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Abstract: Wound dressings are critical for wound care because they provide a physical barrier
between the injury site and outside environment, preventing further damage or infection.
Wound dressings also manage and even encourage the wound healing process for proper recovery.
Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials
because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and
non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms
that offer a bioactive component in wound dressings that aid the healing process. This review
primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials.
Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication
considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among
emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive
molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in
the text, while challenges and future directions for wound dressing development using emerging
fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to
encourage further investigation and open up new, disruptive avenues for polysaccharides in wound
dressing material development.

Keywords: wound healing; wound dressing; foam; nanofiber; hydrogel; wound management;
skin; polysaccharide

1. Introduction

Countless numbers of wounds are generated worldwide each year due to surgical procedures
as well as trauma and as the result of non-healing ulcers and burns. Wounds demand time for care
and treatment from a substantial number of medical staff in already heavily burdened hospitals.
The annual wound care products market was estimated to reach $15.3 billion in 2010, illustrating its
global clinical demand [1]. Wound dressings have become increasingly critical in promoting wound
healing and wound management. Many types of materials have been utilized to develop wound
dressings and have been commercialized in the market summarized in [2]. Wound dressings provide
an environment for the wound to heal at the maximum rate under particular pathological conditions
while achieving a cosmetically acceptable appearance [3]. They are designed to protect the wound
from the external environment while keeping it moist for proper healing. Modern wound dressings are
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designed to absorb wound exudate to manage the wound healing process. There are greater demands
for the wound dressing to actively play a role in the wound healing process. Therefore, incorporation
of bioactive components in wound dressings helps improve wound exudate absorption and remove
the etiologies of exudate production [4].

Bio-derived polymers such as polysaccharides have been widely used in wound dressing
development because of their natural abundance in plants and production in the body. For example,
chitosan is widely present in shrimp and crab shells while arabinoxylan polysaccharides are
present in wheat food products. Polysaccharides are also biocompatible, non-immunogenic,
and anti-microbial [5–7]. Therefore, polysaccharide dressings may encourage more efficient wound
healing. Polysaccharides are structurally diverse in terms of molecular weight, charge, and chemical
composition, and they provide a wide range of structural parameters and properties for manufacturing
wound dressings specific to the wound etiology. In this paper, the authors present an overview
of literature reporting polysaccharides that have been fabricated and characterized to assess their
applicability as wound dressing materials. The second section will discuss the wound healing
process to provide the foundation and rationale for selecting polysaccharides as wound dressing
materials. In the third section, a summary of polysaccharide fabrication processing techniques
using hydrogel crosslinking and electrospinning fiber scaffolds will be discussed. The fourth section
provides a literature survey of polysaccharide platforms to assess biocompatibility at a preclinical level.
The conclusion of this review highlights the utility of polysaccharides, discussing challenges that need
to be overcome and new fabrication avenues for these natural polymers to become a candidate wound
dressing material.

2. The Wound Healing Process

Wound healing is a highly complex process as it requires a sequence of biochemical and
cellular events involving extracellular matrix components, cells, and extracellular molecules [8,9].
The proper synergy between these events and cellular components will determine if the healing
process is successful or becomes delayed in a chronic state (Figure 1) [10,11]. There are four stages
in a normal wound healing process: hemostasis, inflammation, proliferation and remodeling [2,12].
Hemostasis begins immediately following an injury. Platelets are then recruited to the injury site and
play an important role in forming a clot to minimize the bleeding. The clot provides a temporary
matrix to recruit and home the cells involved in the subsequent wound healing response [2,13].
The inflammation phase begins about one day after the injury. During this phase, neutrophils are
recruited to perform phagocytosis to destroy and remove bacteria, pathogens, and cell debris. In the
inflammatory phase, approximately two to three days after injury, tissue macrophages derived from
blood monocytes continue the phagocytic activity. They also play a role in attracting and activating
fibroblasts, keratinocytes, and endothelial cells [8,14]. The subsequent proliferation stage, typically
starting on the third-day post-injury, is characterized with the appearance of fibroblasts at the wound
and the production of new extracellular matrix, made mostly of collagen to rebuild the tissue.
Concurrently, new blood vessels and granulation tissue form as a result [8]. In the final remodeling
phase, new epithelium forms along with the transition of granulation tissue to a mature scar, which is
less cellular and vascular but has a significantly high tensile strength. The remodeling stage may last
a year.
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Figure 1. The four phases of normal wound healing: (1) homeostasis; (2) inflammation; (3) 
proliferation and (4) remodeling. Each step has many components. The pointed edge depicts an 
ongoing process.  

Depending on the healing time frame, wounds can be classified as acute or chronic. Acute 
wounds are able to heal by timely progression through the normal stages of healing. However, there 
exist multifactorial and complex pathophysiological circumstances that lead to chronic wounds, 
which may undergo a prolonged healing process in one or more stages or fail to heal. For instance, 
chronic non-healing wounds such as pressure ulcers have an abnormal and prolonged inflammatory 
phase during which a large number of highly activated neutrophils release an excessive quantity of 
degradative enzymes that destroy the tissue that is being repaired. In order to ensure an efficient 
wound healing process, the wound dressing platform and material selection are critical.  

Polysaccharides are an intriguing class of materials for wound healing optimization because of 
their natural origin, which has led to significant research into their processing for functional wound 
dressing materials. Natural polysaccharides play a role in wound healing because of their ability to 
promote non-specific activation of the immune system by activating macrophages that clean up the 
wound site after injury. In many polysaccharides, a beta 1,3 D-glucan linker is present for macrophage 
receptors binding to initiate would healing [15]. Natural polysaccharides contain 
glycosaminoglycans that are present in the extracellular matrix. They function during wound healing 
by binding to proteins at hierarchical specificity and are involved mainly in the development, cell 
differentiation, cell adhesion, cell signaling and cell-matrix interactions [16]. Glycosaminoglycans 
have been demonstrated to improve the wound healing process through re-epithelialization and 
increased vascularization [17]. The next section will discuss polysaccharides utilized as hydrogels 
and electrospun fibers, the two primary platforms used for fabricating wound dressing materials. 

3. Fabrication Platforms of Polysaccharides as Wound Dressing Materials 

3.1. Hydrogels 

Hydrogels are crosslinked polymeric dressings and insoluble in aqueous media. They are 
excellent platforms for wound dressing applications because they swell significantly to help with 
wound exudate absorption. Also, their hydrophilic properties enable the hydrogel to keep the wound 
bed moist. They provide a cool and non-adherent surface due to the hydrating properties of the gel, 
preventing heat absorption and encouraging wound debridement and comfort for the patient. 
Hydrogels can deliver antimicrobials for sustained action against infected wounds. Hydrogels are 
very flexible and conform to a variety of conditions [18–21]. Polymer properties such as molecular 
weight, charge, and crosslinking density all play a role in modulating the degree of hydrogel swelling 

Figure 1. The four phases of normal wound healing: (1) homeostasis; (2) inflammation; (3) proliferation
and (4) remodeling. Each step has many components. The pointed edge depicts an ongoing process.

Depending on the healing time frame, wounds can be classified as acute or chronic. Acute wounds
are able to heal by timely progression through the normal stages of healing. However, there exist
multifactorial and complex pathophysiological circumstances that lead to chronic wounds, which
may undergo a prolonged healing process in one or more stages or fail to heal. For instance,
chronic non-healing wounds such as pressure ulcers have an abnormal and prolonged inflammatory
phase during which a large number of highly activated neutrophils release an excessive quantity of
degradative enzymes that destroy the tissue that is being repaired. In order to ensure an efficient
wound healing process, the wound dressing platform and material selection are critical.

Polysaccharides are an intriguing class of materials for wound healing optimization because
of their natural origin, which has led to significant research into their processing for functional
wound dressing materials. Natural polysaccharides play a role in wound healing because of their
ability to promote non-specific activation of the immune system by activating macrophages that
clean up the wound site after injury. In many polysaccharides, a beta 1,3 D-glucan linker is present
for macrophage receptors binding to initiate would healing [15]. Natural polysaccharides contain
glycosaminoglycans that are present in the extracellular matrix. They function during wound healing
by binding to proteins at hierarchical specificity and are involved mainly in the development, cell
differentiation, cell adhesion, cell signaling and cell-matrix interactions [16]. Glycosaminoglycans
have been demonstrated to improve the wound healing process through re-epithelialization and
increased vascularization [17]. The next section will discuss polysaccharides utilized as hydrogels and
electrospun fibers, the two primary platforms used for fabricating wound dressing materials.

3. Fabrication Platforms of Polysaccharides as Wound Dressing Materials

3.1. Hydrogels

Hydrogels are crosslinked polymeric dressings and insoluble in aqueous media. They are excellent
platforms for wound dressing applications because they swell significantly to help with wound exudate
absorption. Also, their hydrophilic properties enable the hydrogel to keep the wound bed moist.
They provide a cool and non-adherent surface due to the hydrating properties of the gel, preventing
heat absorption and encouraging wound debridement and comfort for the patient. Hydrogels can
deliver antimicrobials for sustained action against infected wounds. Hydrogels are very flexible and
conform to a variety of conditions [18–21]. Polymer properties such as molecular weight, charge,
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and crosslinking density all play a role in modulating the degree of hydrogel swelling in aqueous
solutions. Typically, hydrogels with high molecular weights and crosslinking densities are stiff and
rigid with high modulus values [22,23]. Meanwhile, solute diffusion out of hydrogels is controlled by
their crosslinking density and mesh sizes [24,25]. These properties in polysaccharide gels have been
modeled by Berger et al. who established the relationship between covalent and ionic bonding with
the degree of crosslinking in chitosan [26]. Polysaccharides in hydrogel formulations have been used in
many applications because they are highly versatile, complex polymers that are readily available and
can be easily manipulated into gels. They are natural, non-toxic while exhibiting immunomodulatory
properties [27]. Polysaccharide hydrogels have been predominantly used as drug delivery carriers
but are gaining attraction as wound dressing materials because of the similar structure it has to
the extracellular matrix. A variety of polysaccharides have been used for tissue engineering and
drug delivery such as alginate, gellan, dextran, hyaluronic acid, pullulan, etc. [28]. The charge in the
polymer system (basic, neutral or acidic), nature of crosslinking, and type of polysaccharides need to be
considered during the fabrication step to form effective hydrogel wound dressings [29]. The remaining
portion of the section will discuss principles of covalent and ionic crosslinking mechanisms used in
polysaccharide hydrogel formation.

3.1.1. Covalent Crosslinking

Covalent crosslinking is an irreversible process in which permanent bonds are made within the
hydrogel structure. Covalent crosslinking of chitosan hydrogels is straightforward using either small
molecules, light, enzyme catalysts or monomers to create more stable networks. This crosslinking
method may be toxic because of the by-products created from the reaction [30]. Therefore,
removal of these by-products is necessary prior to wound dressing application. One strength of
covalent crosslinking is that it enables water and drugs to be absorbed without compromising the
mechanical integrity of the hydrogel [26]. This is ideal as a wound dressing because its strength
allows the incorporation of agents such as antimicrobials and growth that later diffuse to the
wound site for improved healing. Hyaluronic acid is a linear polysaccharide that is made up of
N-acetyl-D-glucosamine and glucuronic acid. Hyaluronic acid has recently gained more attention for
wound dressing formation because of its natural presence in the extracellular matrix and involvement
in the inflammation and proliferation stages of wound healing [31]. Hyaluronic acid currently has
clinical uses as wound dressings [31], skin substitutes [32], and joint lubricants [33]. Hyaluronan-based
biomaterial (HYAFF-11), a commercialized biocompatible hyaluronic acid matrix, has improved
mechanical integrity upon swelling by implementing an esterification crosslinking process [31].
This enables swelling up to 1000 times its weight for highly exudative wounds while retaining its
integrity upon application. Other examples in the literature have used hyaluronic acid hydrogels upon
crosslinking with the use of glutaraldehyde and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDC) reagents [34]. One group used hyaluronic acid functionalized with adipic dihydrazide and
crosslinked with poly-ethylene glycol (PEG) propionaldehyde to create a film. It was successfully
applied to deliver anti-microbial and anti-inflammatory agents in vitro, showing promise as a wound
dressing [35]. Leach et al. have employed photopolymerization to crosslink hyaluronic acid with
glycidyl methacrylate groups to from biocompatible hydrogels [36]. Eng et al. had investigated
effects of thiol-functionalization of hyaluronan at 20% and 44% substitution density to modulate
PEG-diacrylate gel stiffness. The number of crosslinking chemistries that form hyaluronic acid gels
are not all covered in this review and can be found in a hyaluronic progress review written by
Burdick et al. [37].

While hyaluronic acid is a popular polysaccharide for wound dressings, other polysaccharides
have been investigated as hydrogel wound dressing platforms. A systematic study of highly absorbent
pullulan polysaccharide hydrogels evaluated crosslinking density of cystamine to modulate tensile
strength, swelling and mass loss [38]. Pullulan is a polysaccharide produced by different strains
of Aureobasidium bacteria. It is a linear mixed linkage α-D-glucan consisting mainly of maltotriose
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units interconnected via α-(1→6) linkages [39]. The study indicated that covalent crosslinking of an
organic disulfide agent, cystamine can tune the physical properties such as tensile strength and
swelling ratio of the pullulan hydrogel for the desired release of antibacterial agents. A recent
study by Jiang et al. indicated that hypromellose succinate-chitosan hydrogels prepared using
EDC/NHS (N-hydroxysuccinimide) crosslinker exhibited good cytocompatibility after extracting
catalyst by-products by dialysis [40]. Arabinoxylan (AX) is a neutral non-starch polysaccharide
derived from cereal grains such as wheat with anti-oxidant properties that can be crosslinked by
chemical means using enzymatic precursors [41,42]. They are water extractable and are comprised
of a xylose backbone substituted onto arabinose units. Arabinoxylan ferulate (AXF) is arabinoxylan
with ferulic acid substituted onto its arabinose monomer that can be readily crosslinked into gels
via enzymatic reaction, for instance using horseradish peroxidase (HRP) and hydrogen peroxide
(H2O2) (Figure 2). They function by creating an ester bond between ferulic acid and arabinose
units to form a dimer which crosslinks the arabinoxylan chains together [43]. While arabinoxylan is
naturally derived and relatively abundant, they have yet to be fully explored as a wound dressing
material. Arabinoxylan is a good candidate polysaccharide hydrogel wound dressing because it
is very hydrophilic and highly absorbent. The flexibility of arabinoxylan chains enables fluid and
solute movement in and out of the delivery system based on the gel’s degree of crosslinking [41].
Experiments revealed arabinoxylan hydrogels to have a two-and-a-half-fold increase in swelling when
introduced into water [43]. Lyophilized arabinoxylan gels fabricated in our study have demonstrated
swelling ratios above 20 after 48 h [44]. Arabinoxylan is an intriguing polysaccharide for hydrogel
wound dressing formation because it does not require the use of toxic organic solvents but instead
uses water instead for solubilizing before crosslinking.
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Figure 2. Arabinoxylan ferulate (AXF) structure composed of three components: xylose backbone
substituted to arabinose sugar units, one of which is estyyanger-linked to ferulic acid. It can be
crosslinked using HRP/H2O2. Figure adapted from reference [44] with permission.

3.1.2. Ionic Crosslinking

Ionic crosslinking in hydrogels is a reversible process that permits greater swelling and
pH-dependent swelling compared to covalently crosslinked hydrogels [26]. Ionic crosslinking uses
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ionic molecules to create a bridge within the polymer network. In the case of polysaccharides such as
chitosan, their positive ions are crosslinked in the network by negatively charged crosslinkers such
as metallic anions [45,46] or phosphate bearing groups [47]. These capabilities can be realized for
application as wound dressing materials whose absorption and rate of diffusion can be tailored
by acidity at the wound site. Chitosan is a prominent example of a polysaccharide that can be
crosslinked ionically as it is a derivatized version of chitin, an exoskeleton component of crustacean
shells. Chitosan constitutes a β 1-4 linked D-glucosamine and N-acetyl-D-glucosamine units (Figure 3).
Chitosan hydrogels can be physically mixed into stable networks by introducing anionic ions or
macromolecules to neutralize the positively charged chitosan and induce electrostatic attraction
within the gelatinized network. Secondary bonding, hydrophobic-hydrophilic interactions, and
thermo-responsive gelation can also take place in chitosan hydrogels depending on what monomers
or catalysts are added to it [30]. Ionic crosslinking is a relatively safe technique to use for fabricating
biocompatible hydrogels without toxic catalysts. While this method is non-toxic, there is the lack of
long-term stability after physical crosslinking and should only be used for short-term applications.
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Other polysaccharides that undergo ionic crosslinking such as alginate is anionically charged
and readily forms a hydrogel upon addition of divalent cations such as Ca2+. Alginate is made
up of mannuronic acid (M) and guluronic acid (G) units derived from brown seaweed [16].
Alginate dressings have excellent absorption properties and can be used to treat wounds that create a
high volume of exudate. They are able to absorb 15 to 20 times their weight and their gelling capability
and mechanical strength of alginate dressings can be modulated by varying the M/G ratio [48].
Alginate hydrogels with high M-block content have high fluid absorption capacity but low mechanical
strength. Conversely, alginate hydrogels with high G-block content have high strength but low water
absorption capacity [49]. Alginates are generally suitable for all stages of wound healing. However,
they are not suitable for dry wounds with little exudate [2,48]. The utility of alginate as a wound
dressing is further substantiated with its role in activating macrophages to accelerate chronic wound
healing [50]. Gellan gum is a water-soluble anionic polysaccharide produced by Sphingomonas elodea
bacterium. Gellan’s chemical structure is based on a tetrasaccharide repeat unit of (1-3)-β-D-glucose,
(1-4)-β-D-glucuronic acid, (1-4)-β-D-glucose, and (1-4)-α-L-rhamnose as the backbone. Similar to
alginate, gellan can form gels when mixed with divalent ions. Its mechanical strength is dependent
on the degree of acylated groups [28]. A higher degree of acylation tends to generate softer and
more elastic gels. Also, gellan has thermoresponsive capabilities as gels whose molecular structure
becomes ordered and disordered upon cooling and heating, respectively [51]. Although gellan has
primarily been explored as drug delivery carriers, use of gellan as a wound dressing has been reported
recently [52–55].

3.2. Electrospinning

Electrospinning is another major method to fabricate polysaccharide wound dressing materials.
It was first patented by Anton Formhals in 1934 as a technique to create non-woven fibers using a
voltage gradient between a fine syringe nozzle and collecting mandrel [56]. Specifically, the polymer
solution ejected from the nozzle has an applied charge induced by a high voltage power supply.
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The applied charge in the solution overcomes its surface tension to create a jet that propels
across space and deposit dry fibers at the collecting mandrel to create a non-woven fiber sheet.
Electrospun nanofibers are an attractive platform as a wound dressing material because of their high
surface to volume ratio and porosity that allows moisture and exudate transport between the dressing
and injury site [57]. The high porosity of nanofiber dressings allows greater absorption of wound
exudate than film dressing formulations [58]. In addition, the nanofiber’s high porosity provides an
environment where cells can exchange oxygen and inhibit bacterial permeation at the wound-nanofiber
interface [57]. Nanofiber wound dressings are highly flexible and conform to the shape of the wound
because of their very fine fiber diameter. This provides better patient compliance and comfort [57].
Beyond the physical characteristics, nanofibers express or maintain biological functionality after
integrating bioactive components such as therapeutics, growth factors, and antifungals to enhance
the wound healing process [57]. These bioactive agents can be homogeneously distributed within the
nanofiber scaffold and their nano-scale morphology encourages cell attachment and proliferation for
extracellular matrix production [5,59].

To successfully fabricate electrospun fibers, the properties of polysaccharide, solvents used
to solubilize polysaccharide, and experimental setup and processing parameters need to be taken
into account collectively. The polymer structures and properties are important for electrospinning.
For instance, molecular weight, through chain entanglements, dictates if the polymer solution can
form fibers as it is being ejected from the syringe. However, too high of a molecular weight will make
the solution highly viscous and unable to travel from the syringe nozzle to the collecting mandrel.
The polysaccharide used for electrospinning can dictate the selection of a solvent (e.g., chloroform,
hexafluoroisopropanol, trifluoroacetic acid, etc.). The glass-transition temperature is also important
to consider as it could determine if the temperature within the electrospinning setup will affect the
crystallinity and strength of the dry fibers that deposit on the collecting mandrel. Solution properties
such as viscosity is controlled by the concentration and molecular weight of polysaccharide loaded into
the solvent. To successfully electrospin a polymer, its concentration should be at least 2–2.5 times above
the entanglement concentration (ce) so a continuous polymer fiber can be formed [60,61]. The surface
tension and electrical conductivity play a role as to how charge within polysaccharides can induce
stretching or beading effects within the fiber [62,63]. The electrospinning setup and its environmental
conditions can influence fiber diameter, deposition, and alignment that have downstream effects on
mechanical properties such as tensile strength and absorbency for removing wound exudate, necessary
for a compliant wound dressing. The properties and parameters selected and how they mechanistically
affect electrospinning are covered in more extensive reviews by Greiner and Reneker [64,65].

Polysaccharide biopolymers have become widely popular as electrospun materials because of their
natural abundance, biodegradability, biocompatibility and antimicrobial properties. Polysaccharides that
contain extracellular matrix derived glycosaminoglycans can be electrospun into non-woven matrices
that mimic tissues being replaced during wound healing. Among the polysaccharides that have been
electrospun (alginate, chitosan, dextran, cellulose, hyaluronic acid, starch, and heparin) as regenerative
materials, this portion of the review will focus on chitosan with a comparison of its properties to
other electrospun polysaccharides established in the literature. Chitosan nanofibers are suitable
wound dressing materials because they offer inherent anti-microbial properties in addition to having
biocompatible, biodegradable and hemostatic properties. Chitosan is a substrate for cell attachment
due to their polymer structure exhibiting similarities to glycosaminoglycans (GAGs) that are a major
component of the extracellular matrix [66]. Thus, the extent of application ranges from surgical sutures,
artificial skin, and controlled drug delivery devices. Additionally, chitosan is derived from chitin, the
second most abundant biopolymer on earth [67] thus, their availability can be leveraged to produce a
low cost and effective wound dressing material. Unfortunately, chitosan can be difficult to electrospin
because of its highly charged nature from deacetylation of its N-acetyl-D-glucosamine group that
induces aggregation, making it difficult to solubilize in solvents [67]. The solubility of chitosan is
controlled by molecular weight, solvent pH, acetyl distribution and acid used. Increasing molecular
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weight of chitosan increases the tendency of the electrospinning solution to become too viscous due
to aggregation. Also, solvent pH of the electrospinning solution can be adjusted by introducing
hydrochloric acid [68] and acetic acid [69]. Ideally, the pH of the electrospinning solution is below 6
but is affected by the degree of deacetylation (>60%) that causes solution insolubility [67].

There are a handful of solvents that dissolve chitosan into a solution that is successfully
electrospun. Acetic acid (90 wt %), trifluoroacetic acid (TFA) and TFA/dichloromethane (DCM) are
solvent systems typically used to electrospin chitosan [70]. A 1 wt % chitosan-silver nanoparticle
composite in acetic acid was fabricated by Lee et al. dissolving the composite in a 7:3 TFA/DCM
mixture at 5 wt % for electrospinning [71]. However, chitosan fibers lack stability in aqueous solutions
and have limited electrospinning conditions used to successfully form fibers. Therefore, additional
polymers are introduced to improve spinnability such as PEO, PVA, collagen and silk [5,7,70,72].
The most prominent example of successfully electrospinning chitosan without additives was done by
Geng et al. who electrospun bead free fibers from a solution of 7 wt % chitosan (M.W. = 106,000 Da) in
90 wt % acetic acid [73]. Nonetheless, there is a major challenge developing chitosan electrospinning
solutions that have a combination of low viscosity and high chain entanglement after dissolving.
The Mark-Houwink equation, Equation (1) predicts molecular weight based on the intrinsic viscosity
of the chitosan measured by a viscometer or rheometer [74].

The equation is expressed as follows:

[η] = KMa (1)

where intrinsic viscosity, [η] is related to the molecular weight (M) of the polymer being dissolved
while K and a are constants that correspond to the intrinsic viscosity of the particular solvent system
being used. Klossner et al. have established parametric constraints that create a rheology window for
fiber formation from chitosan-polyethylene oxide blends based on acetic acid concentration, polymer
concentration, and polymer molecular weight [75]. Further investigation probing the chitosan’s ionic
properties, molecular weight, the degree of acetylation and acid solvent selection is necessary to find
the optimal viscosity window to electrospin pure chitosan.

Other polysaccharides such as alginate and hyaluronic acid have been electrospun as wound
dressing materials because of their biocompatibility. Alginate, like chitosan, is ionically charged but is a
linear copolymer whose proportion of M-block and G-block content influence physical properties such
as tensile strength and fluid absorption capacity [49]. Shalumon et al. created Alginate/Polyvinyl
alcohol (PVA) blended nanofibers with zinc oxide as an anti-bacterial wound dressing [76].
Electrospun fibers from a mixture of alginate with two 37 kDa and 196 kDa molecular weights
blended with polyethylene oxide (PEO) at ratios up to 80:20 in deionized water and surfactant [77].
However, their potential in electrospinning has not been fully realized because of existing challenges to
fabricate uniform, continuous fibers. This is due to low chain entanglement created by negative charge
repulsions and length of polymer chains within the alginate network [66,78,79]. As a result, groups
introduced other polymers to assist in electrospinning such as PEO, PVA and glycerol to neutralize
the electrostatic repulsions that promote greater fiber entanglement [66]. Hyaluronic acid has been
reported to be successfully electrospun in dimethylformamide and water [80]. However, there has
been limited success electrospinning HA alone due to its high charge density and surface tension. As a
result, blended polymers are needed for it to be consistently electrospun successfully. Gelatin, PEO,
and zein has been blended with HA to form fibers. Electrospun polysaccharide fibers are an effective
platform that helps answer preclinical questions about extracellular matrix response to natural wound
dressing models after implementation post-injury. Nevertheless, the scalability of electrospinning will
need to be further refined. However, a new approach fabricating nanoscale fibers has been reported
by Raoufi et al. to process hyaluronic acid feedstock solutions from a syringe extruded through
nanoporous alumina membrane templates into uniform nanoscale fibers [81]. This technique may
open up a new direction in the fabrication of polysaccharides wound dressing materials to such fine
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resolutions that can selectively affect critical processes during wound healing such as extracellular
matrix activity and fluid absorption.

4. Biocompatibility Assessment of Polysaccharides as Wound Dressing Materials

4.1. Cytocompatibility Assessment

The biocompatibility of materials is the most important factor for wound dressing application
as wounds can be potentially exposed to cytotoxic environments that would exacerbate the healing
process. Consequently, it is important to ensure the wound dressing material itself is not inherently
toxic so in vitro and in vivo assessment must be utilized to properly screen the materials selection
process for cytocompatibility. Fortunately, for polysaccharides they are biocompatible because
their origin in the extracellular matrix that plays a significant role during the wound healing
process. Additionally, they are biodegradable and do not elicit an inflammatory immune response.
Hyaluronic acid and chitosan are polysaccharides have primarily been explored as wound dressing
materials. The cytocompatibility of these two polysaccharides among others will be reported from
selected studies for this section.

Hyaluronic acid is a naturally occurring linear polysaccharide with repeating units of D-glucuronic
acid and N-acetyl-D-glucosamine disaccharide [82]. It is a major component of extracellular matrix
and is found in skin, cartilage, bone, and many other tissues [83]. Hyaluronic acid has been
used commercially for wound dressings products under trade names Hyalomatrix, Hyalofill,
Hyalogran, etc. using the ester based HYAFF-11 material developed by Anika Therapeutics.
The commercialized dressings are esterification based hyaluronan materials offering cytocompatibility
with fibroblast, keratinocyte, macrophage and complement proteins involved in inflammation.
In animal models, it was discovered that the tissue response to HYAFF-11 implantation was mild with
the presence of macrophages at the wound site 3–12 months post-implantation, indicating long-term
biocompatibility [84]. HYAFF-11, in its native form, is a raw polymer that can be processed into
tunable wound dressing material platforms such as hydrogels and foams. From the literature, it
was reported hyaluronic acid hydrogels stimulate proliferation of fibroblasts that are responsible for
collagen deposition and organization as fiber bundles [85]. Ji et al. reconstituted hyaluronic acid
derivatives into electrospun fibers to serve as an ECM-mimicking substrate favorable for NIH3T3
fibroblast cell attachment and spreading, ideal for tissue regeneration [86].

Chitosan is an attractive wound dressing material because it is biocompatible, non-toxic,
absorptive, antimicrobial, biodegradable, hemostatic, and can be a substrate for cell attachment [67,87].
As a wound dressing material, chitosan possesses bioadhesive properties on mucin substrates
because of its positive charge at physiological pH [88]. Chitosan has also been shown to promote
wound healing [89] and exhibit bacteriostatic effects by using its positive charge to bind to the
bacteria’s cytoplasmic membrane [90–92]. During the remodeling stage of wound healing, chitosan
accelerates healing and promotes smooth scarring at the injury site due to enhanced vascularization.
Also, they possess a high supply of chitooligomers that incorporate collagen fibrils at the extracellular
matrix [93,94]. Important wound healing mediators such as fibroblast growth factor (FGF-2) has been
successfully integrated into chitosan hydrogels that better promote signaling mechanisms during the
proliferation stage of wound healing [95]. Park et al. developed bFGF-loaded chitosan hydrogels
to accelerate wound repair in chronic ulcers [96]. A UV-crosslinkable chitosan hydrogel system
was fabricated by Ishihara et al. that occluded bleeding from the wound site while encouraging
tissue granulation and epithelialization in rat models [95]. Good cytocompatibility and attachment
of hepatocyte cells from liver tissues were demonstrated using electrospun nanoscale chitosan fibers,
affording potential uses as a biomimetic ECM substrate for the liver [97].

Additional polysaccharides have been investigated for their biocompatibility as electrospun or
hydrogel scaffolds that can be applied as a wound dressing platform. Vashisth et al. have reported the
fabrication of amoxicillin impregnated electrospun gellan/polyvinyl alcohol composites as potential
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transdermal substitutes which revealed human keratinocyte cell adhesion and viability in vitro while
encouraging skin re-epithelialization for in vivo animal models [98]. Dextran hydrogels are used as
wound dressing materials they have exhibited angiogenesis and complete skin healing in animal burn
wound models [99]. Sun et al. created excisions to full-thickness wounds before dextran hydrogel
scaffolds were implanted with a secondary dressing layer for up to 21 days [99]. The study showed
complete dermal regeneration after implantation of dextran hydrogels compared to non-treated and
treated control groups. Our group has developed lyophilized arabinoxylan hydrogels that exhibited
viabilities above 96% on fibroblasts cultured in vitro [44]. The results concluded that fibroblasts that
play a prominent role in the proliferative and remodeling stages of wound healing maintain their
cytocompatibility after exposure to arabinoxylan.

4.2. Bioactive Molecule Incorporation and Release

Advanced wound dressings developed more recently incorporate bioactive molecules to enhance
patient comfort and to help accelerate the wound healing process. Antimicrobial dressings are one
type of bioactive molecule important during the wound healing process that inhibits potential bacterial
infections caused by acute tissue injury, post-operative surgery or from more chronic, pathological
states such as diabetes [2]. Many anti-microbial dressings are impregnated with silver, which broadly
acts against infections caused by skin burns and wounds. Silver has been the traditional antimicrobial
agent to treat bacterial colonies such as Staphylococcus aureus and P. aeruginosa [48]. Its mechanism
of action involves the influx of silver ions to the bacterial cytoplasm, where they shut down enzyme
activity and as a result, potassium ions leak out the cell [100]. The released ions cause the cytoplasm
to burst and destroy the cell wall, leading to apoptosis [100]. Silver can only be applied locally but
has been effective inhibiting bacterial growth and its resistance [101]. However, silver’s spectrum
of use should be limited because of its cytotoxicity. Therefore, the inherent antimicrobial activity
of polysaccharides such as chitosan with less silver may be utilized as an alternative, less cytotoxic
wound dressing.

Polysaccharide materials are ideal for bioactive molecule incorporation because their
biodegradability can be controlled in the body based on their polymer structural properties, tuning
bioactive release. Also, they are inherently bioactive that may serve as ligands, binding to receptors
on the fibroblast’s surface during wound healing to promote extracellular matrix production [16].
Chitosan polysaccharides have extensively been used for the release of bioactive molecules. In a study
led by Kumar et al., zinc oxide particles, known for their antibacterial activity were introduced
into chitosan hydrogel bandages that reduced expression of E. coli bacteria in vivo. As a result
of bacterial suppression, these bandages in vivo exhibited 90% wound closure in rat models
two weeks post-injury [102]. Additional polysaccharides such as alginate was processed into fibers and
impregnated with silver that exhibited antimicrobial effects against MRSA pathogens [103]. To improve
post-surgical wound healing, researchers fabricated hyaluronic acid hydrogels crosslinked in situ and
conjugated with anti-inflammatory agents dexamethasone [104] and bupivacaine [105]. Results from
these studies revealed sustained release of these bioactive drugs in animal models.

Arabinoxylan has shown potential as a drug delivery system as a gel by exhibiting high protein
release. The rate of release can be modulated by the initial amount of protein loaded into the gel [41].
Crosslinked arabinoxylan gels have high water absorption capacity that enables potential drug
delivery applications using therapeutics such as albumin and ibuprofen [41,106]. Our previous
work demonstrated arabinoxylan foams impregnated with silver can effectively serve as an in vitro
antimicrobial wound dressing material [44]. Alginate-pectin aerogel particles with pectin core shells
have encapsulated doxycycline antibiotic in wound dressings for sustained drug release against
tissue degrading MMPs during chronic wound healing [107]. While current trends of integrating
broad-spectrum antimicrobials into polysaccharide materials have been established and have been
effective preventing chronic wounds, utilizing strategies to incorporate less toxic bioactive agents
with greater selectivity is needed for more effective wound healing management. Extensive work
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incorporating bioactive molecules such as epidermal growth factor, vitamin, and arginine in hyaluronic
acid sponges proved to promote inflammation and wound closure in animal models [108,109].
Polysaccharides containing naturally derived agents may serve as a viable bioactive alternative for
wound healing. Naseri et al. electrospun a 1:1 blend mixture of chitosan:PEO with chitin nanocrystals
as a potential wound dressing material [110]. A summary of these naturally derived molecules is
beyond the scope of this paper but covered by Laurienzo et al. in another review [111].

5. Conclusions

In an increasing health-cognizant society, there is a greater demand for naturally derived materials
for medical treatment. Wound dressing development is advancing at a rapid pace because of integrating
naturally derived materials such as polysaccharides. Polysaccharides have been primarily used in
food, textile or cosmetic products, but their potential utility as wound dressings is vast because of
their abundance and non-toxicity. These class of polymers is excellent candidates for wound dressing
development because they exhibit a structural diversity of molecular weights and structures that
influence their overall material properties. Many of the polysaccharides described in this review
are well established in vitro and in vivo as hydrogel and electrospun wound dressing platforms.
There has been work using more selective fabrication techniques such as designing enzymes to
functionalize polysaccharides and influence their anti-microbial, fluid retention and gel strength
properties [112]. Cellulose polysaccharides have been widely researched and have potential clinical
uses; however, this review does not cover these class of materials that is extensively covered in a
review by Czaja et al. [113].

An exciting time for polysaccharides wound dressing materials is ahead through the expansion
of manufacturing processes such as 3D printing, with the potential to create patient-specific wound
dressings with design freedom using computerized models. 3D printing of polysaccharides is realized
by a process called bioprinting that uses selective deposition of a gelatinous ink in three-dimensional
space to create controlled geometric structures. Pescosolido et al. have incorporated hyaluronic
acid and dextran into crosslinked hydrogels that were reprocessed into three-dimensional scaffolds
using bioprinting [114]. A very recent review on bioprinting alginate, covering its state of the art and
challenges was published by Axpe et al. [115]. Polysaccharides are naturally derived materials intended
to improve bioactivity and tailored performance of commercialized wound dressings. The authors
hope this review will spur further investigation and development of polysaccharides as a natural
source of wound dressings materials.
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