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POLYTOPE VOLUME COMPUTATION

JIM LAWRENCE

Abstract. A combinatorial form of Gram's relation for convex polytopes can
be adapted for use in computing polytope volume. We present an algorithm
for volume computation based on this observation. This algorithm is useful in
finding the volume of a polytope given as the solution set of a system of linear
inequalities, P = {x G R" : Ax < b} .

As an illustration we compute a formula for the volume of a projective image
of the «-cube. From this formula we deduce that, when A and b have rational
entries (so that the volume of P is also a rational number), the number of binary
digits in the denominator of the volume cannot be bounded by a polynomial in
the total number of digits in the numerators and denominators of entries of A
and b . This settles a question posed by Dyer and Frieze.

1. Introduction

We present a method for computing exactly the volume of a convex polytope
given as the set of solutions of a finite system of linear inequalities.

Some methods for exact computation of the volume of a convex polytope P
in R" are given in [1, 5, 13, 30]. In Cohen and Hickey [5] and Von Hohenbalken
[30], the volume is obtained by triangulating the polytope and summing the
volumes of the simplexes of the triangulation. (Cohen and Hickey [5] compare
this method with an approximate method.) In Allgower and Schmidt [1], the
volume is computed from a triangulation of the boundary of P. Lasserre [13]
presents a method based on the recursive use of a well-known formula for the
volume (Theorem 37 of [8]); in many cases this approach also amounts to
summing the volumes of the simplexes in a certain triangulation of the polytope.
The method in the present paper avoids triangulation of P or of its boundary.

Several papers concern computing the volume of certain sets in R3, e.g., Lee
and Requicha [15, 16], where more general three-dimensional sets are consid-
ered, and Shoemaker and Huang [26]. In Speevak [27], a novel method for
computing volumes of certain pyramids in M." is given.

The method presented in this paper is based essentially on Gram's relation
(see Shephard [25]). If the polytope P is simple, then Gram's relation provides
a method by which one can write the volume of P as a sum of numbers N , one
for each vertex v of P. These numbers are easy to compute, so the difficulty
of the procedure is mainly that of enumerating the vertices of P.
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260 JIM LAWRENCE

Recent results on the complexity of volume estimation appear in Bárány and
Füredi [3], Elekes [9], and Lovász [17]. These results pertain to convex sets C
not necessarily given as an intersection of halfspaces, but rather determined by
certain oracles, e.g., by an oracle that, when given x e Rn, either assures us
that x € C, or gives us a halfspace H containing C but not x.

The problem considered in this paper has been shown to be #P-hard (Dyer
and Frieze [7]), even when restricted to polytopes for which the coefficient ma-
trix of the defining system of inequalities is totally unimodular. (For a treatment
of " #P-hardness" see Valiant [29].)

Also, in [7], Dyer and Frieze pose the following problem. Let A be an
m x n matrix of rational numbers, and let b be a column vector of m rational
numbers. Let P = {x e Rn : Ax < b} be a bounded polytope so that the volume
of P will necessarily be a rational number. Define the size (as in [24]) of the
rational number r = a/b (reduced) to be one more than the total number of
digits in the binary representations of the integers a and b, and the size of the
pair (A, b) to be m(n + 1) more than the sum of the sizes of the entries of
A and b . Is the size of the volume of P polynomially bounded in the size of
(A, ¿>) ? We shall see that the answer to this question is "no."

For background material concerning convex polytopes, systems of linear in-
equalities, linear programming, and valuations on convex polytopes, see [11,
28, 10, 23].

2. Statement of the main result,
and a result from combinatorial integral geometry

We identify R" with the vector space of real column vectors of length n . Let
P CE" be an «-dimensional polyhedron. Then P is the set of solutions to a
finite system of linear inequalities, say, P = {x e R" : a\x < bi for 1 < i < m) ,
where the a;'s are in Rn and the b¡'s are in R. Given such a representation,
the function r¡(x) = bi - a\x is called the ith residual. The polyhedron P is
the set on which all the residuals are nonnegative. The z'th inequality constraint
is said to be binding at x if r¡(x) = 0. The result upon which our algorithm
for volume computation rests is as follows:

Theorem. Suppose P = {x e Rn: r¡(x) = bt - a\x > 0 for i = 1, ... , m).
Suppose further that P is bounded and that for each vertex v of P the number
of indices i such that r¡(v) = 0 is n. In particular, P is a simple polytope.
Suppose c e Rn and d e R are such that the function f(x) = c'x + d is
nonconstant on each edge of P. Given a vertex v of P, let

where, if the indices of the constraints which are binding at v are ix, ... , in ,
then yx, ... , yn are such that

c = yxah+--- + ynain,
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POLYTOPE VOLUME COMPUTATION 261

and ôv is the absolute value of the determinant of the n x n matrix whose
columns are a, , ... , a¡ . Then the volume of P is

vo\(P)=     £     Nv.
v , a vertex

ofP

This theorem follows modulo the computation of the numbers Nv from the
corollary at the end of this section. The numbers Nv are computed (under the
unnecessary but convenient restriction that P be contained in the nonnegative
orthant in R." and have the origin as a vertex) in §3.

We next describe a combinatorial form of Gram's relation.
If v is a vertex of P, we wish to describe the "forward cone" of P at v

(with respect to /). Let ix,... , in be the indices of the n constraints which
are binding at v . Then v is the unique solution to the system of equations

(1) a\x = bj       (j = l,...,n).

It follows that {a¡ , ... , a¡ } forms a basis for R", and there is a unique
representation c = ££_, 7jai of c in terms of the basis. From this we have
fix) = f(v ) - Y"= i y/i ix). Omitting any one of the constraints in ( 1 ) leads to
a system whose solution set is a line through v . Each edge of P containing v
spans such a line. Since / is assumed to be nonconstant on each of the edges,
it follows that y t¿ 0 for 7 = 1, ... , n. We denote by e(v) the number of
indices j such that y > 0. This is also the number of edges of P containing
v on which / decreases in the direction leaving v . The forward cone at v is
the set F(v) of solutions x to the following system of inequalities:

r¡ (x)<0   if v. >0,

Tj (x)>0   ify;<0.

The closure of this set is a simplicial cone with apex v, and on this cone /
achieves its minimum value at v .

For a set K ÇR" , C(K) denotes the characteristic function of K, so that
for x e R"

( 1   ifxeK,
C(K)(x) = \ -...„'10   if x <£ K.

If G is a face of the convex polyhedron P, we denote by y(G, P) the cone
generated by P at G: y(G, P) = {g + a(y-x): x, g e G, y e P, and a > 0}.

Lemma. For P ç Rn a simple, n-dimensional polyhedron, v a vertex of P,
and f(x) = c'x + d a function which is nonconstant on each edge of P, as
above, we have

(-lfv)C(F(v)) = ̂ (-lfm{G)C(y(G,P)),
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where the summation extends over all faces G of P such that f attains its
maximum value on G at v .
Proof. Let P be given (as above) as the set of solutions to the inequalities
•"¡ix) > 0 (i = 1,... , m), and suppose that ix, ... , in are the indices of the
constraints which are binding at v . The 2" subsets of [n] = {1,2,...,«}
are in bijective correspondence with the faces of P containing v by the rule
S -» G(S) = Pn{x e R" : rt(x) = 0 for j e S} , for SC[n]. The function G is
order-reversing: If 5 C T,'then G(T) ç G(S). We have dim(G(5)) = n- \S\.
Also, for S ç [n], y(G(S), P) = {x e Rn: r¡(x) > 0 for j e S}, so that
x 6 y(G(S), P) if and only if SCTX, where Tx = {j e [«]: r¡(x) > 0} .

Suppose we have, as above, f(x) = f(v) - £"=1 yjjix). Let W = {j e
[«]: y : < 0} . Then / assumes its maximum value on G(W) at v , and W is
the (unique) smallest such set. For S ç [n], / assumes its maximum value on
G(S) at v if and only if S D W.

For x e R" , the value of the right-hand side of the equation in the lemma is

¿2(-lfMG(S))C(y(G(S),P))(x)
SC[n]
SDÏV

n-\W\•HSI (-1)""""    if TX = W,= T (-i)
Wç~^CT { 0 otherwise.

Clearly, this is (-l)e(v)C(F(v))(x).   o

In the proof of the theorem below we use a version of Gram's relation. (See
Shephard [25]. The following is a strengthened version which can be proven
using methods of [25]. Gram's relation is also known as the Brianchon-Gram
Theorem. See McMullen [18].)
Gram's relation. Let P be a convex polyhedron having at least one vertex. Then

Y^      (-ifm{G)C(y(G, P)) = C(P).
G, a bounded

face ofP

Theorem. Suppose P and f are as in the statement of the lemma. Additionally,
assume that f attains its minimum value on P. Then

C(P)=     Yl    i-^)e{V)C(F(v)).
v , a vertex

ofP
Proof. We have

£    (-lfv)C(F(v))=     £ £ (-l)dim(G)C(y(C7,JP))
ti, a vertex v , a vertex        G, a face of P

of P of P on which / attains
its maximum value at v

,dim(G) .=      E     i-lfm{(j)C(y(G,P)) = C(P).
G, a bounded

face of P
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POLYTOPE VOLUME COMPUTATION 263

The first of these equalities follows from the lemma; the second from the fact
that a face G on which / is bounded above and below must be bounded, since
/ is not constant on any edge of G ; and the third from the above version of
Gram's relation.   D

This theorem is useful, as we shall see, not only in volume computation
but also in the computation of any valuation which can easily be evaluated on
simplexes. We recall some fundamental facts concerning valuations, beginning
with the definition (see also [14]).

Let y be a family of sets in Rn which is closed under finite intersections
and unions, and suppose 4> e y. A valuation on y is a function V : y —> R
such that (i) V (</>) = 0 and (ii) for each pair of sets A, B e y, the identity
V(A) + V(B) = V(A r\B) + V(A U B) holds.

Any valuation F on y induces a homomorphism V : y (y ) -* R, where
y (y ) is the additive group generated by the characteristic functions C(F) of
elements Fof7, satisfying V(F) = V(C(F)) for each F e^.

Here we are interested in examples in which y is a collection of sets which
are finite unions of polyhedra. For such a collection, given a function k which
is integrable on each element of y, we can define a valuation by integration:
V(F) = ¡Fkdp . (In this case, the induced homomorphism V : S"(^) -* R is
given by V(g) = /R» gkdp .) For y the collection of finite unions of convex
polytopes, taking k = 1, we get V(F) = vol(F), the ordinary volume of F.

We can now state the following corollary to the theorem.

Corollary. If V is any valuation defined on a family y which includes the
polyhedron P of the theorem and all of the forward cones F(v) for vertices v
of P, then

V(P)=     ¿2    (-l)e{v]V(F(v)).
v , a vertex

ofP

Proof. If V : y (y ) —<• R is the induced homomorphism, then we have

V(P) = V(C(P))=v\     Y    i-lfV)CiF(v))
I », a vertex
V     off /

=     ¿2    i~lfV)V(C(F(v)))=    Y,    i-lfV)ViF(v)).   □
v , a vertex v , a vertex

of P ofP

Of course, the volume function fails to satisfy the hypothesis of this corollary
because it is not defined on the (unbounded) forward cones. We may still use
the corollary to evaluate vol(.P), if P is a polytope, as follows. Let t be a real
number large enough so that the halfspace Hl = {x e R" : f(x) < t) contains
P. Let the valuation V be defined by V(F) = vol(F n Ht) for any set F
which is the finite union of convex polyhedra whose intersections with Ht are
bounded. Now the corollary applies. The left-hand side of the equation is the
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264 JIM LAWRENCE

volume of P. On the right-hand side is a sum involving volumes of sets of the
form F(v)f~)Ht, which are Simplexes.

As an example, consider the case in which P is the unit «-cube,

P = C" = {[xx, ... , xj € R" : 0 < Xj < 1 for 1 < i < «}.

Let f(x) = yxxx H-h ynxn , where the y ¡'s are positive. Let v = [ex--- en]',
where e¡ = 0 or 1 for each /', so that v is one of the 2" vertices of Cn . The
forward cone F(v) is the solution set of the system

Xj > 0   if e(. = 0,
Xj > 1   if ej. = 1,

and F(v)C\Ht is the set which also satisfies the additional inequality J2"=i Y fa <
t. The volume of this set is easily seen to be

1 (t-f(v))n    .r
riYiY2---Y«
0 if í </(«).

By the corollary, the volume of Cn n Ht is

1 Vr   ,Miit-fjv))+)n
»«r h'~Jn        '

where, if y eR, y+ = max{0, y} , and \v\ = J3"=i e, • This formula has already
been observed in [4]. Dyer and Frieze [7] show that computing vöi(Cn(~\H) is
#P-hard.

As another example we compute the volumes of certain projective images of
the unit «-cube.

For u e Rn let Tu denote the projective transformation Tu(x) =
x/(l + uTx). For u, v e R" one has Tu(Tv(x)) = Tu+V(x), and in partic-
ular, T_u is the inverse of Tu .

Let R" = {[xx, ... , xj e R": x¡ > 0 (i = 1,...,«)}, the nonnegative
orthant. If u > 0, then Tu is defined on l" . If x e R" and y = Tu(x), then
0 < x = T_u(y) =y/(l- u'y). Clearly,

Tu(R"+) = {yeR"+:uty<l}.

This set coincides, up to the boundary, with the simplex

conv{0,t;(1),... , v{n)},    where t/° = [0, ... , 1/«,,... ,0],

the nonzero entry being in the zth coordinate.
We wish to apply the corollary with the valuation V(P) = vol TU(P), which is

defined on polyhedra P ç R" , to compute V(C"). To this end, we determine
V(F(v)) for vertices v = [ex---ej' of Cn. We have

Tu(F(v)) = {y£R":T_u(y)eF(v)}
T T= {y '• y i> 0 if fij: = 0, y¿ + u y > 1 if e¡ = 1,  and u y < 1}.
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POLYTOPE VOLUME COMPUTATION 265

This set coincides, up to its boundary, with the simplex
ri- i   \       (1)       (2) («)icom{Tu(v),v' >,vK ',..., v"},

where the i/(i)'s are as before, and of course

w = 1 + wrt; 1 + uTv.
Upon observing that the determinant of the matrix

l/ux

V«, 1
.e,/(l + w't;)   •••    ew/(l + Mrw)   1

is l/(Mt ■ • ■ un(l + uTv)), we deduce that

1
V(F(v))=vo\Tu(F(v)) = —

n\ux---un(l + u v)

By the corollary we have

v(c") = —_l-_V (~1),J

3. Description of the method
Let the polytope P whose volume we are to compute be given as

P = {xeR":x>0, Ax<b},

where A is an mx n matrix and b is a column vector in Rm having nonneg-
ative entries. We assume that P is a simple polytope and that each vertex v
of P satisfies with equality exactly « of the m + n inequalities defining P. In
particular, considering that the origin in R" is a vertex of P, the entries of b
are positive. (This assumption can be discarded by making use of standard lex-
icographic techniques for handling primal degeneracy in linear programming.
See [10].) Additionally, we assume the availability of a function f(x) = c'x + d
which is constant on no edge of P.

For i = 1,...,«, let r¡(x) be the residual associated with the zth non-
negativity constraint; r¡(x) is the value of the zth coordinate of x. For
i = n+1,..., m + n, let r¡(x) be the residual associated with the inequality
involving the (i - n)th row of A .

We can combine the above data to formulate a linear programming problem:

(2)

maximize c x + d subject to the constraints
Ax < b,

x>0.
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266 JIM LAWRENCE

The polytope P is the feasible region for (2). Our assumption that each ver-
tex of P satisfies exactly « of the defining inequalities with equality is the
assumption of primal nondegeneracy for (2). If we consider simplex tableaux
to be equivalent if they differ only by row permutation, then primal nondegen-
eracy implies a bijective correspondence between the set of (equivalence classes
of) simplex tableaux and the vertex set of P.

The vertex enumerating algorithms of [2, 20, 21] use simplex pivoting meth-
ods to obtain all of the basic feasible tableaux for (2). See also [6, 22] for
surveys of vertex-finding algorithms. Our method uses such an algorithm.

For each tableau, the numbers e(v) and vo\(F(v) n Ht) are determined,
where v is the vertex of P corresponding to the tableau. The summation in
the corollary is computed using this information.

We describe how to glean the needed information from the simplex tableaux.
After introducing slack variables for (2), we have

maximize

(3)

x + d subject to the constraints

[A\I]x = b,
x>0,

where now x e . The initial tableau is

T =
0

corresponding to the origin in R", a vertex of P . The basic sequence for T is
(«+1,« + 2,...,« + «î). The basic sequence for a tableau is the sequence of
indices of basic columns in the order they would appear in the identity matrix.

Suppose v is a vertex of P. Suppose rk (v) > 0 for j = 1, ... , m, and
k,  < < km, so that k. km  are the indices of the residuals of the
nonbinding constraints. Let T be a tableau corresponding to v . The entries in
its basic sequence (ßx, ... , ßm) are the numbers kj  (j = 1, ... , m) in some
order. The tableau T is of the form

T = M
Y\Yl---Yn

where M(i, ß.) =
1    if/= 7,
0   ifiïj.

For us, what is important is that y¡ = 0 if and only if i = ßj for some j, and
f(x) = d - ¿3i=i" Yfiix) • Thus, the bottom row of T gives the coefficients of
the objective function when written in terms of the residuals of the constraints
which are binding at v . The number e(v) is the number of positive y ¡'s. By
definition, the forward cone F(v) is the set of solutions x to

r,(x)<0   if 7, > 0,
r¡(x)>0   ify,<0.
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Given a real number t, let Ht = {x € RM : f(x) < t), as before. We must
compute the volume of the set F(v)r\Ht. This set is given by the inequalities

r¡(x)<0   ify¡>0,
r¡(x)>0   ify¡<0,

v v m+n

£y(.r,.(x)><?-r.
¡=i

This set is nonempty if t > d .
Let i. < L < • • • < in be the indices of the residuals for the constraints

which are binding at v , so that y¡ ^ 0 for 1 < j < n. The volume of the set

of y = [yx,..., yj e Rn satisfying
n

(5) yj>0   for/=1,...,«,       E^>;-'_i*

is ^(t — d)n/\y¡ • • • y¡ \, when t > d. The linear transformation mapping

x 6 R" to y = [-sgn(y;. )r¡ (x), ... , -sgn(y/ )r¡ (x)]1 maps the simplex which
is the closure of the set of solutions to (4) onto the solution set to (5). We
denote by Sv the absolute value of the determinant of this transformation. The
volume of the solution set to (4) is then

0 if/<iz\
1   1   (t-d)n

if t>d.(6) vol(F(v)f)Ht)= <

The number ôv in (6) is easily seen to be the determinant of the basis
matrix—the matrix consisting of the columns of [A : I] having indices ba-
sic in f and occurring in the order dictated by the basic sequence for T. It is
easy to calculate Sv if we have arrived at T from T by a sequence of pivots.
It is the product of the pivot elements.

Finally, upon multiplying both sides of (6) by (-l)e(v), we get

0 if t<d,
(-1)" 1  (t-df(1) (-l)e{v)vol(F(v)nHt)=l

n\    Ôvy  ...y
if t > d.

Summing these numbers for each vertex v yields the volume of the set PC\Ht.
If t exceeds the optimal value of the linear programming problem (2), then the
sum is the volume of P.

Observe that for large t the functions of t that we sum are polynomials, and
the sum is a constant—the volume of P. It follows that the sum is a constant
polynomial. Evaluation at t = 0 yields the volume of P as the sum of the
numbers

(8) Nv = -,¡—^--v     n\Sv y  ■ ■ ■ y

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



268 JIM LAWRENCE

4. AN EXAMPLE AND COMMENTS

Figures 1 and 2 exhibit the feasible tableaux for the problem
maximize       xx + x2
subject to    - xx + x2 < 2,

x2<4,

3xx + 2x2 < 15,
-A-1   j   ""}   —.   *■' J

along with a graph indicating the corresponding vertices. Our computations, as
shown, indicate that the area of the polygon is 38/3 (which, in this example,
can easily be checked by other means).

ii

in

IV

-1 -1 0

0 5/3 1

0 1 0

1 2/3 0

0

1/3

0

1/3

0 -1/3 0 0 1/3

-5/3 1/3

1 0

-2/3 1/3

0  0

0   0

0

3

0

-1

1/3  1/3

-5   1

0

0

1

0  -1

2

0

0

1

0

1

0

Ü

2

4

15

1/3

4

7/3

19/3

1

4

2

6

11

2

2

Area

1.  N = —v  2!

0=3.v v  2!

ô  = 3.  N 1_
2!

N =

(-1) (-1)

(-1/3) (1/3)

(19/3)'
(1/3) (1/3)

i_ I    6
2!  1  (-1) (2)

5=1.

I     »v

N = 1 1
2!  1  (-2) (1)

3 S
3

Figure 1
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The main contributor to the complexity of this method is the possibly high
number of vertices of the polytope P. A polytope of dimension n determined
by m + « linear inequality constraints may have as many as ( m+"-L("+i)/2J ̂ +
im+n-\.(n+2)l2\ )  yenice$ (see [19])

A problem which provides a complication in higher dimensions is that of
round-off error. The method requires summing a lot of numbers, some positive
and some negative. These numbers, compared to the volume of P, can be quite
large in magnitude, so that there can be considerable loss of significance. One
(perhaps costly) way around this is the use of "exact arithmetic." To illustrate
the extent to which this approach can indeed be costly and to provide a negative
solution to the problem of Dyer and Frieze [7] mentioned in the Introduction,
we consider again the example at the end of §2, with

u =
11 J_
2 ' 4 " " " 2"

The projective image Tu(Cn) is the polytope which consists of those y e R."
which satisfy the 2« inequalities

y¡ >0   (for 1 </<«),
1 \ 1 11 + 2 )yi + 4y2 + + Yy"-U
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2

Its volume is

\yl + (i + \)y2 + --- + Yyníl>

(-1)1"1      2{"2+3n)/2 2"+1_1 (-í)'^'"1

Z-* 1   _1_ .Ai «I ¿—t»!«i" ■««      ti      l + "'u "!       ^        ^
vertex of C"

where »/(TV) is the number of l's in the binary expansion of N. Suppose this
number, written as a reduced fraction, is a/b. Note that each prime N such
that 2n < N < 2"+x divides b , so a very crude lower bound on b is 2k , where
k is the number of such primes N. It follows by the prime number theorem
[12, p. 9] that k is not bounded by a polynomial in «. We see that the number
of digits in the binary expansion of b is not bounded by a polynomial in n .

In the presence of primal degeneracy there is no longer a bijective correspon-
dence between the set of vertices of P and the set of equivalence classes of
feasible tableaux. In this case it is nevertheless possible to find the desired vol-
ume by performing the summation, but now over the set of tableaux for which
a lexicographic positivity condition holds.

The requirement that the objective function / be nonconstant on the edges
of P also provides a complication. This requirement is fulfilled by f(x) = c'x,
where c = [1, M, ... , Mn~x]', for M a sufficiently large number. If A and
b have rational entries, then one can show (using the methods of [24, §11.3])
that M can be chosen to be of size polynomial in the size of (A, b).
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