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Polysulfurating reagent design for unsymmetrical
polysulfide construction
Xiao Xiao1, Jiahui Xue1 & Xuefeng Jiang 1,2,3

From life science to material science, to pharmaceutical industry, and to food chemistry,

polysulfides are vital structural scaffolds. However, there are limited synthetic methods for

unsymmetrical polysulfides. Conventional strategies entail two pre-sulfurated cross-coupling

substrates, R–S, with higher chances of side reactions due to the characteristic of sulfur.

Herein, a library of broad-spectrum polysulfurating reagents, R–S–S–OMe, are designed and

scalably synthesized, to which the R–S–S source can be directly introduced for late-stage

modifications of biomolecules, natural products, and pharmaceuticals. Based on the hard and

soft acids and bases principle, selective activation of sulfur-oxygen bond has been accom-

plished via utilizing proton and boride for efficient unsymmetrical polysulfuration. These

polysulfurating reagents are highlighted with their outstanding multifunctional gram-scale

transformations with various nucleophiles under mild conditions. A diversity of polysulfurated

biomolecules, such as SS−(+)-δ-tocopherol, SS-sulfanilamide, SS-saccharides, SS-amino

acids, and SSS-oligopeptides have been established for drug discovery and development.
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D
isulfide scaffolds, containing two covalently linked sulfur
atoms, are important molecular motifs in life science1–6,
pharmaceutical science7–15, and food chemistry16–18 by

virtue of their unique pharmacological and physiochemical
properties (Fig. 1a). Disulfide bonds, for instance, in biomolecules
take multifaceted roles in various biochemical redox processes to
generate and regulate hormones, enzymes, growth factors, toxins,
and immunoglobulins for very homeostasis and bio-signaling
(e.g., metal trafficking); secondary and tertiary structures of
proteins are also well formed and stabilized via the disulfide
bridge2–5. In recent decades, potent bioactive natural products
and pharmaceuticals possessing sulfur–sulfur bonds have been
discovered, such as the antifungal polycarpamine family7, the
anti-poliovirus epidithiodiketopiperazine (ETPs) family8, 9,
romidepsin10, gliotoxin11, and some new histone deacetylase/
methyltransferase inhibitors12, which, mechanism-wise, either
sequester enzyme-cofactor zinc or generate highly reactive elec-
trophiles to induce DNA strand scission. When it comes to
antibody-drug conjugates (ADC), the disulfide bond has also
been extensively utilized as a linker to deliver the active drug into
the targeted cell after cleavage upon internalization of ADC19–22.
Due to the higher intracellular concentration of free thiols (glu-
tathione) than in the bloodstream, the sulfur–sulfur bonds can be
selectively cleaved in the cytoplasm of cancer cell, thereby
achieving the specified release of cytotoxic molecules. Notably,
disulfide compounds in allium species plants can not only
demonstrate vasorelaxation activity, but also inhibit ADP-
induced platelet aggregation16–18.

Tri-sulfides have recently received considerable attention. To
cite the allium-derived diallyl trisulfide (DATS) as an example, it
serves as a gasotransmitter precursor and an excellent hydrogen

sulfide donor, mediating and regulating the release of hydrogen
sulfide upon physiological activation (Fig. 1b)23, 24. From the
materials perspective, organotrisulfides, such as dimethyl tri-
sulfide (DMTS) with a theoretical capacity of 849 mAhg−1, hold
promise as high-capacity cathode materials for high-energy
rechargeable lithium batteries25. It should also be pointed out
that trisulfides do exist in bioactive natural products from marine
invertebrates7, 26–28, such as the antitumor varacins A26 and the
anti-fungus outovirin C27.

Given the importance and predominance in pharmaceuticals
and other bioactive compounds of polysulfurated structures, it is
always sought-after to develop general polysulfuration protocols
for synthetic purposes. Although typical methods for symmetrical
disulfide preparation have been well developed29, the construc-
tion of unsymmetrical disulfides is still a challenging transfor-
mation due to the high reactivity of S–S bond30–40. In general, the
synthesis of unsymmetrical disulfides can be achieved via an SN2
process between a thiol and a prefunctionalized thiol with leaving
group32–38. Alternatively, one can employ either two different
kinds of thiols with unavoidable formation of homocoupling
byproducts39 or two distinct symmetrical disulfides with the use
of rhodium(I) by Yamaguchi group40. Based on our continuous
research in organic sulfur chemistry41–48, comproportionation
between two distinct inorganic sulfur sources was utilized for
unsymmetrical disulfides syntheses49. However, the strategy of
aforementioned methods introduces disulfide bonds from two
different kinds of sulfur-containing substrates, requiring more
synthetic steps and leading to side-reactions due to both reactive
thio-derivatives (Fig. 2a)30–40, 49. We intend to develop metho-
dology which can introduce the RSS source with one disulfurating
reagent at a later stage so as to provide great compatibility and
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several possibilities of polysulfuration. Hydropersulfide (RSSH)
seems to be a prime disulfurating reagent, though it is unstable
owing to its high reactivity50, 51. Two sulfur atoms were suc-
cessfully introduced in one step via oxidative cross-couplings of

acetyl masked disulfurating nucleophiles and organometallic
reagents (Fig. 2b)52.

Nevertheless, there is a large demand for a universal dis-
ulfurating reagent, which is compatible with diverse coupling

Table 1 Optimization of polysulfide reagentsa,b

Entry CuSO4 (mol%) Ligand (mol%) PhI(OPiv)2 (equiv) Temp (°C) Time (h) Yields (%)

1c 10 bpy (10) 2.5 25 11 31

2d 10 bpy (10) 2.5 25 11 ND

3 10 bpy/ phen (10) 2.5 25 11 50/53

4 10 L1 (10) 2.5 25 11 77

5 10 L2/L3/L4 (10) 2.5 25 11 70/63/68

6 10 L1 (10) 2.5 20 13 86

7 5 L1 (10) 2.5 20 13 86

8 2.5 L1 (10) 2.5 20 13 79

9 5 L1 (5) 2.5 20 13 76

10 5 L1 (10) 2.2 20 13 88

11 5 L1 (10) 1.9 20 13 65

aConditions: 1d (0.2 mmol, 1 equiv), CuSO4·5H2O, Ligand, Li2CO3 and PhI(OPiv)2 were added to MeOH (2mL) at 20 °C for 13 h
bIsolated yields
cPhI(OAc)2 was instead of PhI(OPiv)2
dPhI(OTFA)2 was instead of PhI(OPiv)2
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partners without transition-metal catalysis. The umpolung strat-
egy, replacement of acetyl (RSS−) with methoxyl (RSS+) group,
will afford the precursor of persulfide cation (Fig. 2c). Originating
from the same main group, sulfur and oxygen possess similar
electronic effect, which imposes a great challenge for selective
cleavage of S–O bond with S–S bond untouched. Based on the
hard and soft acids and bases (HSAB) principle53, we hypothesize
that boride/proton can help to make the difference between S–S
and S–O, in which the hard acid boride/proton prefers oxygen
coordination. Herein, we disclose a polysulfurating reagent which
can construct unsymmetrical disulfide and trisulfide products by
utilizing a RSS source only on one substrate, which renders the
late-stage functionalization feasible. Different nucleophilic
regents, such as 1,3-dicarbonyl derivatives, electron-rich arenes,
heteroarenes, amines, and thiols, had been smoothly coupled with
disulfurating reagents under mild, transition-metal-free, and
base-free conditions, especially suitable for the late-stage mod-
ification of natural products and pharmaceuticals.

Results
Optimization and synthesis of polysulfurating reagents. Initial
studies commenced with the construction of designed electro-
philic polysulfurating reagents. It was hypothesized that the
electrophilic reagent could be obtained through hydropersulfide
anion and methanol via oxidative cross-coupling. The poly-
sulfurating reagent 2d was obtained in 31% yield under the
conditions of copper(II) as catalyst, 2,2′-bipyridine as ligand, and

PhI(OAc)2 as oxidant (Table 1, entry 1). The bulky iodonium salt
PhI(OPiv)2 was the oxidant of choice in this conversion (Table 1,
entries 1–3). Systematic investigations of ligands showed that 4,7-
diphenyl-1,10-phenanthroline helped to increase the yield of 2d
to 77% (Table 1, entries 3–5). Further study demonstrated that
slightly lower temperature was important for keeping product 2d
stable in this system (Table 1, entry 6). Catalyst loading was
lowered with the same efficiency of the transformation (Table 1,
entries 7–9). The optimal conditions were found to involve
treatment of 1d with 5 mol% of catalyst, 10 mol% of ligand L1, 2.2
equivalents of bis(tert-butylcarbonyloxy)iodobenzene, and 1.0
equivalent of lithium carbonate in 0.1 M methanol at 20 °C,
which afforded electrophilic polysulfurating reagent 2d in the
yield of 88% (Table 1, entry 10). When the oxidant bis(tert-
butylcarbonyloxy)iodobenzene was reduced to 1.9 equivalents,
the yield of 2d was dropped sharply to 65% (Table 1, entry 11).

With the optimized conditions in hand, the syntheses of
electrophilic polysulfurating reagents were comprehensively
investigated. A scale of 5 mmol operation was practicably
performed, decreasing catalyst loading to 0.25 mol% (for details
see the Supplementary Table 2). Various acetyl substituted
disulfides were readily transformed to methoxyl substituted
disulfides (Table. 2). Initially, the reagents bearing both
electron-donating and electron-withdrawing groups on aromatic
rings were successfully obtained (Table 2, 2a–2f). Notably, 1.84 g
of 2d was achieved in a yield of 87% with 10 mmol scale
operation (Table 2, 2d). The arene substituted with

Table 2 The scope of polysulfurating reagentsa,b

a1 (5 mmol, 1 equiv), CuSO4·5H2O (0.0125mol, 0.125 mol%), L1 (0.025mol, 0.25mol%), Li2CO3 (5 mmol, 1 equiv) and PhI(OPiv)2 (11 mmol, 2.2 equiv) were added to MeOH (10 mL) at 20 °C for 15 h
bIsolated yields
c1 (10mmol, 1 equiv) and MeOH (10mL) were used
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chloromethylene group was compatible under the standard
conditions (Table 2, 2e–2f). Reactions involving secondary benzyl
and propargyl derivatives were carried out smoothly (Table 2, 2g–
2h). When aliphatic substrates were evaluated, the corresponding
products were formed efficiently (Table 2, 2i–2m). The scope was
further demonstrated through the successful syntheses of bis-
disulfurating reagents (Table 2, 2n–2o). Notably, the modification
of saccharides and amino acids were also converted into
corresponding disulfurating reagents (Table 2, 2p–2t). These

reagents are fairly stable without deterioration when stored in a
refrigerator (−18 °C) for half a year. Around 20% of these
reagents will decompose at room temperature (+25 °C) after
1 week.

Polysulfuration with designed reagents. With the class of dis-
ulfurating reagents in hand, the construction of unsymmetrical
disulfides and trisulfides was consequently explored. We initiated

Table 3 Disulfuration with carbon nucleophiles a,b

aStandard conditions A: NuH (0.22mmol, 1.1 equiv), 2 (0.2 mmol, 1 equiv), B(C6F5)3 (0.01 mmol, 5 mol%) and 4-MeOPy (0.01 mmol, 5 mol%) were added to DCE (0.25 mL) at r.t. for 22 h. Standard

conditions B: NuH (0.3 mmol, 1.5 equiv), 2 (0.2 mmol, 1 equiv) and B(C6F5)3 (0.01 mmol, 5 mol%) were added to PhMe (0.5 mL) at 0 °C for 24 h. Standard conditions C: NuH (0.3 mmol, 1.5 equiv), 2

(0.2 mmol, 1 equiv) and MeSO3H (0.02mmol, 10 mol%) were added to tAmylOH (0.5 mL) at 0 °C for 5–24 h
bIsolated yields
cr.t. was instead of 0 °C
dB(C6F5)3 (0.002mmol, 1 mol%) was used
eB(C6F5)3 (0.01 mmol, 0.2 mol%) was used
fB(C6F5)3 (0.004mmol, 2 mol%) were added to PhMe (0.25mL) at r.t. for 24 h
gNuH (0.22mmol, 1.1 equiv), 2 (0.2 mmol, 1 equiv) and B(C6F5)3 (0.004mmol, 2 mol%) were added to PhMe (0.25mL) at 0 °C for 24 h. Ar= 4-CNC6H4
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our efforts with 1,3-dicarbonyl compounds due to their excellent
nucleophilic property. Based on the HSAB principle, the coupling
between acetylacetone and reagent 2d has been explored under
the assistance of the hard acid Tris(perfluorophenyl)borane as a
catalyst (for details see the Supplementary Table 3). Various 1,3-

dicarbonyl structures effectively afford disulfuration catalyzed
with the combination of tris(perfluorophenyl)borane and 4-
methoxypyridine (Table 3). Acyclic and cyclic 1,3-dicarbonyl
substrates were smoothly converted to the desired disulfides
(Table 3, 3a–3d). The configuration of 3a was further confirmed

Table 4 Disulfuration with heteroatomic nucleophiles a,b

aStandard conditions D: NuH (0.22mmol, 1.1 equiv), 2 (0.2 mmol, 1 equiv) and B(C6F5)3 (0.005mmol, 2.5 mol%) were added to PhMe (0.5 mL) at r.t. for 24 h. Standard conditions E: NuH (0.22mmol,

1.1 equiv) and 2 (0.2 mmol, 1 equiv) were added to DCM (2.0mL) at r.t. for 8 h
bIsolated yields
cB(C6F5)3 (0.0125mmol, 0.25 mol%) was used
dCH3CN was used as solvent
eNuH (0.2 mmol, 1 equiv), 2 (0.3 mmol, 1.5 equiv) and B(C6F5)3 (0.005mmol, 2.5 mol%) were added to DMF at r.t. for 24 h
fB(C6F5)3 (2.5 mol%) was added at r.t. for 5 h
gB(C6F5)3 (2.5 mol%) and DCM (0.5 mL) was added
hB(C6F5)3 (2.5 mol%) and DMF (0.5 mL) was added
i24 h. Ar= 4-CNC6H4, R= (CH2)9Me
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through X-ray crystallographic analysis. Aliphatic and propargyl
derivatives were compatible in this process (Table 3, 3e–3h).
Significantly, disulfurating reagents bearing both saccharide and
amino acid groups accomplished this transformation efficiently
with two parts connected via the disulfur linkage (Table 3, 3i–3l).

Following the activation mode, electron-rich aromatics were
readily accommodated under standard conditions (Table 3, 4a–
4d). (+)-δ-Tocopherol, a significant bioactive molecule, could be
disulfurated directly despite the presence of free hydroxyl group
(Table 3, 4c–4d). Indole and pyrrole, ubiquitous in natural
products and pharmaceuticals, are excellent coupling partners as
well. Indoles bearing both electron-rich and -deficient functional
groups proceeded smoothly with disulfurating reagents to afford
the corresponding indolyl-disulfides on 3-position (Table 3, 5a-
5p). A bis-disulfurating electrophile also afforded the correspond-
ing twofold disulfur-containing molecule efficiently (Table 3, 5q).
Saccharide and amino acid structures were directly installed with
indoles via the disulfide linker (Table 3, 5r-5u). A gram-scale
operation was performed with 5 mmol of 2d under the catalysis of
1 mol% of B(C6F5)3 affording 5o in 93% yield (1.38 g), which
structure was further confirmed through X-ray analysis. In
particular, iodo- and formyl-substituted indoles were also
compatible in this transformation (Table 3, 5m-5n). Pyrroles
substituted on different positions were treated to the disulfuration
conditions, successfully providing desired products as well
(Table 3, 5v-5y).

Subsequently, amine partners were systematically varied
providing access to a wide range of functional aza-disulfide in
the presence of 2.5 mol% of tris(perfluorophenyl)borane. The
anilines substituted with electron-withdrawing and electron-
donating functional groups afforded the desired aza-disulfides
in moderate to excellent yields (Table 4, 6a-6f). The secondary
amines proceeded in this transformation, affording correspond-
ing products in favorable yields (Table 4, 6g-6h). Notably, allyl,
propargyl and heteroaromatic amines were all efficiently
transformed to the corresponding products (Table 4, 6i-6k).
Sulfanilamides, as a significant type of antibiotic, could be
modified with the designed persulfurating reagent in good to
excellent yields (Table 4, 6m-6s). Lenalidomide, a myeloma drug,
was installed with the disulfide under mild reaction conditions
(Table 4, 6t). Furthermore, functional disulfurating electrophiles,
modified with saccharide and amino acid groups, were furnished
with the substituted disulfur amine linker (Table 4, 6u-6y). The
structure of 6a was further confirmed by X-ray analysis. In order
to validate the efficiency and practicability of this aza-disulfura-
tion, 0.25 mol% catalyst loading was launched on a gram-scale
reaction to afford 6a in 81% yield (1.1 g).

Trisulfuration was readily achieved with thiols as a nucleophile
(Table 4, 7a-7q). Even sterically bulky aliphatic thiols, tert-
butylthiol and 1-adamantanethiol, displayed excellent trisulfura-
tions (Table 4, 7d, and 7l). The structure of 7d was further
confirmed via X-ray analysis. A gram-scale production for 7g
could be performed in 92% yield practically. Thiols substituted
with vinyl, polyfluoroalkyl, silyl, and hydroxyl groups, and
heterocycles were all tolerated in this transformation, being
converted to the unsymmetrical trisulfides, respectively (Table 4,
7h-7k, and 7o). Even dithiols efficiently formed the correspond-
ing twofold trisulfur-containing products in good yields (Table 4,
7s-7t). Aliphatic trisulfurations could be achieved in high yields
(Table 4, 7u-7v). It should be noted that trisulfides containing
saccharide and cysteine fragments were readily formed through
these reagents (Table 4, 7r, 7w-7ac). Cysteine was successfully
utilized for constructing trisulfur-containing amino acids and
oligopeptides, which might provide another access for peptide
drug discovery (Table 4, 7aa-7ac).

Discussion
In summary, a class of stable and broad-spectrum polysulfurating
reagents with masked strategy has been designed and a general
polysulfurating methodology has been established under mild
conditions, which can directly introduce two sulfur atoms into
functional molecules. The designed reagents were compatible
with a considerable range of significant biomolecules, such as
saccharides, amino acids, peptides and variety of heterocycles.
This protocol showcases the wide utility of both carbon and
nitrogen nucleophiles resulting in the functional disulfides. Fur-
thermore, the trisulfuration provides a convenient and efficient
method for sulfur-containing drug discovery. Further studies on
modification of biomolecules and pharmaceuticals with these
disulfurating reagents are still ongoing.

Methods
General methods. See Supplementary Methods for further details.

General procedure for syntheses of disulfurating reagents 2. To a Schlenk tube
were added RSSAc 1 (5 mmol, 1 equivalent), CuSO4·5H2O (0.0125 mmol, 0.25 mol
%, 3.2 mg), L1 (0.025 mmol, 0.5 mol%, 8.1 mg), Li2CO3 (5 mmol, 1 equivalent, 370
mg), PhI(OPiv)2 (11 mmol, 2.2 equivalents, 4.47 g) and undried MeOH (10mL),
the mixture was stirred at 20 °C under normal conditions for 15 h. Then the
mixture was quenched by saturated NaHCO3 and extracted by DCM before the
organic phase was concentrated under vacuum without adding silica gel. Pur-
ification by column chromatography afforded the desired product.

General procedure for syntheses of disulfides 3. To a Schlenk tube were added
1,3-dicarbonyl compound (0.22 mmol, 1.1 equivalents), B(C6F5)3 (0.01 mmol, 5
mol%, 5.2 mg), 4-MeO-pyridine (0.01 mmol, 5 mol%, 1.1 mg), RSSOMe 2 (0.2
mmol, 1 equivalent), and 1,2-dichloroethane (0.25 mL), the mixture was stirred at
r.t. for 22 h before it was concentrated under vacuum. Purification by column
chromatography afforded the desired product.

General procedure for syntheses of disulfides 4. To a Schlenk tube were added
arene (0.3 mmol, 1.5 equivalents), B(C6F5)3 (0.01 mmol, 5 mol%, 5.2 mg), RSSOMe
2 (0.2 mmol, 1 equivalent), and toluene (0.5 mL), the mixture was stirred at 0 °C or
r.t. for 24–60 h before it was concentrated under vacuum. Purification by column
chromatography afforded the desired product.

General procedure for syntheses of disulfides 5. Method A: To a Schlenk tube
were added indole (0.3 mmol, 1.5 equivalents), MeSO3H (0.02 mmol, 10 mol%, 2
mg), RSSOMe 2 (0.2 mmol, 1 equivalent), and t-AmylOH (0.5 mL), the mixture
was stirred at r.t. for 24 h before it was concentrated under vacuum. Purification by
column chromatography afforded the desired product. Method B: To a Schlenk
tube were added indole (0.22 mmol, 1.1 equivalents), B(C6F5)3 (0.004 mmol, 2 mol
%, 2.1 mg), RSSOMe (0.2 mmol, 1 equivalent), and toluene (0.25 mL), the mixture
was stirred at 0 °C or r.t. for 24 h before it was concentrated under vacuum.
Purification by column chromatography afforded the desired product.

General procedure for syntheses of aza-disulfides 6. To a Schlenk tube were
added amine (0.22 mmol, 1.1 equivalents), B(C6F5)3 (0.01 mmol, 2.5 mol%, 2.6
mg), RSSOMe 2 (0.2 mmol, 1 equivalent), and toluene (0.5 mL), the mixture was
stirred at 0 °C or r.t. for 24 h before it was concentrated under vacuum. Purification
by column chromatography afforded the desired product.

General procedure for syntheses of trisulfides 7. To a Schlenk tube were added
thiol (0.22 mmol, 1.1 equivalents), B(C6F5)3, RSSOMe 2 (0.2 mmol, 1 equivalent),
and DCM (0.5 mL), the mixture was stirred at r.t. under N2 atmosphere for 5–8 h
before it was concentrated under vacuum. Purification by column chromatography
afforded the desired product.

Data availability. The X-ray crystallographic coordinates for structures reported in
this study have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition number CCDC 1565934 (3a), 1565935(5o), 1565936
(6a) and 1565937 (7d). These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
The authors declare that all other data supporting the findings of this study are
available within the article and Supplementary Information files, and also are
available from the corresponding author on reasonable request.
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