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Abstract: Soft tissue reconstructs require materials that form three-dimensional (3-D) structures

supportive to cell proliferation and regenerative processes. Polysaccharides, due to their

hydrophilicity, biocompatibility, biodegradability, abundance, and presence of derivatizable

functional groups, are distinctive scaffold materials. Superior mechanical properties, physiological

signaling, and tunable tissue response have been achieved through chemical modification of

polysaccharides. Moreover, an appropriate formulation strategy enables spatial placement of

the scaffold to a targeted site. With the advent of newer technologies, these preparations can

be tailor-made for responding to alterations in temperature, pH, or other physiological stimuli.

In this review, we discuss the developmental and biological aspects of scaffolds prepared from four

polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran (DEX).

Clinical studies on these scaffolds are also discussed.

Keywords: Polysaccharides; scaffolds; bioresorbable materials; cell adhesion; soft tissues;

regeneration; chemical modification

1. Introduction

Soft tissues are complex fiber-reinforced structures, generally distinguishable from hard tissues

by their high water content [1]. They are continuously invaded by trauma, invasive surgery, and

aging. This often leads to impaired physiological functions, large scale tissue loss, and even organ

failure [2]. The restorative approaches include direct administration of primary or genetically

engineered cells of auto-, allo-, or xenogeneic origin [3,4], and transplantation of cells seeded

into tissue-like three dimensional (3D) scaffolds. Devoid of a stiff matrix, the former approach is

associated with serious obstacles, such as the rapid escape of cells, suboptimal dispersion, insufficient

vascularisation, donor site morbidity, potent immunogenic response, and long-term administration of

immunosuppressive agents [5–10]. The implantation of autologous cells is challenging due to difficulty

in harvesting clinical-grade cells in sufficient number, especially in aged recipients or when the damage

is high [11]. Moreover, cell harvesting requires a second surgical site. This two-stage procedure

increases surgery time and patients may suffer nerve damage at the harvest site [12]. The instillation

procedure via traditional hand held injections imposes a pronounced surgical stress on suspended

cells [13]. Studies report that 80%–90% of transplanted cells die within the first 72 h of injection [14].

More importantly, cellular de-differentiation during in vitro propagation may alter the biosynthetic

properties of autologous cells [15].

Seeding the lineage- and tissue-specific progenitors, derived from patient’s normal tissue or

donor, into scaffolds is a rapidly expanding tissue engineering (TE) alternative. In the 1980s, TE

was understood as the application of prosthetic devices and surgical manipulation of tissues [16].
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Evolution TE as a modern science is dedicated to the experiments of Vacanti et al., who developed the

first tissue engineered scaffold to be used in a human [17]. An advanced understanding on TE as an

interdisciplinary science emerged from one of the most cited articles published in Science by Langer

and Vacanti [18].

Unlike cell suspension, seeded scaffolds exhibit a more predictable transport of high density

cells into the defect site [14,19–26]. Therefore, it is essential that the structure and composition of

scaffolds emulate the complexity of target tissue and mimic the confluent extracellular matrix (ECM).

This is accomplished through inclusion of synergistic cell types, ECM proteins, and angiogenic factors

into the scaffold [27,28]. ECM proteins and growth factors facilitate cooperative signaling and thus,

augment the regenerative response [29]. Researchers have identified key peptide sequences (viz. RGD,

YIGSR, and REDV) among large non-cellular binding domains of ECM proteins. Functionalization of

scaffold material with these short peptides has shown to significantly enhance the cell attachment and

proliferation. Of note, short peptides can conveniently be synthesized with desirable functionalities

and be attached to polymer end groups while conserving the native properties of ECM protein [30–33].

Local placement of scaffolds, loaded with tissue-specific regenerative components, concentrates the

payload in the region of interest and stimulates regeneration through defined biomolecular recognition

events. Occasionally, acellular scaffold is administered to the recipient wherein regeneration leans over

recruitment of native cells into the implant. This strategy has been successfully tested by Stevens et

al. [34] for neobone formation. Authors have demonstrated the generation of mineralized compact

bone exhibiting the expression of histological markers and mechanical properties of native bone.

It is desirable that the scaffold is stably located and offers a hospitable environment for tissue

regeneration. In accordance, its performance is evaluated by the matrix stability, biocompatibility, and

achievement of tissue-specific physiological signaling (Table 1). Mechanical properties are evaluated

in terms of storage and loss moduli, and gel strength. These properties can be modulated either by

changing the crosslinking density and molecular weight of the polymer, or through incorporation

of additional components [35,36]. Nevertheless, ensuing characteristics must be appropriate for

manipulation during implantation [14]. Porosity and pore interconnectivity facilitate the metabolic

exchange, waste disposal, colonization, and survival of entrapped cells [37,38]. Biocompatibility with

seeded cells and host tissues has been studied using validated assay procedures. Material safety has

been evaluated in animal models to verify that unseeded scaffold does not induce cell infiltration

or aberrant histological changes in the neighboring tissues [39]. Finally, the scaffold should provide

molecular signals for driving complex multi-cellular processes and get degraded in concert with

cells proliferation [40,41]. The by-products of material degradation must not induce local or systemic

adverse events [42,43].

Table 1. Summary of important parameters for tissue scaffold development.

General Attributes Biocompatibility Biological Signaling

Composition and porosity Predictable degradation
Mimicry to the native

environment

Stiffness and elasticity Low immunogenicity Release of cooperative factors

Formulation development and
payload incorporation

Non-toxic degradation products
Colonization of host cells without
inducing any histological changes

Ease of administration Payload release Integration with host tissues

2. Scaffolds Developed from Polysaccharides

A variety of macromolecules, ranging from synthetic to natural polymers, have been explored

for the fabrication of scaffolds. Despite flexible material properties, synthetic polymers find

limited TE applications as they lack biological cues inherent in many natural polymers [19,30].

Biomacromolecules (polysaccharides and proteins), derived from both animal and plants, are receiving
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wider interest in scaffold development [44,45]. Indeed, scaffold research has advanced in recent years

due to polysaccharides, such as chitosan [46,47], alginate [43,48], dextran [49–51], and hyaluronic

acid [41,52]. They readily form loose viscoelastic gel in aqueous vehicles via non-covalent interactions.

Other attractive features include low cost, ease of derivatization, biocompatibility, and biodegradability

(Figure 1). They present distinct similarity to the ECM, which is rich in glycosaminoglycans,

glycoproteins, and glycolipids. The ability of polysaccharides to generate biological cues has been

linked to their glycan units [53]. Cell-selective interaction has further been improved in recent years

through advances in purification techniques and backbone modification [48,54–57]. Moreover, the high

charge density of some polysaccharides enables the development of scaffolds using straight forward

electrostatic interactions [52].
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Figure 1. Schematic structure of polysaccharides. Active centre in the repeating unit of each

polysaccharide is shown in red font.

Despite these merits, the application of natural polysaccharides for scaffold preparation is

associated with certain limitations. Their molecular weight distribution, branching, and sequence

may not be consistent. In addition to influencing rheology, these variations may be detrimental

to biorecognition events. Another noteworthy obstacle is the inferior mechanical strength of

polysaccharide gels. It leads to quick hydrolysis and displacement of the formulation away from

the injection site. For instance, deterioration in the viscoelasticity of hyaluronic acid occurs through

the production of oligosaccharides and low molecular weight fragments [52]. Loss of viscoelasticity

at physiological temperatures can be circumvented through age-old crosslinking methods [58,59].

Besides, gel strength has been improved through the incorporation of additives and/or polymers

of a desirable molecular weight [60–63]. Gelatin is a good choice as a blend component (Table 2).

With the presence of arginine, glycine, and aspartic acid (RGD) tripeptide in the backbone, gelatin

acts as a fibroblast-attractant. Simultaneously, it promotes epithelialization and granulation tissue

formation [64–67]. It has been shown to undergo proteolytic degradation without producing antigenic

fragments [38].

In this review, we discuss the developmental and biological aspects of scaffolds prepared from

four polysaccharides, viz. alginic acid (ALG), chitosan (CHI), hyaluronic acid (HA), and dextran

(DEX). An emphasis is placed on scaffolds developed through physical/chemical modifications using

crosslinking, grafting, polyion complexation, and blending (Table 2). Clinical studies on these scaffolds

are also covered (Table 3).
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Table 2. Polysaccharide based tissue scaffolds.

Components Formulation Application Suggested Merits Reference

CHI, PCL and
polypyrrole

Electrospun
nanofibres

neural tissue substitute
enhanced attachment and proliferation of

PC12 cells
[20]

GEL and carboxymethyl
CHI

Lyophilization
dermal tissue
engineering

adhesion, growth, and proliferation of
3T3 mouse fibroblasts

[22]

maleiated CHI and
thiol-terminated PVA

photocrosslinkable
hydrogel

engineering of
chondrocytes

rapid gelation, improved mechanical
properties, and higher proliferation of

L929 cells
[68]

CHI and COL solvent casting hepatocyte attachment
fetal porcine hepatocytes survived at least

14 days
[69]

ALG and some
surfactants

Lyophilization
delivery of mesenchymal

stem cells

sustained mesenchymal stem cell
proliferation up to 14 days and improved

release of growth factors
[14]

ALG Lyophilization soft tissue repair
differentiation of adipose-derived stem

cells into adipocytes along with
angiogenic action

[5]

ALG and SWCNTs
multinozzle

deposition of the
components

proliferation of
endothelial cells

improved adhesion and proliferation of
rat heart endothelial cells due to

incorporated SWCNTs
[19]

Quaternized CHI
polyaniline and oxidized

DEX

lyophilized
hydrogel

in situ forming
antibacterial and

electroactive hydrogels

high antibacterial activity and enhanced
proliferation of C2C12 myoblasts in

comparison to quarternized CHI
hydrogel

[23]

PUL-DEX Lyophilization adherent cell growth zero-order release of BSA and VEGF [70]

RGD peptide
functionalized DEX

crosslinked
hydrogel

cell-homing scaffold
0.1% of RGD-modified DEX was

sufficient to support HUVEC cells
adhesion

[24]

Maleiated
HA/thiol-terminated

PEG
mould-casting

in-situ formable
scaffolds

quick gelation, porous structures, tunable
degradation, and cytocompatibility with

L929 cells
[71]

CHI, HA and
andrographolide

Lyophilization wound care scaffold
enhanced wound healing and improved

tissue quality
[72]

Thiophene ethylamine
modified HA

Lyophilization hepatocytes culture
improved expression of hepatic

functional genes in primary mouse
hepatocytes

[73]

Thiolated HA Lyophilization
culture of fibroblasts and

chondrocytes
improved density of living cells during

culture for 28 days in vivo
[25]

HA and COL Lyophilization brain tissue engineering
improved mechanical properties through

complexation of HA with COL
[74]

HA, GEL and CS Lyophilization retinal regeneration
favored differentiation of stem cells into
retinal cell types and elicited a minimal

immune response in mouse
[75]

DEX and PLGA electrospinning
fibroblast/

macrophage co-culture

synergistic coordination of macrophages
and fibroblasts stimulated the

degradation rate scaffolds in comparison
to counterparts incubated with a single

type of cells

[76]

DEX and CHI solvent casting wound healing
deposition of ordered collagen and

fibroblast migration
[77]

Abbreviations: Poly(ε-caprolactone), PCL; chitosan, CHI; gelatin, GEL; xanthan gum, XG; collagen, COL; alginate,
ALG; pullulan, PUL; dextran, DEX; chondroitin sulphate, CS; poly(lactic acid-co-glycolic acid), PLGA; basic
fibroblast growth factor, bFGF; bovine serum albumin, BSA; polyvinyl alcohol, PVA; matrix metalloproteinase,
MMP; single-walled carbon nanotubes, SWCNT; arginine-glycine-aspartate, RGD; poly (ethylene glycol), PEG;
vascular endothelial growth factor, VEGF.

2.1. Chitosan

Chitosan (CHI) is obtained from the partial or full deacetylation of chitin (the second most

abundant biopolymer after cellulose, found in the exoskeleton of crustaceans and endoskeleton of

molluscs). The protonation of amine groups during dissolution imparts a positive charge, following

which it quickly adheres to negatively charged substrate surfaces. Readers are referred to some

earlier reviews on biochemistry and biomedical applications of CHI [78,79]. Depending on the

source, chitin exists in α- or β- crystallographic forms. As against to anti-parallel chain organization
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of α-form, β-chitin exhibits parallel organization. The latter configuration though allows limited

probability of intermolecular hydrogen bonds, but it improves accessibility to chemical modification or

deacetylation [80,81]. This is evident in the findings of Reys et al. [82], who investigated the influence

of freezing temperatures (−80 and −196 ◦C) upon scaffold formation behavior of α- and β-chitin, with

a deacetylation degree (DD) of 76.6% and 91.2%, respectively. Although both the scaffolds exhibited

stability against lysozyme up to 4 weeks, those prepared at −196 ◦C displayed a compact structure

and smaller pores. The β-chitin scaffold presented similar morphological features and swelling profile,

but superior mechanical properties attributable to its higher DD [82].

Tissue engineering applications of CHI emerge from the properties, such as hydrophilicity,

polyelectrolyte behavior, mucoadhesion, hemostatic action, and structural similarity to native

extracellular proteoglycans. Its polar groups and physicochemical properties provide a favorable

non-protein environment for cell adhesion and proliferation [83]. It easily forms a blend with

other polymers through electrostatic interactions and confers antimicrobial properties to the final

composition [1,21,84].

Mechanical properties of CHI hydrogels can be modulated through a variety of crosslinking

approaches. A common approach is photo-crosslinking, achieved through the derivatization with

photoactive methacrylate [85–87], azido [88,89], or maleic [68,90,91] groups. Such hybrid scaffolds

can be conveniently produced via freeze-drying. Physical properties (rheology, absorbing capacity,

morphology, crystallinity, and compressive modulus) can be tailored by controlling the degree of

substitution. Studies have shown that CHI scaffolds support the attachment and proliferation of

fibroblasts [21,22], chondrocytes [68], hepatocytes [69], and nerve cells [20].

2.2. Alginic Acid

Alginic acid or alginate (ALG) is a biocompatible and non-immunogenic polysaccharide obtained

from kelp, brown algae, and some bacteria [14]. It is composed of two alternating blocks, α-L-guluronic

acid (G) and β-D-mannuronic acid (M), linked via α-(1–4) and β-(1–4) glycosidic bond, respectively

(Figure 1). Methods have evolved to obtain high purification grade ALG at a low cost, with

negligible traces of contaminants, such as polyphenols and endotoxins [92,93]. Stable hydrogels can

be developed in mild conditions by adding divalent metal cations (Ca2+, Sr2+, and Ba2+) to aqueous

ALG solution [94,95]. Its sol-gel transition is ascribed to the formation of an “egg-box” structure upon

selective binding of cations to G-blocks; a phenomenon which explains the higher elastic modulus for

ALG gels richer in G blocks [96].

Despite these merits, ALG is not a preferred biomaterial as it lacks cell binding motif and, therefore,

exhibits poor cell adherence [97]. This has been demonstrated through a comparison between scaffolds

developed from RGD-immobilized and unmodified ALG. Immobilization of the peptide promoted

cell adherence to the matrix, prevented cell apoptosis, and accelerated cardiac tissue regeneration. The

cardiomyocytes reorganized their myofibrils and reconstructed myofibers within six days (Figure 2).

These effects were well reflected in the expression levels of α-actinin, N-cadherin and connexin-43

in cells cultured within RGD-seeded scaffolds [98]. Enhanced cell adherence upon the attachment

of RGD is explained as follows. Cellular integrins link the intracellular skeleton with ECM via the

RGD peptide. It initiates the cascade for cell survival and proliferation [31]. A similar argument is

applicable tothe incorporation of bone-forming peptides (derived from bone morphogenetic protein-7)

into scaffolds for driving osteogenesis and osteo-differentiation [99,100].

Incorporation of poly ε-caprolactone (PCL) [101,102], CHI [103], halloysite nanotubes [104], and

carbon nanotubes (CNTs) [19] has been investigated to tune the mechanical properties, bioactivity,

and proliferation rate of surface cells. Herein, the specific blending ratio of components eliminates the

possibility of phase separation.

Acellular macroporous ALG scaffolds have shown to promote the stabilization of hepatocytes,

both in vitro [105,106] and in vivo [107]. Shteyer et al. [107] demonstrated that ALG scaffolds, without

implanted cells, significantly improved the survival rate of partially hepatectomized mice (87%).
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The animal manifested normal and prolonged aspartate- and alanine aminotransferase serum levels

as compared to 2- to 20-fold increase in control groups (non-treated and collagen-treated mice).

The authors correlated these findings to the non-adhesive and macroporous structure of the ALG

matrix. Macroporosity enabled rapid confinement of cells within the remnant liver and caused a

pronounced increase of cell polarity. Together with complimentary secretion of ECM components,

growth factors, and chemokines, it created a specialized niche favorable to differentiation of remnant

cells as functional hepatocytes [107]. The formation of scaffolds is dependent on pH, ion concentration,

and ALG composition. Destruction of the gel network and un-controlled degradation may occur in

biological buffers containing chelators or monovalent electrolytes [104,108,109]. However, scaffolds

developed from covalently cross-linked ALG have shown a shape memory effect, an exploitable

property while contemplating the repair of damaged annulus fibrous tissues. The formulation

supported cell penetration, proliferation, and ECM deposition when cultured in intervertebral disc-like

niche (low oxygen and glucose level) [110].

 

α
β α β

α

 

 

Figure 2. Confocal microscopy and immune histochemistry images of cardiac cells cultivated

in RGD-immobilized (A,B) and unmodified ALG scaffolds (C,D) for 6 (A,C) and 12 (B,D) days.

The constructs were immune stained for a-actinin (green) and nuclei (red-propidium iodide). Adjacent

cardiomyocytes joined to form striated myofibers (Figure 2A, day 6), an occurrence that increased

in frequency as cultivation proceeded (Figure 2B, day 12). In contrast, cardiomyocytes cultivated

within the unmodified ALG scaffolds revealed unorganized myofibrils; there were fewer interactions

between adjacent cardiomyocytes and myofibers were not detected (Figure 2C and D, days 6 and

12, respectively). The lower panel shows relative locations of cardiomyocytes and nonmyocyte cells

(NMCs) in (E) RGD-immobilized and (F) unmodified ALG scaffold; (G) the native adult cardiac tissue.

In E and F, only cardiomyocytes were stained for α-actinin (green), while all cell nuclei were stained

with propidium iodide (Red). Arrow heads denote cell nuclei of NMCs. Twelve-day constructs were

fixed, fluorescently stained, and examined using confocal microscopy. In G, native adult cardiac tissue

was stained for troponin-T (brown). The NMCs surrounding cardiomyocyte bundles were negatively

stained. Adult rat ventricles were paraffin-fixed, cross-sectioned, and immunostained for troponin-T.

Reproduced and modified with permission from Elsevier (2011) [98].
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2.3. Dextran

Dextran (DEX) is a bacterially-derived uncharged, linear polysaccharide composed of α-1,6

linked D-glucopyranose residues with a few percent of α-1,2-, α-1,3-, or α-1,4-linked side chains [49].

It is available in a wide range of molecular weights and undergoes enzymatic degradation in

the spleen, liver, and colon [111]. Crosslinked DEX hydrogel beads have been used for aslong

as low protein-binding matrices in column chromatography [112] and in microcarrier cell culture

technology [113,114]. Soft tissue-engineering applications of DEX stem from its resistance to protein

adsorption and cell adhesion [115]. Porous DEX hydrogels can be prepared through crosslinking

mediated by hydroxyl groups present on α-1,6-linked D-glucose residues [116]. The polymer has

three hydroxyl groups in each repeat unit, and the reactivity of these groups follows the order of

C2>C4>C3 [117]. Several chemical modifications have been explored, yielding DEX derivatives with

tailored physicochemical and functional characteristics [118–120] (Figure 3).

 

 

Chitosan

Figure 3. Scheme showing the crosslinking approaches for oxidized DEX. DEX can be oxidized

via periodate treatment. Oxidized DEX can be crosslinked through the attachment mono-, bi-, and

multi-armed amines [111,121–123]. Alternatively, glycidyl methacrylate (GMA) can be attached to

oxidized DEX and the latter can be crosslinked with dithiothreitol (DTT) [120].
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Some groups have investigated surface grafting and co-polymerization as a tool of improving the

cell-adhesion of DEX [24,124,125]. Levesque et al. [125] developed scaffolds of methacrylated-DEX

copolymerized with aminoethyl methacrylate. Herein, primary amine groups served as handles to

covalently link RGD peptide. The adhesion and neurite outgrowth of primary embryonic chick dorsal

root ganglia increased upon copolymerization. A further improvement was noticed upon peptide

immobilization. Notably, direct coupling between peptide (amine) and hemiacetals of oxidized DEX

destructed the conformation of peptides. At the same time, the presence of amine-pendants in the

side-chain of constituent amino acids impaired the scaffold-cell interactions [124]. This has been

minimized through the development of sulfhydryl-terminated peptides [125].

A recent study of Noel et al. [126] questioned the cell-selective response of ECM peptides using

DEX scaffolds. Investigators illustrated the role of four ECM peptides (RGD, YIGSR, REDV, and CAG)

upon adhesion and proliferation of HUVEC and AoSMC cells. A library of vinylsulfone-modified

DEX was tethered with the peptides. RGD (Arg-Gly-Asp), YIGSR (Tyr-Ile-Gly-Ser-Arg), and SGIYR

(Gly-Ile-Tyr-Arg) were able to enhance both HUVEC and AoSMC adhesion (showing no selectively for

HUVEC over AoSMC), whereas REDV (Arg-Glu-Asp-Val) and CAG (Cys-Ala-Gly) failed in improving

the cell adhesion. Interestingly, co-immobilization of vascular endothelial growth factor and RGD

resulted in selective proliferation of HUVEC cells. It thus highlighted the scope of changing the

conformation, sequence tuning, and lengthening of peptides as tactics to impart a cell selective

response in the scaffold.

2.4. Hyaluronic Acid

Commercial hyaluronic acid (HA) is extracted from rooster combs, but it has also been produced

using genetically engineered bacteria. Highly pure HA is available in a range of molecular weights

at relatively low costs. HA and its derivatives are widely used in the cosmetics industry, medicine,

and surgery. Physiochemical and biological properties, methods of modification, and drug delivery

applications of HA have been described in other comprehensive reviews [52,127,128]. Its biological

activity is molecular weight-dependent [129]; high molecular weight HA has anti-inflammatory

and anti-angiogenic properties, whereas low-molecular weight HA possesses pro-inflammatory

and pro-angiogenic activities [130–132]. Besides, studies show that HA promotes macrophage

differentiation into the M2 phenotype [133]. Improved cellular proliferation and tissue regeneration

have been demonstrated by blending with biodegradable materials [134–136] and coating the scaffolds

with HA [137,138] and non-covalent binding [139]. These events are most likely mediated through

selective interaction of HA with cell surface receptors, such as CD44, ICAM-1, and RAHMM [52,140].

Kudryavtseva et al. [141] explored the effect of surface immobilized high molecular weight

HA upon survival of primary human monocyte-derived macrophages. The immobilization on

polylactic acid scaffolds was accomplished through atmospheric pressure cold plasma treatment.

HA attachment enhanced the biocompatibility of the scaffold and stimulated its pro-angiogenic

action. Interestingly, dip coating of HA (1 wt% solution) has been shown to enrich the attachment of

MCF7 cells onto poly(lactic acid-co-glycolic acid) (PLGA) scaffolds [137]. Depending on the process

parameters, deposited HA may have configurations ranging from thin disconnected aggregates to a

thick continuous layer on the pore surface (Figure 4). Besides, layer topography may affect the swelling

of scaffold and may be of interest in applications wherein resistance to normal stress is desirable [138].

For other specific applications, hybrid nanofibres can be used as reinforcement alternative [142].

While the majority of investigations have focused on exploiting the direct biological effects of

HA, its incorporation intriguingly improved the mechanical strength of scaffolds and may, therefore,

inhibit the cell-induced contractions. Davidenko et al. [143] investigated the influence of increasing the

amount of HA upon mechanical characteristics of collagen scaffolds. Together with supporting the

proliferation of 3T3-L1 preadipocytes, HA created additional crosslinks. Consequently, the scaffold

exhibited improved resistance to compression and in vitro dissolution.
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Figure 4. Scanning electron microscopic images of the dry poly(ethyl acrylate)(PEA) scaffolds:

(A and B) Bare scaffold, cross section, and frontal view, respectively; (C) 05HA1; (D) 05HA5; (E) 5HA2;

(F) 5HA5. The arrowheads point at the adsorbed HA. With one coating cycle, 0.5 wt% HA solution

produced aggregates on the pore surface (shown in C). These aggregates become more distinct as the

number of cycles increases, but a uniform layer is not obtained with 0.5wt% even after five cycles (D).

In contrast, coating with 5wt% HA produces a uniform continuous layer after the first coating cycle.

The effect of further cycles is to achieve the layer thickness. This is accompanied with a decreased pore

diameter and the clogging of some pores (E). After the fifth cycle (F), the channels are filled with HA to

a high degree. (05HA# and 5HA# designate the scaffolds coated, respectively, with 0.5wt% and 5wt%

HA solutions, # being the number of cycles). Reproduced and modified with permission from Elsevier

(2011) [138].

3. Approaches of Scaffold Preparation

Prototype scaffold preparations include three key components: Support material, cells, and

angiogenic factors. Typically, a blend of biopolymers is employed with the objectives, such as enhancing

mechanical properties, and tuning the porosity, loading property, swelling ratio, and degradation

kinetics of the scaffold. Cells and growth factors either adhere to the scaffold surface [144] or get

encapsulated within the matrix [145]. Formulations include hydrogel [5,91], fiber [142], film [69],

and de-cellularized matrices [146–148]. Electrospun microfiber bundles are suturable and often

exhibit an elastic modulus identical to that of native tissue [9]. Transplantation can be rendered

less aggressive by developing in situ gelling formulations, which later acquire the configurations of

damaged tissue [23,149]. Besides, self-crosslinking has been achieved in neat polysaccharide systems

via thiolation [25].

The preparation method must be selected on the criteria, such as a desired scale of operation,

controllability of steps, and batch-to-batch consistency. A general approach includes dissolving the

component(s) into an aqueous vehicle and subsequent processing via solvent casting, lyophilization,

electrospinning, or cryo-gelation. The weight ratio of components is adjusted to attain a desired

dispersibility [57]. This is essential with the consideration that cross-linkage between the constituents

may sometimes offset the hydrophilicity and pore size of polysaccharide scaffolds [74,150].
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The scaffold can be macro- or micro-patterned at a high accuracy using controlled

chemical manipulations to achieve desirable biophysical characteristics [151]. Photo-crosslinkable

interpenetrating (IPNs) and semi-interpenetrating networks (SIPNs) between COL and HA have been

shown to control the structural and biomechanical properties (Figure 5I). In contrast to IPN composed

of two un-crosslinked polymers exhibiting full interpenetration, SIPN consists of one crosslinked

polymer entangled in another un-crosslinked polymer and hence, is mechanically inferior [52]. Such

entangled networks retain the structural properties of component polymers while reinforcing the

scaffold. Scaffolds developed from the IPN-SIPN blend are anisotropic; showing region-specific

distribution of crosslinking density, viscoelasticity, water content, and porosity [151,152] (Figure 5II).

 

 

 

 u

μ
μ

I

II

Figure 5. Schematic for synthesizing IPNs, SIPNs, and photopatterned hydrogels (I). HA and collagen

solution were suspended in the silicone mold and collagen was permitted to undergo fibrillogenesis

at 37◦C (1). This resulted in the formation of a SIPN, which was then exposed to ultra-violet light to

yield a full IPN (2). Alternatively, photo patterning was performed using a photomask, which resulted

in SIPN and IPN patterns within a single hydrogel (3) (I). The lower panel (II) shows the macro-

and micro-patterned hydrogels formed due to differential crosslinking densities. A macropatterned

hydrogel is shown in which half was exposed to UV before (A) and after washing the un-crosslinked

fluorescein acrylate (B). In addition, (B) shows the interface between the macropatterned halves.

Micropatterning within a single bulk hydrogel of a 500 µm thickness is shown in C and D. (Scale

bar-150 µm). Reproduced and modified with permission from Elsevier (2009) [151].

Khoshakhlaghet al. [153] illustrated the effects of micro-patterning upon neurite growth using

a dual hydrogel, incorporating methacrylated HA and Puramatrix (PM, a self-assembling peptide

scaffold). Initially, IPN hydrogels were formulated using self-assembly of PM and photo-crosslinking

of HA. It was then surrounded by photo-crosslinkable polyethylene glycol (PEG). Integration between

the two compartments of hydrogel was mediated by the IPN. Crosslinkable substrates were exposed
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to UV radiations in geometries relevant to cover the entire gel thickness, thereby creating a desirable

micro-patterning. A range of mechanical properties could be achieved by controlling the degree of

methacrylation. Regions with a lesser degree of methacrylation (greater porosity) displayed better

neurite outgrowth [153] (Figure 6).

 

 

Figure 6. A significant increase (p<0.05) in the swelling ratio can be noticed in IPN32, with a smaller

crosslinking density (A). Besides, a higher crosslinking density (IPN90) led to a significant increase

(p<0.05) in the compressive moduli (B). Comparative analysis of the length of neurite extension in

IPN90 and IPN32 constructs is shown in (C) and (D). A less stiff substrate allowed a longer growth,

with some neurites extending up to 3.3 mm after 7 days (C). Analysis of the amount of neurite growth

(average of five longest neurites) demonstrated that the more compliant substrate allowed superior

overall growth (D). Reproduced and modified with permission from Elsevier (2015) [153].

Techniques, such as embossing, micro-contact printing, and layer-by-layer assembly of planer

sheets, have been employed for the fabrication of micro-patterned scaffolds [154,155]. Scaffolds

with honeycomb, square, and rectangle patterns (needed for specialized applications) are obtainable

using these methods [156,157]. For instance, it is desirable from the cardiac scaffolds to offer

electrical cues, in addition to biomimicking mechanical and topographical features. Liu et al. [158]

fabricated micro-patterned cardiac patches using a tri-culture system, composed of cardiomyocytes in

combination with cardiac fibroblasts and endothelial cells.

3D printing technology is also gaining popularity for its high speed and continuous scaffold

design. Typically, a bioink containing cells, growth factors, and other biological solutions is printed

over acellular scaffolds. A highly customized architecture can be achieved with the help of a

motion-controlled multinozzle deposition system [19]. The process employs a low pressure extrusion

and is operated at room temperature, with benign processing requirements. Low pressure extrusion

with a large diameter nozzle helps in minimizing mechanical stress to the cells. It is, however,

important that the material is sufficiently viscous to be dispensed as free standing filaments exhibiting

desirable mechanical strength. The reader is referred to earlier reviews on the application of 3D

printing technology in tissue engineering [159–161].

4. Clinical Status of Polysaccharide Scaffolds

The evaluation of scaffolds in a clinical set-up is necessary to validate its efficacy. Clinical reports

on polysaccharide scaffolds are interesting, but the power of those findings is limited due to a small

sample size, lack of a randomized control group for comparison, and the unavailability of long-term
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studies [162,163]. With a limited sample size and smaller follow-up period, the investigators may miss

infrequent adverse events. In this landscape, the regenerative response with the test approach remains

obscure. On the other hand, long-term data, acquired in a broader population, provide important

indications if early risks associated with the intervention can be offset by future benefits [26,163].

Stillaert et al. [164] investigated HA-based preadipocyte-seeded scaffolds for adipo-conductive

potential and efficacy in humans. Autologous cells, isolated from lipoaspirate material and seeded

on HA scaffolds, were implanted subcutaneously. The scaffold displayed superior cellularity and

progressive tissue integration within eight weeks of implantation. It, however, lacked angiogenic

penetration since the cells were located more than 100 µm away from the native micro vasculature;

beyond the diffusive capacity of oxygen [164]. The adherence of the scaffold to the lesion can be

monitored by analyzing the polysaccharide content in biopsy samples [165].

Other clinical studies have employed esterified HA (HYAFF®). Esterification of carboxyl groups

involved the preparation of a quaternary HA salt and its subsequent reaction with an esterifying

agent (aliphatic, alicyclic, or aromatic alcohol) in an aprotic solvent [166]. Scaffolds based on benzyl

ester (HYAFF®11) have been widely tested for cartilage repair (Table 2). The treatment minimizes

pain and counteracts the development of arthritis [167]. It is agreed that the autologous cell-based

repair technique results in the generation of hyaline-like repair tissue. It shows a lower probability of

failure in comparison to fibrous repair tissue [168]. This might be the reason for the greater clinical

acceptability of scaffold-based cell seeding over bone-marrow stimulating techniques for cartilage

repair [165,167].

Table 3. Summary of human clinical studies exploring the efficacy of polysaccharide scaffolds.

Scaffold Composition Application Study Design Major Findings Reference

Calcium-ALG hydrogel
composed of Na+-ALG

and Ca2+-ALG
suspended in 4.6%
aqueous mannitol

improvement of cardiac
function in patients with

heart failure

11 patients (males, age 44 to 74) with
symptomatic heart failure; New York

Heart Association class III or IV

scaffold placement along with coronary
artery bypass grafting successfully

induced
remodeling and local stress reduction in

the myocardial wall

[162]

improvement of exercise
capacity and symptoms in

chronic heart failure

multi-centre, prospective,
randomized trial involving 40

patients, 63 ± 10 years

ALG-hydrogel in addition to standard
medical therapy was more effective in

advanced chronic heart failure
[26]

1% ALG and 0.3%
calcium gluconate

(IK-5001)

reversal of left ventricular
remodeling and dysfunction

27 patients (24 males, 03 females) with
ST-segment–elevation myocardial

infarctions; (mean age 54 ± 9 years)

provided initial proof on the tolerability
of IK-5001 and the use of catheter-based

strategy after myocardial infarction
[163]

ALG beads containing
human mature allogenic

chondrocytes

treatment of chondral
lesions

21 patients (13 male, 8 female); mean
age

-33 years (12–47 years); mean lesion
area-2.6 cm2; mean duration of
symptoms-33.20 months (6–73

months)

clinical improvement in patients during
24 months of follow-up; histological
analyses showed hyaline-like tissues

(15.3%), mixed tissue (46.2%),
fibrocartilage (30.8%), and fibrous (7.7%)

[15]

esterified HA seeded
with autologous

chondrocytes

knee cartilage defects
67 patients; mean follow-up time
from implantation - 17.5 months

improvement in knee conditions (97%),
quality of life (94%), surgeons’ knee

functional test (87% of patients with the
best scores), and cartilage repair (96.7%

biologically acceptable)

[169]

treatment of chondral knee
lesion

16 patients (14 men, 2 women); mean
age-31.5 years (range 16–42)

avoidance of open surgery, reduced
surgical morbidity and operative time;
functional capacity comparable to the

standard techniques

[165]

articular cartilage
engineering

multicenter study on the cohort of 141
patients; follow-up time-2 to 5 years

(average 38 months)

improvement in 91.5% of patients; 76%
and 88% of patients had no pain and

mobility problems; 95.7% patients
showed normal knee with hyaline-like

tissue

[168]

treatment of full-thickness
chondral defects

53 patients, mean age -32 ± 12 years,
mean body mass index-24.5 ±

3.8kg/m2; mean defect size-4.4 ±

1.9 cm2

improvement of clinical outcome up to 7
years in healthy young patients with

single cartilage defects; less complicated
surgery and lower morbidity

[170]

at a mean follow-up of 9.07 ± 2.9 years,
treatment failure occurred in 22.6% cases

at an average of 2.99 ± 1.40 years of
surgery; significant clinical improvements

[167]

hyaline cartilage
regeneration

multicenter study 23 patients (18 men,
5 women), mean age-35.6 years, mean
follow-up -16 months (range, 6–30);

mean implant area-5.0 cm2

regeneration occurred in about 50% of
patients during 6 to 30 month follow-up

[171]
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ALG has been clinically tested for improving cardiac function using Algisyl-LVR™ [162] and

IK-5001 technologies [163]. Lee et al. [162] employed a proprietary gel, which transformed to a scaffold

upon placement in the affected region. The formulation consisted of: (a) ALG component as 4.6%

aqueous mannitol, and (b) Ca2+-ALG component as insoluble particles suspended in 4.6% aqueous

mannitol. These solutions were extemporaneously mixed in one syringe prior to intramyocardial

administration [162] (Figure 7). On the contrary, IK-5001 comprises of 1wt% ALG containing

0.3% calcium gluconate and undergoes in situ crosslinking. Its intracoronary delivery is relatively

simple and does not require a unique device or complex imaging system. When injected, the

formulation selectively permeates to the infracted myocardial tissue and reversibly crosslinks to form

a temporary bioabsorbable cardiac scaffold in a Ca2+dependent manner. The scaffold then replaces

the damaged ECM, reduces myocardial wall thinning and strain, and ultimately attenuates infarct

expansion [163,172]. Herein, the selectivity of scaffold deposition is ascribed to abnormal microvascular

permeability and elevated extracellular Ca2+ concentrations within the infarct zone [173].

 

 

≈

Figure 7. Schematic of Algisyl-LVR™ injection in the left ventricle. (A) Short-axis view of the

mid-ventricle, half way between the apex and base. (B) Algisyl-LVR™ is injected at 10 to 15 locations at

the mid-ventricle free wall (excluding the septum). A left thoracotomy is performed to expose the heart

and the pericardium. The total number of injections for an individual patient depended on the size of

the heart. Injections were separated by ≈0.5–1 cm and made at the mid-wall depth of myocardium.

Reproduced with permission from Elsevier (2013) [162].

Altogether, clinical applications of polymeric scaffolds are challenging due to intricacies of

replicating the complex tissue environment without eliciting undesirable immunologic events. Tissue

remodeling is often constrained by limited diffusion of oxygen and growth factors in polymeric

scaffolds [174]. This has been demonstrated with reference to vascular restorative therapy in cardiac

tissues. Herein, the bioresorbable nature of scaffold stimulated positive blood vessel wall remodeling

and restoration of contractile functions. With these considerations, polymeric scaffolds appear superior

to metallic stents. The latter often lead to distorted vessel physiology, incomplete endothelialization,

and stent fracture [175,176]. At the same time, we cannot overlook the fact that behavior of polymeric

materials may not be identical under dry and submerged conditions. It is, therefore, suggestive to

preliminarily map the localized changes in structural integrity vis-a-vis macroscopic performance

of scaffolds under practical use conditions [177]. This can certainly minimize the clinical failure of

polymeric scaffolds.

5. Conclusions and Perspective

Preservation of local organ function via tissue regeneration is a definitive component of

post-operative care. Regenerative treatment leans over the development of advanced biomaterials,

processing thereof as 3D scaffolds, and investigating the manner in which scaffold material cooperates

with the seeded cells, proteins, and growth factors in order to augment the natural repair mechanisms.
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Polysaccharide based materials have shown endless promise for developing the tissue scaffolds.

Ongoing advancements in polysaccharide chemistry and nanotechnology have enabled the integration

of mechanical, topographical, and biological cues into these materials for stably recapitulating the

tissue-scale organization. Importantly, these recreated structures may act as customized tissue

surrogates for the screening of new drug molecules [178].

While debating the translational application of scaffolds, it is of interest to look forward to

upcoming technologies for mass production and setting quality control parameters. For instance,

studies illustrate that a polymer’s molecular weight and sterilization procedure affect biological and

microstructural attributes of the scaffold [179,180]. Therefore, in sync with the advances in polymer

modification approaches, investigations must equally focus on the way these modifications affect

the architecture and biological performance. This would enable the development of preparations

compatible with regulatory standards worldwide and those showing a lesser rejection in clinical

settings. Results on larger patient cohorts will indeed show the footprints of scaffold research on

clinical medicine in the future.
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