced by oligomer

and prevented LPS-induced neuroinflammation (30).

In vivo studies

A study has investigated 90 AD patients by using a

randomized double-blind method (87). Compared with the

donepezil hydrochloride group, the resveratrol (RES) group

achieved a significantly higher efficacy rate, MMSE score and

FIM score, and the clinical indicators and ADAS cog score were

significantly lower. There was no significant difference in the

total incidence of adverse reactions. It proves that polyphenols

have obvious effects on the treatment of AD diseases, including

improvement of the inflammatory factor, and promotion of the

cognitive function and prognosis (87).

Thus, polyphenols inhibit the formation and degradation of

senile plaques in AD, thereby protecting the function of synapses.

In addition, polyphenols play a role in inhibiting the release of

inflammatory factors and neuroinflammation in AD, preventing

the formation of NFTs and neuronal death, thus inhibiting the

progression of AD.

Perspectives and conclusion

Polyphenols show a significant neuroprotective effect, but

the lack of understanding of the underlying mechanism limits

its clinical application. This minireview makes a comprehensive

investigation to reveal the role and mechanism of polyphenols

in the treatment of neurodegenerative diseases, including in

vitro and in vivo studies. It has been found that polyphenols,
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as multi-target drugs, play a crucial role in inhibiting the

formation of pathological products, such as oxidative stress

and inflammatory factors. Polyphenols have two advantages

as drugs for the treatment of neurodegenerative diseases.

Firstly, polyphenols are derived from natural plants and can

be obtained in daily diet. They have fewer side effects and

are suitable for long-term use. Secondly, polyphenols can treat

neurodegenerative diseases through multiple targets, which is

undoubtedly crucial for the therapy of heterogeneous diseases.

However, polyphenols are currently rarely used as drugs for

the treatment of neurodegenerative diseases. Future large-scale

multi-center randomized controlled trials and in-depthmechanism

studies are still needed to fully evaluate the safety, effectiveness and

possible side effects of polyphenols as therapeutic agents.
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