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A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even
totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative
stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of
cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences.
Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents
to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways
during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds
as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration’s
extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream
dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.

1. Introduction

Neurodegenerative disorders (NDDs) progressively affect
millions worldwide as significant causes of disability and

death, despite progress in considering various dysregulated
routes in the pathophysiology of NDDs. The main patho-
physiological processes of NDDs are still unknown [1–4].
Spinal cord injury (SCI) is an NDD that causes sensory-
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motor impairment and significantly lowers the standard of
living. SCI is becoming more common among people aged
14.6 to 67.6 years old, and men are four times more likely
than women [5, 6]. SCI has primary and secondary phases
from a pathophysiological standpoint. The secondary step
comprises inherent oxidative stress (OS), autophagic, apo-
ptotic, and inflammatory routes. Direct injuries occur after
spinal mechanical trauma [7].

In contrast, extrinsic routes have an essential role in SCI,
such as glial scar development and destruction [8]. Extrinsic
pathways are coupled with intrinsic processes such as OS, neu-
roinflammation, and neuroapoptosis (e.g., axonal signaling).
Thus, the preceding pathogenic pathways negatively affect
neurodegeneration and neurodegenerative mechanisms, even-
tually leading to apoptosis. Antioxidant defenses modulate
neuroinflammatory and neuroapoptosis responses, which
influence microglia, astrocytes, and related mediators and
have a considerable position in the initiation and development
of SCI [9, 10].

It is crucial to highlight that developing new plant
medications has a compelling track record in producing
unconventional therapeutics. Incidentally, the plant king-
dom has demonstrated encouraging outcomes in that
against SCI. Polyphenols/phenolic combinations are obtain-
able phytochemicals and can act as multiple targeted drugs
with excellent selectivity and minimal toxicity among natu-
ral substances, because of their broad biological activity
and therapeutic properties are now used in contemporary
medications to construct and acquire novel treatments. In
many NDDs, these substances have been regarded as reliable
nutritional mediators with potent repressive impacts on OS
and inflammation [11]. Emerging research has recently
focused on utilizing organic neuroprotective polyphenols
with putative antioxidant properties to treat SCI and NDDs
[12]. This review discussed about the oxidative-mediated
polyphenols’ role in controlling and managing SCI.

2. Methodology

PubMed, Scopus, and Web of Science were all used to
conduct this literature review. The terms polyphenols, SCI,
oxidative stress, reactive oxygen species, preclinical studies,
and clinical studies were utilized. We selected and analyzed
English-published research papers, narrative review articles,
and primary research articles until June 2022. An algorithm
used the flowchart imposed in Figure 1 (according to Page
et al.’s guidelines [13]) and contained all of the steps/selec-
tion constraints for the required literature.

3. Spinal Cord Injury Pathophysiology

SCI is categorized into primary, secondary, and chronic [14,
15]. The first stage is the physical forces related to the orig-
inal traumatic event, often the essential factors of injury
severity, causing the first stage. Compression, shearing, lac-
eration, and severe stretch/distraction are examples of these
forces [16]. Following the original injury, a series of subse-
quent occurrences occur. The damage worsens in the second
stage, and neurological impairments and consequences

worsen [17, 18]. After the first injury, secondary SCI is a
gradual and progressive injury (Figure 2).

Furthermore, a chronic stage could affect the orthograde
and retrograde routes and brian-specific regions; moreover,
according to the time scale, chronic stages can start from
days to years following the damage [19, 20]. Several vascular
alterations are detected during the secondary cascade
[21]—neutrophils and macrophages and role in releasing
superoxide anion and hydrogen peroxide to sanitize the
wounded area. Nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase is a significant superoxide anion
originator of superoxide anion that plays a role in activating
the hematogenous phagocytic cells [22]. Moreover, the
phagocytic inflammatory cells work as reactive oxygen species
(ROS) producers. At the same time, the free radicals respond
to polyunsaturated fatty acids, which lead to a phospholipid
structural design disruption of cellular and subcellular organ-
elle membranes. Furthermore, aldehyde molecules produced
by lipid peroxidation prevent metabolic enzymes, such as
Na+/K+-ATPase, from working precisely [23].

SCI causes an increase in cytokines containing tumor
necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and
interleukin-6 (IL-6), as well as overexpression of nuclear
factor kappa B (NF-κB), activator protein 1 (AP-1), c-Jun
N-terminal Kinase (JNK), and other inflammatory and
apoptotic factors like p38, mitogen-activated protein kinase
(MAPK), and prostaglandin E2 (PGE2) [24]. The generation
of excitation amino acids involving glutamate from damaged
cells increases the discharge of excitation amino acids after
SCI [25, 26].

Additionally, the glial scar formation, microglia/macro-
phages, reactive astrocytes, and extracellular matrix molecu-
les—particularly chondroitin sulfate proteoglycans—at the
chronic phase play a vital part in preventing axon growth
by acting as a protective border [27–29]. Therefore, develop-
ing reliable methods and treatments for SCI patients
becomes imperative. Reduced ROS levels are an essential
approach for SCI management, which can be accomplished
by employing antioxidants or drugs that standardize or
modulate ROS signaling routes [30, 31].

4. Spinal Cord Injury and Oxidative Stress

Reactive nitrogen species (RNS) and ROS are frequently
formed endogenously. However, an increased ROS construc-
tion may outpace the antioxidant defense capability, leading
to OS and oxidative destruction (Figure 3) [32–35]. Super-
oxide is created by the NADPH oxidase (NOX), mito-
chondrial electron transport chain, and xanthine oxidase
(XO), which response to nitric oxide (NO) manufactured
by the nitric oxide synthase (NOS) to generate the peroxy-
nitrite (ONOO) [36, 37].

Superoxide dismutase (SOD) is an enzyme that trans-
forms oxygen (O2) into hydrogen peroxide (H2O2). There
are two similar forms of SOD: (1) copper (Cu)/zinc(Zn)-
SOD and (2) manganese(Mn)-SOD. Zn plays a considerable
part in the antioxidant defense scheme. According to the
databases, the Zn condition and time-dependent modifica-
tions following SCI are still unknown [38–42]. The analysis
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Figure 1: The stages of picking data for inclusion in the existing research are illustrated in a flow chart; n = number of literature reports.
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Figure 2: Pathophysiology of SCI: spinal cord injury. ROS: reactive oxygen species; GPx: glutathione peroxidase; SOD: superoxide
dismutase; CAT: catalase; GSH: glutathione; MIF: macrophage migration inhibitory factor; TNF-α: tumor necrosis factor-alpha; and NF-κB:
nuclear factor kappa B.
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of Zn dynamics in 38 cervically damaged SCI patients
yielded a prediction prototype for continuing functional pre-
diction [41]. Heller and colleagues [42] looked at the vigor-
ous variations in serum Zn intensity in short periods
throughout the preliminary 72 hours after injury to see a
link between early changes in total Zn serum levels and
NDDs and patient outcomes. They discovered that patients
with the cognitive disease have higher median Zn concentra-
tions in the initial 9 hours after injury than patients with ver-
tebral fractures who do not have neurological dysfunction.
They established that the result is associated with early Zn
level dynamics and could be an investigative tool for these
patients. Alterations in serum Zn levels allow early assessing
the risk of neurological damage [42].

In this context, it was discovered that Zn therapy aided
motor control restoration in the 28 days that followed SCI
and reduced ROS and increased antioxidant potential [43].
The Fenton reaction allows H2O2 to produce the highly reac-
tive hydroxyl radical (HO•), that considers the leading cause
of lipid peroxidation in the presence of iron. Catalase (CAT)
and glutathione peroxidase (GPx) convert H2O2 to water
and oxygen [44]. SOD, CAT, GPX, and glutathione reductase
are the primary endogenous antioxidant enzymes [34].

The enzyme GPX is selenium (Se) dependent. By neu-
tralizing reactive oxygen species (ROS) via GPX and revers-
ible oxidation to glutathione disulfide, GSH acts as an
antioxidant (GSSG). Glutathione reductase transforms into
GSH. Meanwhile, XO produces superoxide but catalyzes
the conversion of xanthine to UA, a compound that may
scavenge superoxide. HO is the primary antioxidant in bio-
logical fluids. In rats, Se nanoparticles were shown to treat
OS-induced SCI [45]. According to Seelig et al., Cu and Se
concentrations upon intake and Se and ceruloplasmin levels
after one day were indications of likely SCI clearance [46].
Within the secondary injury stage, magnesium (Mg) is
assumed to play an important role. A better probability of

neurological recovery has been associated with reduced Mg
serum concentrations during the first seven days [47]. Mg
acts by blocking ROS generation and lipid peroxidation pre-
cisely [48].

Acrolein, a reactive aldehyde generated endogenously by
lipid peroxidation and involved in SCI, is more responsive
than the other HNEs and causes glutathione deprivation
[49]. To investigate the antioxidant potential of SCI patients,
Bastani et al. examined a vast scope of antioxidant and OS
markers. When evaluating persons with SCI to controls, they
observed that urine F2-IsoP and specific enzymes (NOX and
XO) in vastus lateralis biopsies enhanced while SOD
decreased [50, 51].

5. Polyphenols in Spinal Cord Injury

To reduce OS after SCI, many natural polyphenolic combi-
nations have been used [52]. These compounds impede the
restoration of molecules following free radical damage and
control various dysregulated pathways/mediators, such as
blocking production. OH. Such polyphenols have formerly
been prospective neuroprotective therapeutics in other
OS-related NDDs (Figure 4) [53–55].

5.1. Epigallocatechin Gallate. The primary compound of tea
catechins is epigallocatechin gallate (EGCG) (Figure 5),
often called epicatechin. This composition is related to the
biological functions of green tea extracts [56]. EGCG’s
anti-apoptotic, anti-inflammatory, and antioxidant actions
have been demonstrated to prevent against NDDs [57],
brain injury [58], SCI [59], and peripheral nerve damage
[60] in many experiments conducted. The hydroxyl groups
in the catechins ring B and D cause them to interact with
free radicals [61]. For 24 hours, various doses of green tea
polyphenols (Table 1) (50–200 μg/mL) prevented spinal
neurons from oxidative damage caused by H2O2 [62].
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Figure 3: SCI can be facilitated by oxidative stress. TNF-α: tumor necrosis factor-alpha.
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In vitro experiments revealed that PC12 cells to 0-2000mol/
L of EGCG hindered ROS generation [63]. Dosages of EGCG
(10, 25, or 50 mg/kg, i.p.) drastically diminished NADPH/neu-
ronal nitric oxide synthase (nNOS) representation following
nerve damage in mice [53] and inhibited neurodegeneration
by activating the cyclic adenosine monophosphate (cAMP)
for 18 days with 25-75 mg/kg dosage scale of myeloperoxidase
(MPO) function, inducible TNF-α, interleukin 1 beta (IL-1β),
poly-ADP ribose polymerase (PARP), nitric oxide synthase
(iNOS), and cyclooxygenase-2 (COX-2) representation were
all reduced in the rat spinal cord after a 50 mg/kg dose of
EGCG [60, 64].

Khalatbary et al. also swiftly exhibited a 50 mg/kg i.p.
injection of EGCG and 1 hour after SCI lowered malonalde-
hyde (MDA) [65]. In a rat spinal cord organic culture,
EGCG at a five-molar level for 48 hours suppressed OS
and preserved motor neurons, according to in vitro experi-
ments [66]. Thermal hyperalgesia was minimized in mice
after administering 30 mg/kg of EGCG for a week following
SCI, inhibiting the expression of RhoA and TNF-α [67].

5.2. Resveratrol. Resveratrol (3,4′,5-trihydroxystilbene)
(Figure 5) is a natural phytoalexin identified in Veratrum
grandiflorum, grape, and peanut that protects counter to
stress damage fungal growth [68, 69]. Resveratrol is a potent
antioxidant because it scavenges free radicals, protects
against ROS-stimulated DNA damage [70], and reduces
the generation of H2O2. Resveratrol significantly suppressed
oxidized glutathione reductase [63], GSH function, TNF-α,
and IL-1β production [64]. Additionally, resveratrol pro-
moted autophagy by stimulating the nuclear factor erythroid

2–related factor 2 (Nrf2) gene and prevented programmed
cell death by increased expression of the sirtuin 1 (SIRT1)
gene [71, 72].

According to some studies, resveratrol is a SIRT1 activa-
tor that may prevent OS, inflammation, and apoptotic neu-
rons, according to some studies [73]. The SIRT1/Akt1
pathway was developed by resveratrol, resulting in cell sur-
vival [74]. Suppressing the TLR-4/MyD88/NF-κB enhanced
mitochondrial function/biogenesis [75].

By surpassing the NF-κB signaling pathway, the resvera-
trol might reduce the SCI health consequence severity [76].
Resveratrol (Table 1) (100 mg/kg, i.p.) induced the activity of
p-AMPK, Bcl-2, and SIRT1, while lowering the transcription
of p62, caspase-3, caspase-9, and Bax, which following SCI.
Resveratrol was also reported to protect neurons by downreg-
ulating via the SIRT1/AMPK signaling pathway [77, 78].

Apoptosis-related genes were revealed to be helpful in
the SCI rat model by Liu et al. [79]. Resveratrol exhibited
anti-apoptotic impacts after SCI, according to Zhang et al.,
by reducing associated p53, caspase-3, and cytochrome C
[80]. Additionally, resveratrol suppressed neuroinflamma-
tion following SCI by triggering autophagy by the AMPK/
mTOR pathway [81]. Resveratrol significantly benefited
neuronal autophagic flux to minimize programmed cell
death and stimulate operational repair in rats to post to
SCI [82].

A further study demonstrated that resveratrol (200mg/kg)
diminished programmed cell death, OS, and inflammation
[30]. In mice, a particular quantity of resveratrol improved
autophagic proteins while reducing apoptotic ones [83]. Sen-
turk et al. reported that resveratrol (Table 1) (10 mg/kg)

NR2B Chemokine R MOR GABAR

Spinal cord injury

Mitochondrial transport NOS

MAPKIncreases BAX

Caspase-3/9

PARP1

Apoptosis

Decreases Bcl-2
Increases

PARP

ATP
depletion

PI3K

Akt

Nrf2
Keap1

ARE
DNA damage

c-Jun

Cytokine

ROS oxidative stress

LPO

Polyphenols

Ca2+ pump,
Na+/K+ ATPase

dysregulation

IKKB

Inflammation

Polyphenols

Oxidative stress

Increases SOD,
CAT, GSH, GPx,

and decreases
MDA

NF-kB

Increases IL-1𝛽,
IL-6, COX-2,

NOS, and TNF-𝛼Increases
Ca2+

NADPHO

Figure 4: Action mechanism illustration of polyphenols blocking spinal cord injury. LPO: lactoperoxidase; TNF-α: tumor necrosis factor-alpha;
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exhibited anti-inflammatory characteristics after SCI [84].
Polydatin (20, 40 mg/kg), a glucoside of resveratrol [85], via
the Nrf2/heme oxygenase-1 (HO-1) pathway, suppressed OS
and protected apoptosis post-SCI [86].

5.3. Quercetin. Flavonoids such as Quercetin (Figure 5) are
observed in several fruits, vegetables, and grains. It exhibits
anti-inflammatory, anti-carcinogenic, antioxidant, and anti-
viral activities, among other pharmacological attributes.
Quercetin has also been demonstrated to enhance neuronal
dysregulation and mental/physical malfunction by inhibiting
lipid peroxidation and capillary penetrability and encourag-
ing mitochondrial biogenesis [87–90]. Quercetin’s phenolic
hydroxyl groups can effectively scavenge. OH, superoxide
anions, and LPO [91]. Quercetin can also connect to conver-
sion metals and inhibit oxidation and decrease, forming
metal chelates that can be used to neutralize transition

metals, notably copper and iron [92]. Quercetin’s neuropro-
tective properties have been widely exhibited in several
in vivo studies. After brain damage considerably reduced
GSH levels and MPO function [93]. In traumatic brain dam-
age [94], quercetin boosted the activities of SOD, GPx, and
AT, lowered the increased MMP-9 level [95], and regulated
the tropomyosin receptor kinase B (TrkB) and brain-
derived neurotrophic factor (BDNF) [96].

Quercetin (Table 1) (30 mg/kg) also reduced OS, spinal
cytokine secretion, and glial cell facilitation of GFAP [97].
Additional studies revealed that a ten-day i.p. quercetin
management at a 20 mg/kg/day dosage scale could mitigate
monosodium Glu-induced neurotoxicity by lowering
p38MAPK, decreasing OS, and boosting GFAP transcription
[98]. According to Azevedo et al. [89], quercetin (25, 50, and
100 mg/kg) mitigated OS-induced degeneration by lowering
LPO, which was in agreement with Liu et al. [99, 100].
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Table 1: Various preclinical investigations have investigated the effect of polyphenols in combating OS and in the after of SCI.

Polyphenol Dose/concentration Study model Pharmacological mode of actions References

Epigallocatechin
gallate

50 mg/kg (i.p), instantly and one h
after SCI

Female SD
rats

Diminished Bax and MDA; improved Bcl-2 [65]

30 mg/kg (i.p.); 7 days after SCI
Female

BALB/c mice
Decreased TNF-α and RhoA [67]

10, 20 mg/kg (i.t)
Female SD

rats
Decreased Bax; increased Bcl-2 and BDNF [156]

25 mg/kg (p.o), 1 and 6 h later to SCI
Male adult
CD1 mice

Decreased Bax, TNF-α, MPO, MDA, NF-κB,
iNOS, PARP; increased Bcl-2

[157]

Resveratrol

1 and 10 mg/kg (p.o); 30 min earlier to
SCI

Wistar male
rats

Decreased NO and MDA [159]

400 mg/kg (p.o.); 10 days after SCI SD male rats Decreased MDA and IL-6

50, 100 mg/kg (i.p.)
SD male and
female rats

Decreased MDA; improved Na+, K+-ATPase
activities

[160]

200 mg/kg (i.p.); until three days after
SCI

SD rats
Decreased MDA, MPO, IL-1β, IL-10, and TNF-α;

increased SOD
[79]

50, 100, 200 mg/kg (i.v.); until seven
days after SCI

Female mice Decreased p38MAPK; NF-κB [158]

100 mg/kg (i.p.)
Long Evans
female rats

Decreased MDA, NO, and TBARS [161]

200 mg/kg (i.p.); directly after SCI
Wistar male

rats
Enhanced SOD, GPx, and CAT [162]

100 mg/kg (i.p), directly after SCI Male SD rats
Diminished TNF-α, IL-1β, IL-10, and mTOR;

enhanced AMPK, LC3, and Beclin-1
[81]

200 mg/kg (i.p), Immediately after SCI
Male C57BL/

6 mice
Decreased Bax; increased Bcl-2, LC3, and Beclin-1 [83]

Quercetin

10,100mg/kg (i.p), first 3 days after SCI
Wistar male

rats
Decreased MDA and NO [103]

100 mg/kg (i.p.) for three days
following SCI

Male SD rats Decreased ROS, IL-1β, IL-18, and TNF-α [108]

20 mg/kg (i.p.), twice per day for seven
days following SCI

Wistar albino
rats

Decreased MDA, IL-6, TNF-α, and caspase-3 [105]

Up until ten days following SCI, 7.5
mg/kg (i.p.), two times per day

Female SD
rats

Decreased TNF-α, iNOS, NF-κB, and IL 12;
enhanced IL-4 IL-10, and TGF-β

[107]

Honokiol
20 mg/kg (i.p.)

Female SD
rats

Decreased MPO, iNOS, COX-2, IL-1β, IL-6, and
TNF-α

[126]

50, 100 mg/kg (i.p.), until three days
following SCI

Female SD
mice

Decreased MDA, ROS, and TNF-α [163]

Curcumin

100 mg/kg (i.p), 15 min following SCI Male SD rats, Decreased IL6, IL1β, TNF-α, NF-κB, and TLR4 [164]

200 mg/kg (i.p), 1week before SCI
Male Wistar
albino rats

Degraded caspase-3, IL1β, TNF-α, MDA, SOD,
and GSH

[145]

60 mg/kg (i.t), directly after SCI, until
three weeks, once weekly

Wistar rats Decreased IL4, IL1β, IL12, and TNF-α, [143]

200 mg/kg (i.m), until eight weeks after
SCI

Male SD rats Decreased caspase-3, Bax, and Bcl-2 [140]

60 mg/kg (i.m), 30 min after SCI, until
three weeks

Male SD rats Decreased mTOR, p62, and Akt [165]
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Following SCI, a 7-day i.p. processing of 20 mg/kg quer-
cetin inhibits the p38MAPK/iNOS signaling pathway and
synchronizes secondary OS by blocking the BDNF and
JAK2/STAT3 signaling pathways [101]. Quercetin adminis-
tration at a frequency of 0.25 mol/kg diminished MPO
expression, according to Schültke et al. [102]. In addition,
a particular dose of quercetin provided during three days
of SCI enhanced overall antioxidant levels while lowering
NO and MDA levels [103]. Quercetin raised overall antiox-
idant potential and paraoxonase function in rats following
SCI [104].

A further research paper discovered that delivering 20
mg/kg of quercetin could safeguard against SCI-stimulated
OS by behaving as an antioxidant and anti-inflammatory
[105]. Wang et al. observed that quercetin (50 mol/kg) atten-

uated proinflammatory cytokines while elevating anti-
inflammatory cytokines relevant to oxidative mechanisms.
The treatment significantly attenuated the cystic cavity size
while enhancing macrophage polarization, neuronal func-
tion, and axonal survival [106]. Based on in vivo and
in vitro investigations, quercetin (7.5 mg/kg) suppressed
oligodendrocyte necroptosis after SCI by modulating the
STAT1 and NF-κB pathways [107]. Jiang et al. discovered that
100 mg/kg of quercetin lowered ROS construction, IL-1,
TNF-α, and IL-18 in female rats following SCI [108]. Therefore,
quercetin appears to be a favorable treatment for reducing OS
after neurodegeneration and SCI.

5.4. Honokiol. Magnolia grandiflora has a pleiotropic lignan
called honokiol (Figure 5) [109]. Antioxidant [110], anti-

Table 1: Continued.

Polyphenol Dose/concentration Study model Pharmacological mode of actions References

Naringin

50, 100 mg/kg (p.o.), three days before
SCI until seven days after SCI

Male SD rats Diminished TNF-α, IL8, IL-1β, and IL-6 [166]

20 mg/kg (i.p.), directly and one h after
SCI

Female SD
rats

Reduced MDA and Bax; enhanced Bcl-2 and GSH [167]

50, 100 mg/kg (i.p), 1week before SCI
Female SD

rats
Decreased TNF-α, IL-1β, IL-6, NF-κB, MPO,
MDA, and SOD; increased GSH, and CAT

[168]

20, 40 mg/kg (p.o), until six weeks after
SCI

Female SD
rats

Decreased caspase-3 and Bax; increased Bcl-2 and
BDNF

[151]

Apocynin

0.1 mg/kg (i.t) Male SD rats, Decreased ROS [169]

100 mg/kg (i.p) Male SD rats Decreased Caspase-1, ROS, NF-κB, JNK, and p38 [170]

5 mg/kg (i.p), 1 and 6 h after SCI
Male CD1

mice
Decreased NADPH oxidase, JNK, p38, FasL,

MPO, and Bcl-2
[171]

5 mg/kg (i.p), 1 and 6 h after SCI until
1week

C57BL/6
female mice

Decreased ROS [172]

Carvacrol 25,75 and 150 mg/kg (i.p) Male SD rats Diminished TNF-α, IL-1β, MPO, and NF-κB [173]

Hesperidin
100 mg/kg; 7 days before SCI until

seven days after SCI
Female SD

rats
Decreased IL-1β, NF-κB, and PARP; increased

SOD, HO-1, and p-p38
[174]

Rutin
30 mg/kg (i.p.) Rats

Diminished MDA; IL-6; TNF-α; and NF-κB;
increased SOD; GSH; CAT

[175]

30 mg/kg (i.p.), until 3 days Male SD rats
Decreased TNF-α; MDA; ROS; TGF-β1; and

Smad2
[176]

Mangiferin

20, 40 mg/kg (i.p.), until 30 days after
SCI

Male SD rats
Decreased MDA, NF-κB; increased SOD, GPx,

and CAT
[177]

10, 25, 50 mg/kg (i.p.) SD rats
Decreased MDA, NF-κB, TNF-α, and caspase-9;

increased CAT, SOD, and GSH
[178]

0.2 mg/kg (i.p.), 1 h after SCI Male SD rats Decreased iNOS, p38MAPK, MDA, and SOD [92]

0.25 μmol/kg (i.p.), 1 h after SCI
Wistar male

rats
Decreased MPO [102]

Caffeic acid
phenethyl ester

10 μL; 1 μg/kg (i.t.), 1 h after SCI
Wistar female

mice
Decreased MDA, SOD, and TOA; increased TAC [179]

10 μg/kg (i.p.), 30 min after SCI
Wistar female

rats
Increased IL-1β, and TNF-α [180]

Tanshinone IIA
50 mg/kg (i.p) 1h before SCI

(20 mg/kg) until 7 days after SCI
Male SD rats Decreased TNF-α, NF-κB, MAPK, and JNK [181]

Eugenol
25, 50 mg/kg (p.o), until seven weeks

after SCI
Female SD

rats
Decreased, NF-κB, and iNOS; increased SOD, and

CAT
[182]
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inflammatory [111], analgesic [112], depressive [113], anti-
tumorigenic [114], and neuroprotective [115] actions are
among its therapeutic benefits. Honokiol has been shown
to reduce OS factors in tissue diversity, involving the heart
[116], liver [117], kidney [118], and brain [119]. Honokiol
reduced ROS generation in microglial cells via the ERK/
NADPH oxidase pathway [120]. To exhibit neuroprotective
effects, it also triggered Nrf2 [121], suppressed xanthine oxi-
dase (XO), and regulated the PI3K/Akt pathway [122]. Fur-
thermore, honokiol protected mitochondrial respiratory
chain enzymes by targeting PKC, MAPKs, and NF-κB
[123–125]. 20 mg/kg of honokiol decreased the generation
of proinflammatory cytokines and prevented neutrophil per-
meation and microglial stimulation in a rat version of SCI,
all of which are linked to oxidative factors [126]. In ischemic
brains, 10 g/kg of honokiol reduced neutrophil infiltration
and ROS production while maintaining Na+/K+-ATPase
function and mitochondrial biogenesis against OS [113].
Honokiol also conserved mitochondrial respiratory chain
enzyme [125]. In a rat model of SCI, 20 mg/kg of honokiol
lowered the manufacture of proinflammatory cytokines,
blocked neutrophil penetration, and prevented microglial
activation, all associated with oxidative factors [126]. 10 g/
kg of honokiol (Table 1) reduced neutrophil infiltration
and ROS generation in ischemic brains while maintaining
Na+/K+-ATPase activity and mitochondrial biogenesis [113].

5.5. Curcumin. Curcumin (Figure 5) is an organic polyphe-
nol substance isolated from the Curcuma longa rhizome
[127, 128]. In many studies, curcumin has antioxidant,
anti-inflammatory, and anticancer estates, which have anti-
oxidant, anti-inflammatory, and anticancer properties.
Curcumin exerts anti-inflammatory actions via upregulating
the PPAR- linked with the NF-κB pathway [129, 130].
Curcumin inhibited the stimulation of NF-κB, lowered the
production of COX-2, IL-1, IL-6, IL-8, and TNF-α [131],
and boosted the SOD activity [132]. Curcumin’s anti-
inflammatory impact after SCI has been linked to suppres-
sion of NF-κB, IL-1β, IL-6, and TNF-α activity, as well as
an enhancement in Nrf2 [133] and stimulation of the
TLR4/NF-κB signaling route [134].

Curcumin generated antioxidative preservation via Nrf2
routes and a reduction in ROS as a consequence of NF-κB
stimulation [135]. In treating SCI, curcumin also affects the
mTOR signaling pathway [136]. Curcumin, a more potent
antioxidant that targets antioxidant enzymes such as GPx
and SOD than vitamin E, has been reduced by methoxy
and phenolic groups [137]. Curcumin elevated the CDGSH
iron sulfur domain 2 (CISD2) as a durability gene due to
its activities in Ca2+ metabolism after SCI. CISD2 improved
BCL-2/Beclin-1 binding. It is guarded against programmed
cell death and mitochondrial dysfunction. At the ER stress,
CISD2 reduced a rise in excitotoxic Ca2+ [138].

Curcumin reduced neuron death and inhibited neuronal
death following SCI, according to Lin et al. [139]. In the
long-term treatment of SCI, curcumin outperformed meth-
ylprednisolone by lowering Bax and caspase-3 while increas-
ing Bcl-2 [140]. Following curcumin therapy in humans or

mice, tetrahydrocurcumin is among the most common cur-
cumin metabolites isolated from the liver cytoplasm and
small intestine [141]. In SCI patients, tetrahydrocurcumin
(80 mg/kg/day) has been reported to lower OS and death
[142]. Curcumin decreased inflammatory cytokines with
pro-apoptotic effects in rats after SCI [143].

Curcumin entirely inhibited TGF-β following SCI. They
also discovered that curcumin inhibits NF-κB, a protein
implicated in the apoptotic and inflammatory mechanisms
[144]. Curcumin’s anti-apoptotic action was also exhibited
in the spinal cord damage rat model, later being given intra-
venously. Curcumin was also found to decline caspase-3
[145], enhance Bcl-2 [146], and have anti-inflammatory
antioxidant estates [147]. In a rabbit model of SCI, curcumin
was discovered to block apoptotic (caspase-3) [147].

5.6. Naringin. Naringin (Figure 5) is considered a flavanone
glycoside attained from citrus fruits. Naringinase hydrolyzes
it to yield naringenin, which can effortlessly intersect the
blood-brain barrier [148]. The inflammatory and OS reac-
tions in adults’ brains were controlled by naringin therapy.
Naringin also has neuroprotective estates by stimulating
neurotrophic factors and constraining apoptosis [149, 150].
Naringin can be an apoptotic inhibitor because the inflam-
matory factors and apoptotic mediators are linked. Follow-
ing SCI, naringin (Table 1) (20, 40 mg/kg, p.o.) raised
BDNF and vascular endothelial growth factor (VEGF) levels
while inhibiting brain apoptosis [151]. BDNF reduced apo-
ptosis and MAPK pathways via interacting with TrkB [152,
153], although the β-catenin/GSK-3β signaling route has
been found to promote remyelination following SCI [154].
Naringenin, a naringin aglycone analog, has shown promis-
ing neuroprotective benefits and may be used in SCI in the
future. Naringenin diminished the expression of IL-6,
TNF-α, and CXCL10 mRNA in the spinal cord, which is
an essential factor in apoptosis [155].

5.7. Apocynin. Apocynin (Figure 5), also known as acetova-
nillone, is an organic polyphenolic substance extracted from
the rhizomes of Apocynum androsaemifolium [183]. Apocy-
nin is a nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase inhibitor that suppresses p47phox’s
serine phosphorylation and prevents it from binding to
gp91phox, delaying NADPH oxidase activity [184]. H2O2
and myeloperoxidase (MPO) stimulate apocynin, resulting
in the formation of an apocynin radical. NADPH oxidase
is inhibited by thiol-oxidizing compounds [185], a signifi-
cant source of ROS in the cell [186]. This method has
significantly altered redox-sensitive signaling pathways in
neuroinflammation in different NDDs, particularly SCI.
Sun and colleagues have found that apocynin (50 mg/kg)
(Table 1) reduced SCI-induced neurodegenerative in rats
by diminishing inflammatory cytokine production, improv-
ing glutathione (GSH)/SOD activity, and decreasing MPO
and malondialdehyde levels (MDA). Apocynin (5 mg/kg)
inhibited apoptosis after SCI by lowering FasL stimulation
and phospho-JNK, P38, inflammatory cytokines (IL-1,
TNF-α), and NF-κB representation levels [171]. Corre-
sponding to research by Liu et al., apocynin can aid histology
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results and forelimb motor control restoration following
SCI. Furthermore, Zhang and coworkers demonstrated the
prospective neuroprotective estates of apocynin by decreas-
ing neuroinflammation in spinal cord injured rats by sup-
pressing the growth of NADPH oxidase-mediated ROS
[172]. In an SCI chronic animal experiment, ROS and lipid
peroxidation were similarly reduced by apocynin, implying
an indirect control of apoptosis [169].

5.8. Carvacrol. Carvacrol (Figure 5) is a monoterpenoid phe-
nolic product of cymene and has been demonstrated to have
anxiolytic [187], depressive [188], antibacterial, antioxidant
[189], anticancer, antimutagenic [190], anti-inflammatory
[191], and antihepatotoxic properties [192]. Carvacrol
strengthened the regulations of Nrf2 and ERK1 in PC12 cells
that had been suppressed by cadmium [193]. Cells following
exposure to iron ions and in cells exposed to H2O2 exhibited
anti-carcinogenic characteristics via HO-1 [194, 195]. The
Fenton reaction combines an excess of iron ions with oxygen,
causing oxidative damage such as mitochondrial dysfunction
and LPO [19]. Carvacrol also has anti-inflammatory and pro-
inflammatory cytokine modulating properties [196]. After
administering (25, 75, and 150 mg/kg), it inhibited OS factors
like MDA, GSH, and NO [173]. However, more investigations
are required to identify the neuroprotective properties of car-
vacrol following SCI via oxidative mechanisms.

5.9. Hesperidin. Hesperidin (Figure 5) is an anti-inflamma-
tory, antioxidant, anticancer, and anti-apoptotic flavanogly-
cone obtained from citrus fruits [197, 198]. Hesperidin
regulated Nrf2/ARE/HO 1 and TGF1/Smad3 signaling,
which decreased OS and inflammation [199]. Hesperidin
modulation of the ERK/MAPK pathway is implicated in
the production of HO-1 and Nrf2 in an in vitro investigation
based on OS [200]. In vitro, hesperidin triggered Nrf2/
ARE/HO-1 and upregulated the Keap1-Nrf2/HO-1 path-
way, enhancing the action of antioxidant enzymes in
kidney tissue [201]. As a result of stimulating the Nrf2/
HO-1/ARE and PPAR mechanisms, it reduced OS and
inflammation [201, 202].

5.10. Rutin. The flavonol glycoside rutin, commonly identi-
fied as vitamin P, is derived from buckwheat [203]. Rutin
(Figure 5) has a number of pharmacological properties, such
as cytoprotection, antioxidant [204], anticancer [205], vaso-
protection [206], neuroprotective effects [207], and anti-
inflammation [163]. Rutin lowered OS by increasing CAT
function, decreasing LPO and protein carbonyl content,
and modulating the MAPK [208] and iNOS/ Nrf2 signaling
pathways. In ischemic neuronal apoptosis, rutin suppressed
LPO and p53 expression, enhanced antioxidant defense
enzymes, and lowered ROS generation [209]. In mice, it alle-
viated diabetic neuropathy by lowering OS via HO-1 and
Nrf2 [210]. Rutin boosted the transcription of BDNF, CREB,
and ERK1 genes in the hippocampus at 100 mg/kg [211] and
shielded PC12 cells against sodium nitroprusside stimula-
tion by regulating the PI3K/Akt/mTOR and ERK1/2 path-
ways [212]. Oral medication with 10 mg/kg rutin for three
weeks reduced OS [213].

A further study noticed that three-day rutin (Table 1)
(50 and 100 mg/kg) substantially reduced ROS, MDA, IL-
1, IL-18, and TNF-α [163]. Rutin protected cells from OS
and apoptosis caused by H2O2 in vitro studies by directing
the Bax/Bcl-2 ratio and the NF-κB/p65 signaling route, man-
aging ROS, reducing LPO, and maintaining the intracellular
antioxidant enzyme activities [214]. Rutin also safeguarded
neurons from oxidative DNA damage and degeneration
resulting from a lack of food [215]. Furthermore, 30 mg/kg
rutin in the SCI animal paired with mild hypothermia for
three days after SCI decreased inflammatory factors by
blocking the TGF-β/Smad route [215].

5.11. Mangiferin. Mangiferin (Figure 5) is a bioactive
xanthonoid extracted from various mango components. It
is a potent antioxidant [216] with a variety of health benefits,
notably immunomodulatory [217], antiviral [218], anti-
inflammatory [219], antidiabetic [220], anticancer [221],
and analgesic [222] activities. Mangiferin inhibits LPO and
DNA damage by neutralizing free radicals and generating
mangiferin-iron complexes [216, 223]. In an in vivo study,
mice were recovered from cadmium chloride contamination
by administering 50 mol/L of mangiferin for 4 hours, which
reduced LPO rates and increased GSH, CAT, GST, and SOD
activity [224]. Mangiferin increased Nrf2 levels, altered
NQO1 expression, and increased ROS levels in vitro research
[225]. Interestingly, 20 and 100 mg/kg of mangiferin triggered
the Nrf2/HO-1 pathway in a dose-dependent approach in a
brain injury model [177]. Mangiferin (Table 1) (20 and 100
mg/kg) for 30 days after SCI significantly decreased MDA at
the same time as significantly boosted SOD, CAT, and GPx
[178]. Mangiferin’s neuroprotective properties in concentra-
tions of 10, 25, and 50 mg/kg 30 days following SCI were con-
nected with diminished spinal cord edema, reduction of OS,
and inflammatory condition [226].

5.12. Caffeic Acid Phenethyl Ester. Honeybee propolis con-
tains phenethyl caffeate [227]. Because of the associated
hydroxyl groups in the catechol ring, it has antioxidant
[228], anti-inflammatory [229], antibacterial [230], antican-
cer, and cytotoxic effects [231]. The phenethyl ester of caffeic
acid inhibits NF-κB [232] and protein tyrosine kinase [233].
Hypoxic-ischemic brain injury models inhibit lipoxygenase
activity [234] and limit calcium-induced cytochrome c
release [235]. Following ischemia-reperfusion injury, caffeic
acid phenethyl ester suppressed superoxide anion generation
and XO [236] and decreased MPO and Na+/K+ ATPase
capacities [237]. Caffeine’s phenethyl ester increased HO-1
synthesis by activating Nrf2 and the extracellular signal-
regulated kinases (ERK) signaling route [238]. It binds to
Keap1, allowing Nrf2 to better connect to ARE [239].
MDA, LPO, and total oxidant action were reduced after
SCI with an intrathecal infusion of 1 g/kg caffeic acid phe-
nethyl ester. After SCI, it boosted antioxidative mediators
[240], even as it decreased IL-6 levels in tissue and serum
[241]. In a similar vein, Ak et al. found that caffeic acid phe-
nethyl ester (10 g/kg) infusions lowered TNF-α and IL-1β
levels after SCI [179].
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After SCI, 10 mol/kg of this phytochemical enhanced
motor function and decreased lesion size by lowering IL-1β,
NOS, and COX-2 expression [180]. Caffeic acid phenethyl
ester, 10 mol/kg (Table 1), was given before surgery to mini-
mize ischemic damage in the spinal cord and to enhance
microcirculation by blocking endothelial cell lysis by activated
leukocyte proteases [242]. It also inhibited ROS and iNOS cat-
alytic performance at a 50 mol/mL dosage, which had neuro-
inflammatory effects [243].

5.13. Tanshinone IIA. Tanshinone IIA (Figure 5) is extracted
from the roots of Salvia miltiorrhiza. Tanshinone IIA has
been found to have anti-apoptotic and anti-inflammatory
properties in investigations [244]. Tanshinone IIA’s
antioxidant development is associated with efficient commu-
nication among DNA and lipid peroxidation product avoid-
ance, DNA conservation by inhibiting NADPH oxidase,
lipid peroxidation, and lipid-free radical clearance [245,
246]. Tanshinone IIA also inhibited the onset of neuroin-
flammation in neurodegenerative pathologies by preventing
the production [247]. MAPKs are also critical signaling
mediators that control cell development and death [248].
Tanshinone IIA (20, 50 mg/kg) (Table 1) has been demon-
strated to suppress inflammation and apoptosis during SCI
by decreasing NF-κB, MAPK, IL-1β, TNF-α, IL-6, iNOS,
and caspase-3 boosting Bcl-2 [181]. Other investigations
[249, 250] determined the spinal levels of inflammatory fac-
tors after tanshinone IIA treatment. These inflammatory
factors also interact with apoptotic factors, as aforemen-
tioned. Tanshinone IIA has been shown to have the ability
to improve neuronal autophagic factors and pathways
(PI3K/Akt/mTOR) [251].

5.14. Eugenol. Eugenol (Figure 5), often known as clove oil
(4-allyl-2-methoxy phenol), is an organic chemical derived
from the Syzygium aromaticum (clove) plant [252]. Eugenol
has antitumor [253], anti-microbial [254], anti-inflammatory
[255], and antioxidant properties. It has been proven that pro-
inflammatory cytokines, inflammation enzymes, and antioxi-
dative enzymes reduce inflammation [256]. Eugenol has
been shown to have therapeutic efficacy by lowering TRPV1
and sodium channels [257], connecting with Ca2+ channels
[258], and boosting autophagy via the AMPK/mTOR pathway
[259]. Eugenol lowered OS, inflammatory markers, and
caspase-3 [182]. In neuroprotective effects, Eugenol increased
Bcl-2 but decreased Bax [238] and TNF-α [239]. It has also
been demonstrated to stimulate neuronal autophagy by the
Akt/AMPK route [259].

6. Clinical Studies

Polyphenols are potential secondary metabolites with a com-
prehensive scale of favorable health outcomes. The US Food
and Drug Administration (FDA) has acknowledged curcu-
minoids as relatively reliable and highly allowed effective
forms in clinical studies, even at concentrations of up to
12,000 mg/day [260]. In controlled clinical research, curcu-
min’s impacts on inflammatory and stress markers in 100
osteoarthritis patients of both genders have been investi-

gated [261]. In a prospective randomized open-end blinded
examination (PROBE) of 80 individuals with knee osteoar-
thritis, researchers discovered that consuming 30 mg of cur-
cumin three times a day (p.o.) for four weeks decreased
COX-2 concentrations [262]. Another RDBPC analysis
[263] shows the anti-inflammatory efficacy of oral curcumin
(400mg/3 times a day, p.o.) in type 2 diabetic cases and a
substantial decrease in MDA, IL-6, and TNF-α levels.

In one hundred individuals with SCI, curcumin was signif-
icantly connected to decrease osteoporosis development and
bone metabolism markers after six months [264]. According
to randomized, parallel-group outcomes controlled clinical
research on 20 participants, the InflanNox tablet (curcumin
1200 mg/day) has additional anti-inflammatory and antioxi-
dant characteristics, lowers IL-1β, and improves depression
and anxiety in SCI patients [265]. In 50 individuals with mul-
tiple sclerosis, administration of nanocurcumin (80 mg/day)
was linked to a considerable increase in TGF-β and IL-10
expression [266]. Nanocurcumin was governed in a random-
ized of 40 diabetes people. In this investigation, nanocurcumin
was discovered to be an antioxidant that may minimize OS
and free radicals [267].

Polyphenol supplements (200mL/day) reportedly regu-
lated plasma homocysteine concentrations in 48 Alzheimer’s
patients in an eight-month multiple center RDBC experi-
ment [268]. In a multicenter, double-blind clinical investiga-
tion, thirty-four diabetic patients with neuropathy (aged 21
to 72) were given a topical preparation including quercetin
to reduce OS [269]. Verlaet et al. showed antioxidant prop-
erties in a randomized controlled experiment examining
the treatment properties of the herbal, polyphenol-rich
extract [270]. Furthermore, another study found that meals
high in polyphenols could increase cognitive reserve [271].
Another polyphenol-rich extract has shown promising
antioxidative consequences in healthful people and those
suffering from NDDs [272–274].

7. Conclusion and Future Perspectives

The complicated pathophysiological mechanisms in SCI seem
to be orchestrated by OS to influence other interrelated path-
ways, such as neuroinflammation. Thus, an interaction between
OS and neuroinflammatory/apoptotic pathways is complex.

In this line, Nrf2/Keap1/ARE, SOD, CAT, GSH, MDA,
HO-1, and XO have significantly reduced the associated
pathways/mediators contributing to neuroprotection in
NDDs and SCI. Because of the polyphenol’s shortcomings,
researchers must apply novel drug delivery strategies in clin-
ical studies, such as nanoformulations. Nanoformulations of
polyphenols are proposed to overcome such restrictions due
to the management indicated above and the advantageous
effect of nanoparticles in boosting spinal cord medication
distribution. It will enable the chemical’s favorable impacts
on SCI and other NDDs. To address SCI difficulties, metal
nanoparticles (iron oxide, gold, silver, and so on), liposomes,
and inorganics have all been utilized to create nanoparti-
cles [275].

Equivalent recommendations will aid in raising under-
standing of the complexities of dysregulated signal transduction
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pathways after the SCI and the significance of discovering new
and more effective multitarget alternative natural intermedi-
aries with more excellent safety and efficacy among the scien-
tific community. The exact molecular pathogenesis and
signaling pathways associated with NDDs and the secondary
phase of SCI must be revealed in further research studies. The
mediators represent promising options to prevent associated
pathogenicity in an oxidative way. Polyphenols are suggested
to be the primary focus in this line of work as alternatives to
interventions with fewer complications and greater efficacy.

Polyphenols/phenolic compounds are secondary metab-
olites with a broad scale of biological activity and health
improvements exploited in modern medication to generate
novel drugs [276]. Clinical studies are currently evaluating
the therapeutic effect of polyphenols in the treatment of
NDDs; however, clinical research to investigate the promise
of polyphenols in treating following SCI consequences is
lacking [277]. Therefore, well-designed clinical trials will
aid in revealing polyphenols’ therapeutic promise in
addressing sensory-motor dysfunction after SCI and pave
the way to address any recommendations for the future of
their administration. The role of OS in modifying the
inflammatory and apoptotic pathways in NDDs, with a
particular focus on SCI, was investigated in this work. As
potential multitarget neuroprotective treatments, we also
emphasized the need to synthesize polyphenols and phenolic
compounds that proinflammatory cytokines, extrinsic axo-
nal related pathways, and other pathways involved with
OS. Co-administering polyphenols/phenolic chemicals may
also help treat SCI side effects. These research projects will
explore potential pharmacological targets for avoiding, con-
trolling, and treating NDDs and SCI.
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