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Polyphosphate (polyP), a polymer of orthophosphate (PO4
3-) of varying lengths, has been

identified in all kingdoms of life. It can serve as a source of chemical bond energy

(phosphoanhydride bond) that may have been used by biological systems prior to the

evolution of ATP. Intracellular polyP is mainly stored as granules in specific vacuoles called

acidocalcisomes, and its synthesis and accumulation appear to impact a myriad of cellular

functions. It serves as a reservoir for inorganic PO4
3- and an energy source for fueling

cellular metabolism, participates in maintaining adenylate and metal cation homeostasis,

functions as a scaffold for sequestering cations, exhibits chaperone function, covalently

binds to proteins to modify their activity, and enables normal acclimation of cells to stress

conditions. PolyP also appears to have a role in symbiotic and parasitic associations, and

in higher eukaryotes, low polyP levels seem to impact cancerous proliferation, apoptosis,

procoagulant and proinflammatory responses and cause defects in TOR signaling. In this

review, we discuss the metabolism, storage, and function of polyP in photosynthetic

microbes, which mostly includes research on green algae and cyanobacteria. We focus

on factors that impact polyP synthesis, specific enzymes required for its synthesis and

degradation, sequestration of polyP in acidocalcisomes, its role in cellular energetics,

acclimation processes, and metal homeostasis, and then transition to its potential

applications for bioremediation and medical purposes.
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INTRODUCTION. A BRIEF OVERVIEW OF POLYPHOSPHATE
BIOLOGY

Orthophosphates, the Building Blocks of Polyphosphate
Phosphorus (P), mostly in the form of inorganic or orthophosphate (PO4

3−), is integral to metabolic
processes as a functional component of many molecules in the cell; these molecules include nucleic
acids, phospholipids, phosphoproteins, and metabolites in most catabolic and anabolic pathways
and signaling molecules. PO4

3- is the dominant form of P in the Earth's crust with levels in the soils
often between 0.5 and 1.5 mM, although much of it may be insoluble and limiting to the growth of
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organisms in both ecological and agricultural environments. Soil
P is mostly derived from the weathering of PO4

3–containing
minerals, primarily apatite (Ca5(PO4)3OH). While often found
associated with Ca2+ salts, PO4

3- is also occluded in insoluble
Fe2+/3+ and Al3+ salts and adsorbs onto surfaces of soil particles
or becomes esterified to organic molecules, many that cannot be
directly assimilated by most organisms. Bioavailable PO4

3- can
be rapidly taken up by microbes, algae, and plants, which in turn
can be consumed by grazers. This P is often returned to the
environment as organic phosphates upon excretion and as the
organisms die and decay. PO4

3- can also form phosphonyl bonds
(carbon-phosphorus) generating a group of compounds called
phosphonates that are present in marine invertebrates and can be
metabolized (and synthesized) by bacteria, both in the oceans
and freshwater environments (Dyhrman et al., 2006; Adams
et al., 2008; Ilikchyan et al., 2009; Villarreal-Chiu et al., 2012).

Many organisms can also polymerize PO4
3- into polyphosphate

(polyP) chains, that are composed of three to hundreds of PO4
3-

groups linked by the high-energy phosphoanhydride bonds, the
same bond that allows ATP to assume the role of the energy
currency in cells. These polymers are present in all kingdoms of life,
from tiny prokaryotic organisms and archaebacteria to large
mammals, (Kornberg et al., 1999; Rao et al., 2009), although
plants do not appear to synthesize polyP (Zhu et al., 2020) and
mostly store PO4

3- in phytate (inositol hexakisphosphate, InsP6)
(Raboy, 2003; Kolozsvari et al., 2015; Lorenzo-Orts et al., 2020), a
six-fold dihydrogenphosphate ester of inositol. PolyP was likely a
significant component of the pre-biological Earth as it can be
spontaneously formed as a consequence of volcanic and
hydrothermal vent activities (Rao et al., 2009; Achbergerova and
Nahalka, 2011). It can accumulate to very high intracellular
concentrations in microbes, ranging from μM to mM, especially
under stress conditions when PO4

3- is abundant.

Detection and Quantification
There are several ways tomonitor polyP: these include visualization
by transmission electron microscopy (Jensen, 1968) that can be
coupled with spatially resolved elemental analysis (Eixler et al.,
2005; Shebanova et al., 2017); phase contrast or bright-field
microscopy after staining the cells with basic dyes including
toluidine blue, methylene blue, and neutral red (Kulaev et al.,
2004); binding polyP to the fluorochrome 4′,6-diamidino-2-
phenylindole (DAPI); 31P nuclear magnetic resonance
spectroscopy and determination of released PO4

3 from polyP by
the malachite green assay, which involve extraction and hydrolysis
of the polyP (Beauvoit et al., 1989; Castro et al., 1995; Chen, 1999;
Diaz et al., 2008; Khoshmanesh et al., 2012); and 2-dimensional
Raman microscopy (Moudrikova et al., 2017). In photosynthetic

organisms, some of these techniques can be difficult to optimize.
For example, visualization of polyP can be obscured by
pigmentation in photosynthetic cells; basic dyes can also bind
nucleic acids and polyhydroxybutyrate (common components
in cyanobacterial and algal cells) (Martinez, 1963; Kulaev et al.,
2004), and 31P NMR (Hupfer et al., 2004; Hupfer et al., 2008;
Kizewski et al., 2011) only detects P-containing molecules on the
basis of bond class, the presence of other molecules with
phosphoanhydride bonds (e.g. nucleotides) may cause
inaccuracies in measurements, especially if these molecules are
abundant. DAPI is one of the most commonly used reagents to
identify polyP (polyP binding to the fluorophore alters its peak of
fluorescence) (Tijssen et al., 1982; Aschar-Sobbi et al., 2008). It is a
simple, inexpensive molecule that allows visualization and
quantification of polyP in cells (Gomes et al., 2013; Martin and
Van Mooy, 2013), although DAPI can also bind nucleic acids and
inositol polyphosphate (Kolozsvari et al., 2014), making treatment
with RNase and DNase (Martin and Van Mooy, 2013; Martin and
Van Mooy, 2015) and optimization of protocols necessary to
increase the quantification accuracy (Bru et al., 2016).

Metabolism and Storage
In prokaryotes and some eukaryotes, including Dyctiostelium
discoideum, the synthesis of polyP is mediated by PolyP Kinase
(PPK) (Brown and Kornberg, 2004; Brown and Kornberg, 2008;
Hooley et al., 2008; Livermore et al., 2016a; Weerasekara et al.,
2016; Blaby-Haas and Merchant, 2017), while in most eukaryotes
(fungi, protists, and algae) its synthesis requires polyP
polymerase activity of VTC4. This enzyme, which is part of the
Vacuolar Transporter Chaperone (VTC) complex (Hothorn
et al., 2009; Aksoy et al., 2014; Ulrich et al., 2014; Desfougeres
et al., 2016; Gerasimaite and Mayer, 2016; Blaby-Haas and
Merchant, 2017; Gomes-Vieira et al. , 2018), has no
evolutionary relationship to PPK. Protein(s) responsible for the
synthesis of polyP in animals has not, at this point, been
identified. The catalytic reaction for both the prokaryotic and
eukaryotic polyP synthesizing enzymes involves the transfer of
the terminal PO4

3- of ATP to the growing polyP chain (although
PPK can also use 1,3-diphosphoglycerate). The synthesis of
polyP in prokaryotes is under pho regulatory control (Santos-
Beneit, 2015), while, in eukaryotic organisms, polyP synthesis is
linked to inositol phosphate (InsP) metabolism (Auesukaree
et al., 2005; Lonetti et al., 2011; Ghosh et al., 2013; Wild et al.,
2016; Cordeiro et al., 2017; Gerasimaite et al., 2017). Inositol
phosphates are signaling molecules synthesized from glucose
through a pathway that is conserved from Archaea to humans.
These molecules perform a wide variety of functions and are
linked to P and ATP cellular homeostasis (Saiardi, 2012; Azevedo
and Saiardi, 2017).

PO4
3- can be mobilized from polyP through the catalytic

activity of enzymes that degrade the polymer, including both
endo- and exo-polyphosphatases (Akiyama et al., 1993;
Kornberg et al., 1999; Rodrigues et al., 2002; Fang et al., 2007b;
Lichko et al., 2010). Pyrophosphate generated during polyP
degradation can be used as a source of energy (like polyP and

Abbreviations: polyP, Polyphosphate; TOR, Target of Rapamycin; PPK,
Polyphosphate Kinase; VTC, Vacuolar Transporter Chaperone; Pho (regulon),
Phosphate (regulon); V-type ATPase, Vacuolar-type ATPase; H+-PPase, H
+-Pyrophosphatase; PPB, Polyphosphate bodies; PPX, Exo-polyphosphatase;
TEM, Transmission electron microscopy; SPX domain, Domain conserved in
SYG1, Pho81, and XPR11; SdR, Sulfur deprivation responses; PPGK,
Polyphosphate glucokinase; InsP, Inositol phosphate; BPNP, Biogenic
phosphate nanoparticles.

Sanz-Luque et al. Polyphosphate in Photosynthetic Microbes

Frontiers in Plant Science | www.frontiersin.org June 2020 | Volume 11 | Article 9382

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


ATP) by various organisms (Lahti, 1983), but can also be further
hydrolyzed by a vacuolar/acidocalcisome soluble pyrophosphatase
without conserving the phosphoanhydride bond energy
(Lemercier et al., 2004; Huang et al., 2018).

The main site of synthesis and storage of polyP is the acidic
vacuole designated the acidocalcisome, discovered more than 100
years ago (Meyer, 1904; Vercesi et al., 1994) based on their visual
prominence because they house densely stained polyP granules
(Docampo et al., 2005; Miranda et al., 2008; Docampo, 2016;
Docampo and Huang, 2016). These vacuoles have been
characterized in disease causing trypanosomatids and
apicomplexan parasites (Luo et al., 2004; Ruiz et al., 2004b; Fang
et al., 2007a; Moreno and Docampo, 2009; Madeira da Silva and
Beverley, 2010; Li and He, 2014; Kohl et al., 2018) and algae (Aksoy
et al., 2014; Goodenough et al., 2019), and have similar
characteristics to vacuoles in fungi (Gerasimaite et al., 2017) and
animal cells (Ruiz et al., 2004a; Huizing et al., 2008; Muller et al.,
2009; Moreno-Sanchez et al., 2012; Morrissey, 2012). However,
there may also be acid-soluble polyP pools in other cellular
locations (e.g. bacterial cell walls). Acidocalcisomes can attain
polyP levels of 3–8 M (Moreno et al., 2002), accumulate Ca2+

and other divalent cations, as well as some organic molecules
(Kaska et al., 1985; Vercesi et al., 1994; Siderius et al., 1996; Komine
et al., 2000; Ruiz et al., 2001; Docampo and Moreno, 2011; Hong-
Hermesdorf et al., 2014; Penen et al., 2016; Klompmaker et al.,
2017; Penen et al., 2017; Steinmann et al., 2017; Tsednee et al.,
2019). In trypanosomes, these vacuoles acidify the lumen down to
pH ~5.0 using both the ubiquitous V-type ATPase and the H+-
PPase proton pump (Scott and Docampo, 2000), although the latter
may not be present in animal and yeast “acidocalcisomes.” In lower
eukaryotes, the VTC complex (Cohen et al., 1999; Hothorn et al.,
2009; Gerasimaite et al., 2014) is located on the acidocalcisome
membrane, anchored by a region of the VTC subunits containing
three transmembrane domains (designated VTC domain).

Overview of Functions
A lack of appreciation of the importance of polyP metabolism
over the last several decades has caused some researchers to refer
to this polymer as a “molecular fossil” (Kornberg and Fraley, 2000;
Manganelli, 2007), although, an increasing number of studies
implicate polyP in a variety of processes. It can either directly or
indirectly buffer changes in cellular PO4

3- and adenylate levels,
which are critical since elevated intracellular PO4

3- and ATP levels
can inhibit many cellular reactions (e.g. reversible reactions in
which PO4

3- is an end-product). PolyP also provides a reservoir of
chemical bond energy for driving biological processes, although it
may not be the most efficient source of energy because of its slow
metabolic turnover rate relative to ATP (Van Mooy et al., 2009).
The anionic nature of polyP enables it to bind and sequester
cations, which can contribute to the tolerance of cells to heavy
metals, preventing metabolic aberrations resulting from elevated
intracellular cation concentrations (van Groenestijn et al., 1988;
Rao and Kornberg, 1999; Andreeva et al., 2014), serve as a
chaperone (Gray et al., 2014; Xie and Jakob, 2018) and a
structural/functional component in membrane ion channels
(Reusch, 1999; Reusch, 2000). In some cases, polyP can also
modify protein function through post-translational attachment

to lysine residues in a process known as polyphosphorylation
(Azevedo et al., 2015). Organisms/cells with defects in the
synthesis of polyP exhibit a range of abnormalities including
cancerous proliferations, defects in cellular signaling (including
TOR signaling), an inability to normally perform certain cellular
processes such as autophagy and apoptosis, biofilm formation,
sporulation, quorum sensing, pathogen virulence, and acclimation
to both biotic and abiotic stresses, including stationary phase
survival and nutrient deprivation (Kornberg et al., 1999; Rao and
Kornberg, 1999; Rashid et al., 2000; Shi et al., 2004; Fraley et al.,
2007; Diaz-Troya et al., 2008; Rao et al., 2009; Aksoy et al., 2014; Li
and He, 2014). PolyP can also be released from acidocalcisomes of
human platelets to modulate clotting and fibrinolysis (Ruiz et al.,
2004a; Smith et al., 2006). Moreover, there is a growing realization
of the importance of polyP with respect to cell physiology and
biogeochemical cycling in marine ecosystems, as indicated by both
large scale environmental analyses (Diaz et al., 2008; Orchard
et al., 2010; Martin et al., 2014; Diaz et al., 2016; Dijkstra et al.,
2018; Martin et al., 2018) and laboratory studies (Rhee, 1973;
Jensen and Sicko-Goad, 1976; Jacobson et al., 1982; Orchard et al.,
2010; Martin et al., 2014; Diaz et al., 2016). Even though the
precise mechanisms by which polyP synthesis and accumulation
impact cellular processes may sometimes be uncertain, it is clearly
a functional giant with an impressive resume!

In this review, we highlight major aspects of polyP metabolism,
storage, and function in photosynthetic organisms. However,
throughout the text we refer the reader to several other recent
reviews that cover the biology of polyP (Kornberg, 1995; Kornberg
et al., 1999; Kulaev et al., 2004; Docampo et al., 2005; Rao et al.,
2009; Docampo and Moreno, 2011; Kulakovskaya et al., 2012;
Docampo, 2016; Livermore et al., 2016b; Jimenez et al., 2017; Xie
and Jakob, 2018).

POLYP SYNTHESIS, LOCALIZATION,
AND STORAGE IN PHOTOSYNTHETIC
MICROBES

Cyanobacteria and algae are photosynthetic organisms that serve as
primary producers in terrestrial, marine, and freshwater habitats
(Waterbury et al., 1979; Weisse, 1993; Sliwinska-Wilczewska et al.,
2018). These organisms can survive very harsh environmental
conditions, including those of the hot spring microbial mats
(Ward et al., 1998) and the biofilms that form the sand crusts of
deserts (Treves et al., 2013; Treves et al., 2016; Oren et al., 2019).
Cyanobacteria and algae are also prominent components in dense
bacterial blooms that can cause eutrophication of water bodies and
release toxins into the environment (Wang, 2008; Anderson et al.,
2012; Jasser and Callieri, 2017; Sliwinska-Wilczewska et al., 2018;
Syed Hasnain et al., 2019), potentially compromising potable water
resources. The productivity of photosynthetic microbes is often
constrained by the availability of nutrients, including PO4

3-, and like
other unicellular organisms they can store large amount of polyP in
granules called polyP bodies (PPBs) which are often found in
acidocalcisomes (Jensen and Sicko-Goad, 1976; Grillo and Gibson,
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1979; Gomez-Garcia et al., 2003; Gomez-Garcia et al., 2013; Aksoy
et al., 2014; Goodenough et al., 2019).

Regulation of PolyP Metabolism
Cyanobacterial genes encoding enzymes involved in the
synthesis (polyphosphate kinase, ppk) and degradation (exo-
polyphosphatase, ppx) of polyP have been identified through
the generation of mutants (Gomez-Garcia et al., 2003; Gomez-
Garcia et al., 2013). However, there is still limited knowledge
concerning the mechanisms involved in regulating polyP
metabolism in cyanobacteria (Jensen and Sicko-Goad, 1976;
Grillo and Gibson, 1979). Levels of ppk and ppx transcripts
have been measured for a strain of Synechococcus present in hot
spring microbial mats (growing at 50–60°C) of Yellowstone
National Park. In situ measurements demonstrated that the
ppk and ppx transcript and polypeptide levels varied over the
diel cycle (Gomez-Garcia et al., 2003), as was also noted for
components of other pathways including those associated with
photosynthesis, respiration, nitrogen fixation, fermentation, and
oxidative stress (Steunou et al., 2006; Steunou et al., 2008). While
the level of the ppk mRNA peaked at night, ppx mRNA
accumulation was highest during the early morning. It was
hypothesized that the pattern of diel accumulation observed
for these transcripts/enzymes could account for polyP storage
and accumulation in cyanobacteria of the hot springs and
participate in coordinating daily growth and energy demands
during the light period with PO4

3- utilization. While we
still have little detailed knowledge of regulatory factors
impacting ppk transcription and/or PPK activity, mutants of
Anacystis nidulans (now Synechococcus) with decreased PO4

3-

assimilation and polyP accumulation were generated by treating
cells with ethyl methanesulfonate (EMS) or N-methyl
nitrosoguanidine (NTG); based on TEM, these mutants often
exhibited a loss of polyP granules and were impacted in their
level of PPK activity, either because of a change in the activity of
the enzyme or because of altered ppk expression (Vaillancourt
et al., 1978). On the other hand, transcripts encoding Ppx and
Ppa (inorganic pyrophosphatase) proteins, involved in polyP and
pyrophosphate degradation, respectively, increased upon long
term PO4

3- deprivation of the cyanobacterium Synechocystis

PCC6803 (Gomez-Garcia et al., 2003).
The Pho regulon controls most genes associated with the

acclimation to PO4
3- deprivation in bacteria. In Synechocystis

PCC6803, the major controlling elements of this regulon are
SphS (sll0337; histidine kinase; analogous to E. coli PhoR) and
SphR (slr0081; response regulator; analogous to E. coli PhoB)
(Hirani et al., 2001; Suzuki et al., 2004; Juntarajumnong et al.,
2007). The regulation of genes encoding the enzymes that
degrade polyP appear to be under the control of PhoU, a
negative regulator of the Pho regulon (causes suppression of
the Pho regulon activity under P-replete conditions) (Wanner,
1993; Morohoshi et al., 2002). There are also some works
suggesting that the concentrations of (p)ppGpp, a stringent
response second messenger, can stimulate polyP accumulation
in E. coli (Kuroda et al., 1997) and is potentially also involved in
polyP accumulation in Synechococcus in the dark (Seki et al.,
2014; Hood et al., 2016). Hence, while some specific elements

have been shown to contribute to the control of the synthesis and
degradation of polyP in cyanobacteria, the details of this control
have not been examined.

In unicellular algae, the synthesis of polyP has not been
characterized in detail, although VTC proteins are conserved in a
variety of algal species. In the green, unicellular algaChlamydomonas
reinhardtii (C. reinhardtii throughout), a mutant lacking VTC1 is
unable to accumulate polyP (Aksoy et al., 2014), which indicates that
the VTC complex is likely required for the synthesis of polyP in this
alga. The VTC4 protein, the subunit that catalyzes polyP synthesis
and its translocation into the acidocalcisomes in yeast, has not yet
been studied in photosynthetic organisms, but the gene encoding this
protein is present in the genome ofmany algal species. As in budding
yeast and Trypanosoma, the algal VTC4 proteins have the SPX,
PolyP Polymerase, and VTC domains, and all of the key residues
related to VTC4 functionality are conserved (Figure 1). Therefore, it
seems reasonable to hypothesize that these VTC4 proteins catalyze
polyP synthesis and are activated by the binding of inositol
pyrophosphates (most phosphorylated forms of inositol) to their
SPX domains, as in other eukaryotes (Wild et al., 2016; Gerasimaite
et al., 2017).

Acidocalcisomes and the Synthesis and
Storage of Polyphosphate
Generally, polyP accumulates in acidocalcisomes in unicellular
eukaryotes, although it can be present in other cellular
compartments including the nucleus, mitochondria, cytoplasm,
cell wall, and endoplasmic reticulum. In cyanobacteria, polyP
granules have been observed in the center of the cell and in close
proximity to carboxysomes (Nierzwicki-Bauer et al., 1983;
Liberton et al., 2011), the cellular organelle that houses ribulose-
1,5-bisphosphate carboxylase which is critical for the fixation of
inorganic carbon. Cyanobacteria have also been observed to have
polyP in regions of the cell containing ribosomes, in close
association with DNA, and in the intrathylakoid space (Jensen
and Sicko, 1974). In algae, several studies report polyP
accumulation in acidocalcisomes (Komine et al., 2000; Ruiz
et al., 2001; Aksoy et al., 2014; Goodenough et al., 2019). C.
reinhardtii acidocalcisomes have been examined by TEM (Heuser,
2011) and in detail after freeze-fracture, deep-etching, and
platinum rotary-replication (Goodenough et al., 2019). Algal
acidocalcisomes have been described as de novo assembled
vacuoles in the trans-Golgi that show diverse variants according
to their disposition, composition, and consistency (Goodenough
et al., 2019). However, very little is known about the physiological
relevance of these observed variations. The number and size of
polyP bodies in cyanobacterial and algal cells can vary greatly, but
they generally increase under stress conditions (Stevens et al.,
1985; Jensen, 1993; Docampo et al., 2010; Aksoy et al., 2014;
Tsednee et al., 2019). As in other single-cell eukaryotes, the
acidocalcisome membranes in C. reinhardtii harbor the VTC
complex, which is responsible for the polyP polymerase and
H+-PPase activities (acidocalcisome membranes also harbor a
V-type ATPase driven proton pump); the H+-PPases, with
homologues in three eukaryotic clades (not present in
opisthokonts and Amoebozoa), are activated by pyrophosphate
(Rea et al., 1992; Kim et al., 1994; Rodrigues et al., 1999; McIntosh
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and Vaidya, 2002; Drozdowicz et al., 2003; Au et al., 2006; Serrano
et al., 2007; Hsu et al., 2009; Tsai et al., 2014; Schilling et al., 2017;
Shah et al., 2017; Segami et al., 2018a; Segami et al., 2018b) and
also function in acidification of the lumen of vacuoles in land
plants (Venter et al., 2006; Kajander et al., 2013; Asaoka
et al., 2014).

Acidocalcisomes have been isolated from the red alga
Cyanidioschyzon merolae and kinetoplastids and their
proteome has been characterized (Yagisawa et al., 2009; Huang
et al., 2014). They harbor hydrolytic enzymes, components of
vesicular trafficking pathways (Rabs, SNAREs) that are associated
with their biogenesis (Besteiro et al., 2008; Huang et al., 2011; Li
and He, 2014; Niyogi et al., 2015) and aquaporins (Montalvetti
et al., 2004). Additionally, it was recently shown that inositol
pyrophosphates regulation (Cordeiro et al., 2017) plays an
important role in acidocalcisome function (Huang et al., 2013;
Lander et al., 2013), participating in Ca2+ homeostasis through

activation of Ca2+ channels based on work with trypanosomatids
[reviewed in (Ramakrishnan and Docampo, 2018)].

PolyP has also been localized in the cell wall of different algal
species (C. reinhardtii, Volvox aureus, and Coleochaete scutata)
(Werner et al., 2007). This was determined based on binding to a
polyP binding protein (E. coli exopolyphosphatase, EcPPX)
coupled with detection by immunofluorescence using
antibodies against a maltose-binding protein fused to the
EcPPX. PolyP accumulation was observed during mitosis, with
a strong signal at the end of cytokinesis, and in C. reinhardtii,
accumulation appeared highest in the mother cell envelope
following mitosis and just before the release of the daughter
cells. These daughter cells maintained the polyP in their cell
wall for a short time after being released. The role of cell wall
polyP is not clear, but it may have a protective function during
cytokinesis when the daughter cell walls are not fully formed and
serve as a barrier to toxic agents (e.g. pathogens or heavy metals;

FIGURE 1 | Alignment of microalgal VTC4 proteins. Protein sequences of Chlamydomonas reinhardtii (CrVTC4, PNW79162.1), Coccomyxa subellipsoidea (CsVTC4,

XP_005646401.1), Dunaliella salina (DsVTC4, Dusal.0567s00005.1), Chlorella variabilis (CvVTC4, XP_005844713.1), Micromonas pusilla (MpVTC4,

XP_003055174.1), and Saccharomyces cerevisiae (ScVTC4, NP_012522.2) were aligned using the CLC Sequence Viewer software. SPX, polyP polymerase, and

VTC domains are highlighted in orange, green, and yellow shaded boxes, respectively. Inverted triangles indicate functional residues previously described in yeast.
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see section 3.4) during this ‘vulnerable' period (Werner et al.,
2007; Penen et al., 2017).

POLYP FUNCTIONS AND REGULATION IN
PHOTOSYNTHETIC MICROBES

PolyP as PO4
3- Reservoir During

P Deprivation
Various functions and cellular responses are impacted by the
presence/synthesis of polyP (Figure 2). Several studies have
suggested that when the supply of PO4

3- is limiting in the
environment, including in the sparse nutrient environments of
the subtropical gyres (Perry, 1976), polyP functions as a dynamic
PO4

3- reservoir (Kornberg et al., 1956; Harold, 1966)). “Sparing”
(limiting the use of a molecule in cellular processes when it is not
readily available) and internal scavenging of PO4

3- from polyP,
nucleic acids, and phospholipids allow PO4

3- redistribution to
accommodate processes that may extend survival during P
deprivation. The presence/absence of polyP granules are indicators
of the P status of organisms, but other indicators such as high affinity
PO4

3- uptake, extracellular alkaline phosphatase activity, and the
replacement of phospholipids with sulfolipids in cyanobacteria and
eukaryotic algae have been reported (Dyhrman and Palenik, 1999;
Riegman et al., 2000; Karl and Bjorkman, 2002; Hoppe, 2003;
Dyhrman and Ruttenberg, 2006; Moseley and Grossman, 2009;
Van Mooy et al., 2009; Bar-Yosef et al., 2010; Harke et al., 2012;
Reistetter et al., 2013; Munoz-Martin et al., 2014; Wan et al., 2019).

In both prokaryotic and eukaryotic microbes, the role of
polyP as a PO4

3- reservoir depends on the organism's capacity to
take up PO4

3-, synthesize and store polyP, especially when PO4
3-

is more abundant than is required for growth, and degrade it

when the level of available PO4
3- in the environment becomes

limiting (Orchard et al., 2010). This accumulation dramatically
increases when organisms are preconditioned inmedium deficient
for P. Exposure to excess PO4

3- after this preconditioning leads to
the “luxury uptake” of PO4

3-, enhanced polyP synthesis and
accumulation in acidocalcisomes, which can serve as P and
energy reservoirs. This phenomenon has been designated the
“overplus” or over-compensation response and has been
extensively studied in cyanobacteria (phytoplankton) and algae
in ocean, lake, and river habitats (Liss and Langen, 1962; Harold,
1963; Harold, 1964; Voelz et al., 1966; Aitchison and Butt, 1973;
Sicko-Goad and Jensen, 1976; Grillo and Gibson, 1979; Tyrell,
1999; Karl and Bjorkman, 2002; Hoppe, 2003; Kulaev et al., 2004;
Hupfer et al., 2007; Falkner and Falkner, 2011). The accumulation
of polyP during luxury uptake is considered important for
protection of aquatic organisms against future exposure to P
limitation (Hupfer et al., 2004; McMahon and Read, 2013). For
Synechocystis PCC6803, PO4

3- uptake and polyP accumulation by
cells exposed to overplus conditions resulted in the initial
detection of polyP granules in most cells within 3 min of
replenishing the medium with PO4

3-, with the number of cells
containing these granules sustained for about 1 h (Voronkov and
Sinetova, 2019) followed by degradation and redistributed of the
polyP within the cell over a period of a few to several days.
Additionally, polyP accumulation in Synechocystis occurred to a
lesser extent in the dark than in the light and did not appear to be
very sensitive to temperature changes. The overplus response and
accumulation of polyP may be an adaptation to fluctuations of
PO4

3- in the natural environment, where the levels of polyP can
vary dramatically over short time periods; such a response would
help sustain growth and viability even under periods of low PO4

3-

availability (Droop, 1973; Falkner and Falkner, 2003; Hupfer et al.,
2004; Falkner and Falkner, 2011; McMahon and Read, 2013).

FIGURE 2 | PolyP functions in cyanobacteria and eukaryotic microalgae. Most of these functions have also been ascribed to polyP in non-photosynthetic organisms.
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However, there is variability in the capabilities of cyanobacteria to
accumulate polyP and reach a PO4

3- threshold at which polyP
reserves are preferentially degraded, which may reflect the
environment in which they evolved. In the filamentous bloom
forming cyanobacterium Nodularia spumigena, vegetative cells
exhibited different polyP levels than heterocysts (Braun et al.,
2018).When PO4

3- is added back to P-depleted cultures, the PO4
3-

is taken up from the medium and polyP accumulates
preferentially in the vegetative cells. However, intracellular P in
heterocysts remained low, highlighting functional differences
between heterocysts and vegetative cells, in addition to their
ability to fix molecular nitrogen.

Algae also exhibit the over-plus phenomenon. Two species of
Chlamydomonas (C. acidophila KT-1 and C. reinhardtii C-9)
exhibited the same pattern of polyP degradation when deprived
of P, and the over-plus response was observed when the medium
of the P-deprived cells was supplemented with an abundance of
PO4

3-. However, the levels of total polyP that accumulated varied
between these species (Nishikawa et al., 2006). The overplus effect
in the green alga Chlorella vulgaris depended on the duration of
the starvation period and the PO4

3- concentration used during re-
supply of the nutrient, with maximum accumulation after more
than 8 h of deprivation and with PO4

3- resupply concentrations
above 0.3 mM (Aitchison and Butt, 1973). So far, the specific
factors that control the “overplus” response are not well
understood. However, in eukaryotic algae, where the VTC
complex is responsible for the synthesis of polyP, the binding of
inositol pyrophosphates to the SPX domain of VTC4 must be
considered since it is required to induce polyP polymerase activity
in yeast (Wild et al., 2016; Gerasimaite et al., 2017). Following
PO4

3- replenishment, accumulation of inositol pyrophosphates
may be the first strategy for storing PO4

3- and polyP would be
synthesized only when the cellular P or ATP concentrations are
elevated to a level that triggers increased inositol pyrophosphate
synthesis and binding to the SPX domains of the VTC
polypeptides. A better understanding of this process, which has
the potential to impact biotechnological strategies being developed
for improved recovery of PO4

3- from wastewater, is needed (see
PolyP and Biotechnological Applications).

The over-compensation phenomenon has also been studied in
the red macroalga Chondrus crispus. After starving this alga for 2
weeks, it was resupplied with PO4

3- at a concentration that was
greater than twice the concentration required to saturate the alga's
P requirement (15 μM) (Chopin et al., 1997), however polyP
accumulation was not observed. This finding suggests that over-
compensation works differently or occurs under more extreme
PO4

3-conditions (e.g. more extended starvation, higher PO4
3-

concentration during resupply) or that different acclimation
processes in response to changes in environmental PO4

3-

concenrations occur in multicellular photosynthetic organisms.
The presence of stored polyP in cells usually indicates a high

PO4
3- concentration in the environment and the occurrence of

luxury uptake, or a spike in the level of intracellular nutrients
resulting from over-plus uptake (Karl, 2002; Karl and Bjorkman,
2002; Karl, 2014). However, the use of more sensitive methods
for detection indicated that polyP was common in some marine

environments, even when extracellular levels of P were low (Diaz
et al., 2008; Diaz and Ingall, 2010; Orchard et al., 2010; Martin
and Van Mooy, 2013). In phytoplankton populations extending
from the western North Atlantic, the Gulf Stream, and into the
severely P limited Sargasso Sea, it was demonstrated that P pools
declined and two bio-indicators of low P conditions, alkaline
phosphatase activity and the sulfolipid:phospholipid ratio, were
both elevated in the biota. The lowest P concentration was
measured in surface waters where the absorption of sunlight
stimulated phytoplankton productivity. Surprisingly, as the level
of inorganic P declined, the proportion of polyP with respect to
total particulate P increased, indicating that a greater proportion
of the P pool in the cell was maintained as polyP under
conditions in which the level of inorganic P was at its lowest.
This result was also noted specifically for cultures of marine
Synechococcus, an abundant taxon in the oligotrophic oceans
(Bjorkman, 2014; Martin et al., 2014). Overall, studies of
Sargasso Sea phytoplankton conflict with the notion that polyP
only serves as a luxury P reservoir that is rapidly mobilized when
inorganic P levels in the environment decline. Furthermore, in
the Sargasso Sea polyP was released from cells preferentially over
bulk P, helping to sustain P levels in shallow waters, the zone of
greatest metabolic activity. This suggests that polyP cycling in the
environment may form a feedback loop that attenuates P export
when environmental P becomes scarce and allows for the gradual
contribution of bioavailable P to the ecosystem for sustaining
primary production and supporting the use of exported carbon
and nitrogen (Martin et al., 2014).

Studies with the diatom Thallasiossira pseudonana also
demonstrated a preference for maintaining polyP even when
the cells experience P deprivation. Gene expression and protein
abundance patterns supported the observation that P deprivation
of T. pseudonana resulted in an increased proportion of cellular
P stored as polyP (Dyhrman et al., 2012). This observation is also
in agreement with the general idea that not all polyP allocation is
driven by luxury uptake and that controlled polyP cycling could be
a key adaptation in low P ecosystems (Karl and Bjorkman, 2002).
Similarly, the cyanobacterium Microcystis aeruginosa, is able to
take up and store PO4

3- as polyP even when the concentration of
external PO4

3- is low, which would enable it to compete with other
phytoplankton when P becomes limiting (Wan et al., 2019). Taken
together, these observations suggest that not all polyP allocation is
driven by luxury uptake and that controlled polyP cycling could be
a key component of the adaptation process in low P ecosystems
(Karl and Bjorkman, 2002).

Although polyP is mainly stored in acidocalcisomes, as
mentioned above, it can also be found in the cell wall, and
associated with the cytoplasmic membrane and other
macromolecules in the cell, which may reflect its varied
functionalities. For example, it has been suggested that polyP
can serve as a PO4

3- reservoir for the synthesis of DNA and RNA.
Synechococcus sp. cells can contain multiple copies of genomic
DNA (Binder and Chisholm, 1990; Binder and Chisholm, 1995;
Mori et al., 1996). Some reports have noted an association of the
fibrous structures in the nucleoid region of cyanobacterial cells
with the PPBs (Voelz et al., 1966; Lawry and Jensen, 1979). There
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also appears to be a link between PPBs dynamics and
chromosomal DNA behavior related to day-night cycling of
cells. Cyanobacterial DNA synthesis occurs in the light and is
dependent on photosynthetic electron transport (Binder and
Chisholm, 1990; Watanabe et al., 2012; Ohbayashi et al., 2013;
Seki et al., 2014), with cell elongation and division occurring for
most cells toward the end of the light period (Seki et al., 2014). In
cultures of the unicellular cyanobacterium Synechococcus that
were synchronized to a light-dark cycle, DNA appeared diffuse
during the dark period and exhibited transient compaction
(based on fluorescence microscopy) at the end of the light
period (Smith and Williams, 2006). This compacted DNA,
observed by high-voltage cryo-electron tomography (Murata
et al., 2016), forms structures visually similar to condensed
eukaryotic chromosomes and appears to be associated with
small, paired PPBs. Additionally, phase contrast transmission
electron microscopy of Synechococcus elongatus PCC 7942 cells
showed that newly synthesized BrdU (5-bromo-2'-deoxyuridine)
labeled DNA was in close proximity to the PPBs (Nitta et al.,
2009). The coordinated dynamics of PPBs/polyP levels, DNA
morphology, and the observed interactions between these
molecules over the period when DNA is being replicated,
suggest that the PPBs supply PO4

3- for DNA replication in the
light, and may participate in regulating DNA synthesis (Murata
et al., 2016).

Another potential connection between polyP and DNA
synthesis has been revealed by analyses of akinetes, spore-like
cells that develop in some cyanobacteria that are specialized to
survive adverse environmental conditions. The akinetes are
generally larger than vegetative cells and differentiate from
vegetative cells within the cyanobacterial filaments. They
develop a thick cell wall as they mature and are dormant
under harsh environmental conditions. When conditions
improve, the akinetes divide and give rise to a new population
of vegetative cells that can disperse in the environment (Hori
et al., 2003; Karlsson-Elfgren and Brunberg, 2004; Karlsson-
Elfgren et al., 2004). Akinetes accumulate glycogen, a storage
polysaccharide, and cyanophycin, a nitrogen (N) storage
polymer composed of aspartic acid residues with arginine side
groups. The DNA content of akinetes can be several times higher
than that of vegetative cells. For example, vegetative cells of the
filamentous cyanobacterium Aphanizomenon ovalisporum were
shown to be polyploid with an average of eight copies of the
genome per cell while the average number of genome copies in the
akinetes of this organism was 119; some of the akinetes had in
excess of 400 copies of the genome. Ribosome levels in akinetes
were also elevated relative to that of vegetative cells (Sukenik et al.,
2012). Akinetes of Anabaena cylindrica were also enriched for
DNA relative to vegetative cells (Simon, 1977). Interestingly, PPBs
were not observed in akinetes but were abundant in vegetative
cells, suggesting that polyP in akinetes is used for generating the
multiple copies of genomic DNA associated with development,
maturation and fruiting of akinetes, and ultimately, the formation
of numerous vegetative cells (Sukenik et al., 2012).

PolyP Accumulation During Sulfur and
Nitrogen Deprivation
High levels of polyP can build up in cyanobacteria and algae
exposed to stress conditions, including nutrient deprivation and
metal ion toxicity (Harold, 1966; Lawry and Jensen, 1979; Lawry
and Jensen, 1986; Siderius et al., 1996; Aksoy et al., 2014; Hong-
Hermesdorf et al., 2014; Goodenough et al., 2019). In C.
reinhardtii, polyP accumulation occurs in sulfur (S)-deprived
cells and is crucial to allow proper acclimation (Aksoy et al.,
2014). In this alga, a mutant lacking one of the subunits of the
VTC complex (VTC1) exhibited an aberrant S deprivation
response (SdR) with reduced expression of some of S-
deprivation-responsive genes. Although the role of polyP in
this transcriptional regulation is not well understood, it is
known that the inability to synthesize polyP impacts the
expression of SdR genes to different degrees. Cells experiencing
S starvation induce acclimation in a two-tiered response (Aksoy
et al., 2013). Mutants in VTC1 that are unable to accumulate
polyP are altered in their abilities to induce genes from both tiers
of regulation, with a more significant impact on genes induced
during the second tier (ARSs, ECPs, and HAPs) (Aksoy et al.,
2014). PolyP accumulation as a consequence of S deprivation has
also been described in the green alga Parachlorella kessleri, which
accumulates polyP during the early stages of starvation, before
starch and lipids accumulate (Ota et al., 2016).

PolyP also accumulates in N-deprived algae (Goodenough
et al., 2019). An inability to synthesize polyP in the C. reinhardtii
vtc1 mutant impairs accumulation of the L-amino oxidase
(LAO1) (Aksoy et al., 2014), a protein that becomes prominent
during N deprivation which functions in scavenging ammonium
from amino acids. This again highlights a role of the synthesis/
accumulation of polyP for normal acclimation to nutrient
limitation conditions. The polyP that accumulates during N
starvation is degraded and acidocalcisomes resorbed upon
exposure of the cells to N replete conditions (Goodenough
et al., 2019). PolyP also accumulates in various Chlorella

strains when they are deprived of N, and becomes the major
PO4

3- source following the addition of N to the cultures (Kuesel
et al., 1989; Chu et al., 2013; Chu et al., 2015). When N deprived
cells are transferred to N replete medium, polyP is depleted over
the first 3 days, even prior to using the PO4

3- present in the
medium. However, when polyP-accumulating cells are exposed
to both N and P starvation, they do not use the polyP as a source
of PO4

3-. The reason why N is required to use polyP is not clear,
but indicates that the absence of extracellular P is not enough to
trigger the degradation of polyP and that there is a regulatory
hierarchy controlling the induction of nutrient acclimation
responses. When cells are deprived only for one nutrient, they
induce energy-consuming acclimation responses to optimize the
acquisition of that nutrient, facilitate intracellular mobilization,
and metabolic adjustment to promote survival. However, if cells
experience deprivation for two nutrients, the heirarchy of the
evolved cellular responses could favor initiation of only one of
the two “programs.” Examining the impact of imposing a
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limitation for N either prior to or as the cells are exposed to P
deprivation (and other multideprivation combinations) may
reveal heirarchical responses that reflect the environments in
which the organisms evolved.

PolyP During Stationary Phase and Other
Abiotic Stresses
PolyP accumulation has also been linked to osmotic stress and the
entrance of specific microbes and phytoplankton into stationary
phase (Feuillade et al., 1995; Kornberg et al., 1999; Diaz et al., 2008;
Cade-Menun and Paytan, 2010). In C. reinhardtii, polyP-filled
acidocalcisomes are also generated during stationary phase
(Goodenough et al., 2019). Early work with C. reinhardtii on
polyP showed that one-week-old cultures (stationary phase)
grown under mixotrophic conditions generated PPBs that can be
released from the cells by exocytosis (Komine et al., 2000). It is not
clear whether the accumulation of polyP in stationary phase cells is
a consequence of a deficiency for a specific nutrient or to other
factors related to the status of the cultures. Similarly, Chlorella
vulgaris cultures contained little polyP during exponential growth,
accumulating it as cells approached stationary phase (Aitchison
and Butt, 1973).

PolyP has also been suggested to function in the
neutralization of microalgal cells that become alkalinized when
incubated in high concentrations of ammonium (Pick et al.,
1990). In Dunaliella salina, the addition of 20 mM ammonium
increased the cytosolic pH and reduced cellular ATP levels. High
intracellular pH can dramatically affect photosynthetic and
respiratory activities, inhibiting ATP production. When
Dunaliella cultures experienced high ammonium levels, polyP
was degraded and the cells were able to maintain ATP levels and
neutralize their cytoplasm; polyP hydrolysis results in H+ release,
which could compensate for cytsolic alkalinization. In support of
these ideas, when algal cells are cultured under conditions of P
deprivation and accumulate less polyP, it takes a longer time for
them to recover from ammonium “shock.”

Osmotic shock impacts the length of polyP polymers in
Dunaliella salina and Phaeodactylum tricornotum (Bental et al.,
1990; Leitao et al., 1995). Hyperosmotic shock promoted the
synthesis of longer polymers with concomitant ATP hydrolysis,
while the opposite effect, smaller polymer synthesis with an increase
in ATP levels, was elicited in cells exposed to hypoosmotic stress.
Whether polyP solely functions to maintain the chemical balance in
the cell or could have an additional role in the acclimation to omotic
stress is unclear.

Some algae accumulate polyP upon exposure to elevated
temperatures, but very little is known about this phenomenon
in photosynthetic organisms. A Cylindrocystis-like alga isolated
from the High Arctic, where temperatures oscillate from −12 to
+5°C, showed elevated polyP accumulation when cultivated at
20°C (Barcyte et al., 2020). However, another Cylindrocystis-like
strain that inhabits the desert and grows at elevated temperatures
did not accumulate polyP under the same conditions. The
different responses of these strains suggest that, as in bacteria,
polyP is being synthesized in response to heat stress, and that

higher temperatures may be required to elicit its accumulation in
the desert alga.

PolyP as a Chelator of Cations
Several metal ions are critical for growth but become toxic when
in excess (e.g. Fe, Cu, Zn, Mn, etc.), while other toxic metals ions
are nonessential (e.g. Cd, Pb, or Hg). Both prokaryotic and
eukaryotic photosynthetic organisms have evolved different
and sometimes synergistic mechanisms for dealing with toxic
levels of metal ions (Twiss and Nalewajko, 1992; Baptista and
Vasconcelos, 2006). They can remove the ions from solution by
adsorbing them onto their surfaces, import them and sequester
them on molecular surfaces within the cell, make functional use
of them through biotransformations (e.g. incorporation into
proteins), increase the activities of efflux pumps, and store
them in subcellular compartments (Darnall et al., 1986; Swift
and Forciniti, 1997; Baptista and Vasconcelos, 2006).

Several studies have shown that metal ions are bound to the
PPBs and sequestered in acidocalcisomes (Baxter and Jensen,
1980; Pettersson et al., 1988; Fiore and Trevors, 1994; Swift and
Forciniti, 1997; Docampo et al., 2005; Docampo and Moreno,
2011; Goodenough et al., 2019; Tsednee et al., 2019), with Mg2+

and Ca2+ being abundant polyP-chelated cations (Siderius et al.,
1996; Komine et al., 2000). The presence of Ca2+ channels in
trypanosomatid acidocalcisome membranes also suggests a
possible role of these vacuoles in Ca2+ sequestration and
exchange, which in turn could impact various signaling
pathways (Ramakrishnan and Docampo, 2018). In addition to
Ca2+ and Mg2+, polyP can bind Zn2+ Mn2+, Al3+, and K+ and
play a role in detoxifying heavy metals such as Cd2+ and Pb2+.
Positive correlations between high levels of polyP and tolerance
to cation toxicity have been observed (Sicko-Goad et al., 1975;
Baxter and Jensen, 1980; Jensen et al., 1982; Sicko-Goad and
Lazinsky, 1986; Torres et al., 1998; Rangsayator et al., 2002;
Andrade et al., 2004; Moura et al., 2019), with some
cyanobacteria and microalgae also showing increased polyP
accumulation during the PO4

3- overplus reaction when high
external metal ion concentrations are included in the medium
(Sicko-Goad et al., 1978; Siderius et al., 1996). PolyP levels in the
cyanobacteria Anabaena flos-aquae and A. variabilis increased
when the cells experienced elevated Zn2+ concentrations (Rachlin
et al., 1985); a similar increase in polyP was observed when
Spirulina (Arthrospira) platensis was exposed to high levels of
Cd2+ (Rangsayator et al., 2002), when Plectonema boryanum

was exposed to high levels of Mg2+, Sr2+, Ba2+, and Mn2+

redundant (Baxter and Jensen, 1980) and when Microcystis

novacekii BA005 or Nostoc paludosum BA033 were exposed to
high Mn2+ concentrations (Moura et al., 2019). However, it was
also observed that exposure of C. reinhardtii to Cd2+ and Hg2+

elicit polyP degradation and an increase in the amount of short
chain polyP and orthophosphate in the vacuoles as the metal ion is
being sequestered (Nishikawa et al., 2003; Samadani and Dewez,
2018a; Samadani and Dewez, 2018b), suggesting that the energy in
the phosphoanhydride bond and/or the polymer length might
contribute to more effective sequestration.
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PO4³
- levels can not only impact cation accumulation, but

also the tolerance of photosynthetic microbes to toxic metals.
When C. reinhartii and Scenedesmus obliquus were administered
elevated levels of PO4³

- they accumulated more Cd2+ and Zn2+

(Yu and Wang, 2004a; Yu and Wang, 2004b) and increases in
accumulation of Cu2+ and Cd2+ in C. reinhardtii cells exposed to
elevated PO4³

- concentrations have been correlated with an
increase in the tolerance of the cells to the potentially toxic
effects of these metal ions (the intracellular stoichiometry of
metal ion to PO4³

- was most important in assessing toxicity)
(Wang and Dei, 2006). In the cyanobacterium M. aeruginosa,
Cd2+ and Zn2+ uptake was promoted by elevated cellular PO4

3-

concentrations, with short term Cd2+ and Zn2+ uptake rates
increased by 40- and 16-fold, respectively, when the cellular
PO4

3- concentration was increased from 66 to 118 mmol/g dry
weight. P-enriched cells also exhibited greater tolerance to Cd2+

and Zn2+ than cells deprived of P (Zeng andWang, 2009; Zeng et
al., 2009). A mutant of Nostoc muscorum that was resistant to
Ni2+ exhibited a two fold increase in Ni2+ uptake relative to the
wild type strain, with a concomitant increase in the level of
cellular polyP (Singh, 2012). These results all strongly support
the idea that many photosynthetic microbes, both prokaryotic
and eukaryotic, in an environment with sufficient P can
synthesize polyP, mostly as PPBs, that serves as scaffolds for
metal binding and detoxification and potentially also as a source
of energy for maintaining metal homeostasis.

A similar situation may also occur in some macroalgae. For
example, the macroalga Macrocystis pyrifera accumulated more
Cd2+ when it was induced to synthesize high levels of PPBs
(Walsh and Hunter, 1992). Elevated capacities to tolerate and
sequester metal ions that are potentially toxic, including Pb2+

and Cu2+, have also been described for organisms of the
photosynthetic microbial mat communities of the Ebro Delta
in Catalonia (Esteve et al., 1992; Guerrero et al., 1999; Manosa
et al., 2001; Burgos et al., 2013). Specific cyanobacteria that live in
these microbial communities, including Oscillatoria sp. PCC
7515, Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313,
have high tolerances for Pb2+ (Mateo et al., 1997; Maldonado
et al., 2010; Maldonado et al., 2011) and have been shown to take
up this metal and accumulate it in association with extracellular
polymers and intracellular PPBs (Maldonado et al., 2011). A
marine Synechococcus strain has been shown to sequester
radionuclides, including uranium, with much of it bound to
polysaccharides on the surface of the cells (Sakaguchi et al., 1978;
Acharya et al., 2009). However, an acid soluble polyP may also
function in uranium sequestration. Based on energy dispersive
X-ray (EDX) spectroscopy and spectrophotometric analyses it
was determined that PPBs can form on the surface of the cells of
the nitrogen-fixing filamentous cyanobacterium Anabaena

torulosa and bind uranium (Acharya et al., 2012; Acharya and
Apte, 2013).

C. reinhardtii represents a robust model microalgal system that
is relatively easy to maniputlate at the genetic and molecular levels
and has been used to dissect some molecular aspects of metal
chelation and toxicity (Hanikenne, 2003). Recent studies have

shown that this alga can accumulate Mn2+, which colocalizes with
polyP and Ca2+ in acidocalcisomes (Tsednee et al., 2019). The
capacity of C. reinhardtii to store Mn2+ was also shown to depend
on its ability to accumulate polyP. The vtc1 mutant, which is
unable to synthesize polyP, does not accumulate Mn2+; the same
inability to accumulate Mn2+ occurs in wild type cells when they
are deprived of P (and cannot make polyP). Interestingly, little of
the sequesteredMn2+ was chelated directly to polyP, which has led
to the suggestion that polyP serves as an intermediate in the
binding of Mn2+ to a ligand that has not yet been defined. Algal
cells, like cyanobacteria (mentioned above), may also exploit
extracellular polymers, including polyP (located in the cell wall),
as a first line of defense against metal toxicity (Penen et al., 2017).
C. reinhardtii cell wall-less mutants exhibited reduced growth in
the presence of various metals, including Cd2+, Co2+, Ni2+, and
Cu2+ (Macfie and Welbourne, 2014). This sensitivity could reflect
reduced chelation of these metal ions in the absence of
extracellular polyP (Werner et al., 2007). Interestingly, both C.
reinhardtii and C. acidophila growing in the presence of heavy
metals (e.g. Cd2+, Hg2+) degrades polyP (Nishikawa et al., 2003;
Nishikawa et al., 2009; Samadani and Dewez, 2018a; Samadani
and Dewez, 2018b), which promotes an increase in the
concentration of shorter chains of polyP, free PO4

3- and
ultimately a decrease in intracellular PO4

3-. The mechanism for
metal tolerance associated with these changes in polyP features/
levels may involve the initial chelation of the toxic metals to polyP
which is required for some other form of sequestration that
ameliorates metal toxicity; this may relate to the ultimate use of
another cation chelator as well as excretion of the ion from the
cells. The formation of palmelloid cell aggregates of C. reinhardtii
cells may also contribute to the cell's ability to withstand metal
toxicity (Samadani and Dewez, 2018a; Samadani et al., 2020). In
summary, it seems like there are multiple methods for algal and
cyanobacterial cells to cope with metal cation toxicity, with some
that require chelation by polyP and others for which the
mechanism(s) appear to be more complex.

PolyP as Substrate for Kinases
Specific enzymes that use polyP to phosphorylate sugars have
been identified in bacteria, including cyanobacteria, and belong
to the family of proteins designated polyP glucokinases (PPGK,
polyphosphate–glucose phosphotransferase, EC 2.7.1.63). These
proteins use glucose and polyP (and often nucleotides such as
ATP) as substrates to catalyze glucose phosphorylation,
generating glucose 6-phosphate. PPGKs were first observed in
Mycobacterium phlei (Szymona, 1957) and in Gram-positive
bacteria in the order Actinomycetales (Szymona and Ostrowski,
1964; Szymona and Widomski, 1974; Szymona and Szymona,
1978; Szymona and Szymona, 1979; Pepin and Wood, 1986;
Mukai et al., 2003; Tanaka et al., 2003; Lindner et al., 2010; Liao
et al., 2012; Koide et al., 2013). Although many PPGK enzymes
can use a range of nucleotide triphosphates as substrates, the
enzymes of the most ancient Actinomycetales species have a
preference for polyP. In contrast, the more recently evolved
bacterial species use ATP and are unable to use polyP, similar to

Sanz-Luque et al. Polyphosphate in Photosynthetic Microbes

Frontiers in Plant Science | www.frontiersin.org June 2020 | Volume 11 | Article 93810

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


strictly ATP dependent fungal and mammalian hexokinases
(Rao et al., 2009). Currently it is thought that the early
phosphoryl donor for glucose phosphorylation was polyP and
as ATP became the dominant energy donor of the cells,
glucokinases evolved into isoforms more specific for ATP,
although many of the PPGKs that have been characterized can
use both polyP and nucleotide triphosphates as substrates.

A novel subfamily of PPGK proteins have so far, been identified
only in N2-fixing, filamentous cyanobacteria. Glucokinases from
the filamentous nitrogen fixers Nostoc sp. PCC7120 (formerly
Anabaena sp. PCC 7120) and Nostoc punctiforme PCC73102
(Klemke et al., 2014; Albi and Serrano, 2015) have been shown
to catalyze in vitro phosphorylation of glucose using polyP as the
phosphoryl donor. These PPGKs have a higher affinity for polyP
with more than 10 phosphoryl residues, exhibit moderate activity
using mannose as a substrate and, unlike most other glucokinases,
appear to be specific for polyP and unable to use nucleoside
triphosphates (e.g. ATP or GTP) as phosphoryl donors. The gene
encoding this enzyme in Anabaena sp. PCC 7120 is expressed
under conditions of N deprivation and a strain with a null mutation
in the gene is compromised under N2-fixing conditions (Klemke
et al., 2014). It was hypothesized that this glucokinase is part of a
response to N deprivation in which “N sparing” reactions (e.g.
limiting the use of N-containing nucleotides) are elicited.

Integration of PolyP and Inositol
Phosphate Metabolism in Microalgae
PolyP has been associated with active metabolism in various
microbes, including algae (Aitchison and Butt, 1973), and can be
used as a substrate for the generation of ATP and, in some cases,
can phosphorylate other cellular metabolites. As discussed above,
its synthesis and degradation are sensitive to environmental
conditions and critical for microbes to acclimation to various
stress conditions. Therefore, polyP metabolism is linked to the
energetics of cells, integral to various cellular processes and likely
highly controlled. A link between inositol pyrophosphate
metabolism and polyP synthesis has been reported for
Trypanosoma brucei (Cordeiro et al., 2017) and budding yeast
(Wild et al., 2016; Gerasimaite et al., 2017). Mutants in these
organisms that are unable to synthesize inositol pyrophosphates
(InsP7 and InsP8) exhibited impaired polyP accumulation. In
yeast, polyP synthesis has been shown to be activated by the
binding of inositol pyrophosphates to the SPX domain of the
VTC4 subunit of the VTC complex (Wild et al., 2016). Although
the VTC4 protein is currently uncharacterized in algae, based on
the genome sequences of various algae, it appears to be conserved
in many Chlorophyceae species (e.g., C. reinhardtii, Chlorella
variabilis, Micromonas pusilla, Dunaliella salina, and Coccomyxa

subellipsoidea, among others). The VTC4 proteins of the algae
contain SPX and polyP polymerase domains, with conservation
of specific amino acid residues required for activity (Figure 1).
These findings suggest that activation of polyP synthesis in
microalgae will also respond to inositol pyrophosphates.

Interestingly, a connection between the accumulation of
inositol pyrophosphates and TOR signaling has been established

in C. reinhardtii (Couso et al., 2016). The vip1 mutant, which is
unable to synthesize the highly phosphorylated forms of inositol,
exhibited a hypersensitive response to rapamycin (a TOR
inhibitor) and more pronounced lipid (triacylglycerol, TAG)
synthesis than the wild type strain. Although the precise
interactions that link these two pathways and how that link
might integrate with polyP metabolism are not understood, the
results suggest a connection between polyP and control of
cellular energetics, growth, and acclimation through the TOR
pathway. Furthermore, the increase in TAG synthesis in inositol
pyrophosphate deficient strains indicates that inositol
pyrophosphate synthesis and possibly polyP accumulation can
impact lipid synthesis and storage. Close interactions between
acidocalcisomes and mitochondria observed in Trypanosoma and
C. reinhardtii cells (Docampo and Huang, 2016; Goodenough
et al., 2019) also suggests a role (although speculative) for
acidocalcisomes and polyP in regulating cellular energetics. The
potential integration of polyP metabolism into the central
metabolic networks of the cell is an exciting field and may
provide new insights into the diversity of phenotypes observed
in cells impaired for the synthesis of this polymer.

POLYP AND BIOTECHNOLOGICAL
APPLICATIONS

Various uses have been proposed for polyP with respect to human
health, agricultural practices, and the remediation of ecosystems.
PPBs, also recently called “biogenic phosphate nanoparticles”
(BPNP), in addition to having roles in PO4

3- storage, cellular
energetics, and metal sequestration, may function in reducing
inflammation and protecting mammalian cells from various forms
of damage, including oxidative damage (Segawa et al., 2011;
Kashima et al., 2015). High levels of BPNPs were synthesized in
Synechococcus sp PCC7002 overexpressing the the ppk gene. The
isolated BPNPs from this cyanobacterium were shown to be taken
up by polarized human intestinal epithelial (Caco-2) cells (Gao
et al., 2018) where they inhibited the induction of nitric oxide
synthase and the production of proinflammatory mediators in
mouse cell cultures (Feng et al., 2018). This work on potential
“health impacts” and uses of polyP for medical applications is
intriguing, although it would benefit from further studies of the
efficacy and scope of polyP in these processes.

The PPK enzyme can also be used to catalyze ATP production
for the synthesis of various compounds. For example, the high
temperature resistant PPK from Thermosynechococcus elongatus

BP-1 was used to generate ATP from ADP and polyP for the
production of D-amino acid dipeptide (Sato et al., 2007).

In agriculture, PO4
3- is an essential nutrient, but its bioavailability

in the soil often limits crop productivity. The requirement of PO4
3-

for achieving optimal agricultural yields makes it a critical resource
for maintaining food security for future generations. To increase
crop yields, high levels of PO4

3- are often included in fertilizers,
although only a small proportion of the applied PO4

3- may be
recovered in the biomass (Pathak et al., 2010); more than 80% of the

Sanz-Luque et al. Polyphosphate in Photosynthetic Microbes

Frontiers in Plant Science | www.frontiersin.org June 2020 | Volume 11 | Article 93811

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


applied PO4
3- can be lost in wastewater (e.g. parboiled rice mill

effluents) or to surface waters as runoff. Hence, in addition to the
inefficient economic aspects of applying large amounts of PO4

3-

fertilizer to boost crop productivity, high levels of this nutrient can
contaminate agricultural soils, while its runoff into nearby water
bodies can cause eutrophication and create toxic habitats (Hupfer
et al., 2004; McMahon and Read, 2013). According to several
predictions, continued production of high PO4

3- fertilizers may
also become challenging for future generations as the Earth's
PO4

3- reserves might be exhausted in less than 100 years (Cordell
and White, 2014; Mukherjee et al., 2015). Furthermore, PO4

3–

containing rocks are not equally distributed over the Earth,
creating a need for most countries to import this vital nutrient.
Indeed, the negative socio-economic impact of limitations in PO4

3-

availability and how, based on current agricultural practices, it can
cause environmental degradation, creates a need to reassess the ways
in which PO4

3- is delivered and recycled for the establishment of
sustainable agricultural practices (Solovchenko et al., 2016).

To ameliorate the negative impact of amending soils with excess
PO4

3-, several studies using cyanobacteria and algae have explored
ways to direct polyP metabolism toward bioremediation/water
treatment and the production of biofertilizers (Kulakovskaya
et al., 2012; Mukherjee et al., 2015; Solovchenko et al., 2016;
Siebers et al., 2019). Various cyanobacteria including Aphanothece

sp., Spirulina sp., Arthrospira sp., Lyngbya sp., Anabaena sp., and
Phormidium sp., as well as eukaryotic microalgae such as Chlorella
sp. and Scenedesmus sp., have been used for removal of nutrients
from wastewater (Ray et al., 2013; Mukherjee et al., 2015); much of
the excess PO4

3- that is assimilated by these organisms is
polymerized into polyP. Cyanobacteria and microalgae that
accumulate high levels of polyP could potentially be integrated
into strategies for economical, commercial-scale removal of PO4

3-

from wastewaters and the generation of PO4
3–rich bacterial/algal

biomass that could be incorporated into fertilizers for agricultural
applications. The rate at which the PO4

3- is mobilized from these
biofertilizers would depend on its degradation/hydrolysis by
enzymes released to the soil by microorganisms, with potential
slow/moderate release favoring sustained plant growth with reduced
PO4

3- runoff.
The development of polyP-based biological systems for

bioremediation and the generation of biofertilizers would
benefit from engineered bacterial/algal strains that accumulate
excess polyP. The feasibility of developing such strains has been
demonstrated for both heterotrophic and photosynthetic bacteria.
A high polyP accumulating bacterium was constructed by
introducing the ppk gene from the cyanobacterium Microcystis

aeruginosa NIES-843 into Pseudomonas putida that was already
efficient in removing PO4

3- from its environment. This strain,
grown in a sequencing batch biofilm reactor, had a much higher
capacity to remove PO4

3- from the medium than the control strain
(no introduced ppk gene) (Du et al., 2012). An alternative
approach exploited the finding that mutants in a gene encoding
a negative regulatory element of the Pho regulon, PhoU, also
accumulated high levels of polyP. Inactivation of the phoU gene in
Synechococcus sp. PCC6803 resulted in elevated intracellular
polyP accumulation and a 4-fold increase in the ability of the

cells to remove PO4
3- from the medium relative to the wild type

cells (Morohoshi et al., 2002). Furthermore, such strains may also
become integral to biostrategies for removing toxic metals from
contaminated waters. A more holistic, integrated understanding
of how, when, and where polyP is synthesized, as well as the ways
in which it interacts with the metabolic and regulatory circuits in
the cells, will facilitate the exploitation of its synthesis and
accumulation for biotechnological applications.

FUTURE PERSPECTIVE

Since the discovery of polyP more than 100 years ago, various
functions have been ascribed to this polymer in organisms from all
kingdoms of life. PolyP could modulate functionalities of proteins
by sequestering cations and influencing the biosynthesis of
metalloenzyme and metal toxicity, serve as a scaffold to facilitate
protein folding, promote protein degradation, modify proteins
through covalent binding (polyphosphorylation), and potentially
provide substrate for nucleic acids synthesis. Additionally, polyP
can impact Ca2+ signaling, contribute to the energy currency of the
cell, and impact adenylate homeostasis; these functions can have
potential multifactorial effects on a wide variety of cellular
processes. Aspects of these functions may guide experimentation
toward elucidation of the ways in which this simple molecule
assists organisms in coping with environmental challenges.

While our knowledge has slowly accrued over the past half
century concerning the synthesis and functions of polyP, there is
still little known about the acidocalcisome, which houses polyP,
with many questions to be answered. What are the steps in
acidocalcisome biogenesis and what makes it different from other
vacuoles in the cell? What are the consequences of acidocalcisome
interactions with contractile vacuoles and mitochondria and do
they interact with other organelles (e.g. chloroplasts)? How do
acidocalcisomes release their contents (e.g. Ca2+, polyP, PO4

3-) into
the cytoplasm or extracellular space, what signals trigger the
release, and how does the release serve ecosystem functions?
What role does polyP play in symbiotic interactions between
photosynthetic microbes and sponges of the Caribbean coral reef
(Zhang et al., 2015), between plants and arbuscular mycorrhiza
(Kuga et al., 2008; Tani et al., 2009; Hijikata et al., 2010; Kikuchi
et al., 2014; Ferrol et al., 2019), and between algae and animals
(Cobb, 1978)? Unraveling the signaling networks that promote
release or retainment of polyP granules in phytoplankton will
provide a more complete understanding of P cycling and nutrient
balancing in nature.

Molecular connections linking the acclimation of cells to stress
conditions with polyP metabolism and its impact on cellular
energetics and central metabolism, and both the extracellular
factors and intracellular regulatory elements that control polyP
synthesis, degradation, distribution, and secretion are crucial for
elucidating mechanisms by which this ancient molecule modulates
cellular processes. This information will also provide the
foundational knowledge to foster biotechnological applications that
rely on polyP metabolism and to potentially engineer organisms to
better cope with adverse environmental conditions, serve in
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remediation of contaminated ecosystems, and help ameliorate the
often detrimental consequences of human activities on our planet.
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