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Abstract

Intra-domain virtual network embedding is a well-studied problem in the network virtualization literature. For most

practical purposes, however, virtual networks (VNs) must be provisioned across heterogeneous administrative

domains managed by multiple infrastructure providers (InPs).

In this paper, we present PolyViNE, a policy-based inter-domain VN embedding framework that embeds end-to-end

VNs in a decentralized manner. PolyViNE introduces a distributed protocol that coordinates the VN embedding

process across participating InPs and ensures competitive prices for service providers (SPs), i.e., VN owners, while

providing monetary incentives for InPs to participate in the process even under heavy competition. We also present a

location-aware VN request forwarding mechanism – basd on a hierarchical addressing scheme (COST) and a location

awareness protocol (LAP) – to allow faster embedding. We outline scalability and performance characteristics of

PolyViNE through quantitative and qualitative evaluations.

1 Introduction
Network virtualization has gained significant attention in

recent years as a means to support multiple coexisting

virtual networks (VNs) on top of shared physical infras-

tructures [1-4]. The first step toward enabling network vir-

tualization is to instantiate such VNs by embeddinga VN

requests onto substrate networks. But the VN embedding

problem, with constraints on virtual nodes and virtual

links, is known to be NP-hard [5,6]. Several heuristics

[5-9] have been proposed to address this problem in the

single infrastructure provider (InP) scenario. However, in

realistic settings, VNs must be provisioned across het-

erogeneous administrative domains belonging to multiple

InPs to deploy and deliver services end to end.

One of the biggest challenges in end-to-end VN embed-

ding is to organize the InPs under a framework without

putting restrictions on their local autonomy. Each InP

should be able to embed parts or the whole of a VN

request according to its internal administrative policies

while maintaining global connectivity through mutual

agreements with other InPs.
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Moreover, InPs (i.e., network operators) are notoriously

known for their secrecy of traffic matrices and topology

information. As a result, existing embedding algorithms

that assume complete knowledge of the substrate network

are not applicable in this scenario. Each InP will have to

embed a particular segment of the VN request without

any knowledge of how the rest of the VN request has

already been mapped or will be mapped.

Finally, there will be constant tussles between service

providers (SPs) and InPs on multiple levels:

• Each InP will be interested in getting as much of the

deployment as possible put on its equipment, and

then optimizing allocation under given constraints.

In addition, InPs will be more interested in getting

requests for their high-margin equipment while

offloading unprofitable work onto their competitors.
• SPs are also interested in getting their requirements

satisfied while minimizing their expenditure. Tussles

might arise between SPs and InPs when each party

selfishly try to optimize their utility functions.

Any inter-domain VN embedding mechanism must

enforce proper incentives and mechanisms to address

these tussles.

In this paper, we introduce PolyViNE, a policy-based

end-to-end VN embedding framework that embeds VNs
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across multiple InPs in a globally distributed manner

while allowing each concerned InP to enforce its local

policies. PolyViNE introduces a distributed protocol that

coordinates the participating InPs and ensures competi-

tive pricing through repetitive bidding at every step of the

embedding process.

We do not claim PolyViNE to be the best or the only

way of performing end-to-end VN embedding. However,

to the best of our knowledge, this is the first foray into this

unexplored domain in the context of network virtualiza-

tion, and we believe this problem to be absolutely critical

in realizing network virtualization for most practical pur-

poses.

The rest of the paper is organized as follows. Section 2

formally defines the inter-domain VN embedding prob-

lem. In Section 3 we describe the design choices and

the distributed embedding protocol used by PolyViNE,

followed by a discussion of its enabling technologies in

Section 5. Section 6 and Section 7 respectively provide

preliminary quantitative and qualitative evaluations of

PolyViNE. We discuss related work in Section 8. Finally,

Section 9 concludes the paper with a discussion on possi-

ble future work.

2 Problem formulation
The intra-domain VN embedding problem is well-defined

in the literature [5-9]. In this section, we formally define

the inter-domain VN embedding problem. For simplic-

ity, we avoid intra-domain aspects (e.g., node and link

attributes) wherever we see fit. We use the notation

introduced here to discuss the details of the PolyViNE

protocol in section 3.

2.1 Substrate networks and the underlay

We consider the underlay to be comprised of D substrate

networks (Figure 1a), and we model each substrate net-

work controlled by the i-th InP (1 ≤ i ≤ D) as a weighted

undirected graph denoted by GS
i =

(

NS
i , L

S
i

)

, where NS
i

is the set of substrate nodes and LSi is the set of intra-

domain substrate links. Each substrate link lS
(

nS,mS
)

∈

LSi between two substrate nodes nS and mS is associated

with the bandwidth capacity weight value b
(

lS
)

denoting

the total amount of bandwidth. Each substrate network

has a (centralized or distributed) logical Controller [10]

that performs administrative/control functionalities for

that InP. AS
i (⊂ NS

i ) denotes the set of border nodes [10]

in the i-th InP that connect it to other InPs through inter-

domain links based on Service Level Agreements (SLAs)

to form the underlay. AS
i,j ⊂ AS

i denotes the set of border

nodes in InPi that lead to lnPj. Each InP also has a set of

policies PS
i that is used to take and enforce administrative

decisions.

We denote the underlay (shown in Figure 1b) as a graph

GU =
(

NU , LU
)

, where NU
(

=
∑

i A
S
i

)

is the set contain-

ing border nodes across all InPs (1 ≤ i ≤ D) and LU is the

set of physical inter-domain links connecting the border

nodes between two InPs.

However, the underlay does not have the full connectiv-

ity, which is achieved through simple topology abstraction
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Figure 1 Overview of inter-domain VN embedding: (a) substrate networks (GS

i
=

(

N
S

i
,LS

i

)

) from four InPs connected using inter-domain

links; (b) the underlay (GU =
(

N
U ,LU

)

) consisting of border nodes and inter-domain links; (c) the underlay multigraph

(GW =
(

N
W ,LW

)

) after topology abstraction; (d) controller network (GC =
(

N
C ,LC

)

) obtained through simplification; (e) a single VN

request (GV =
(

N
V ,EV

)

) with CPU constraints in boxes and bandwidth constraints over links; (f) the same VN request (GV ) with location

constraints on the virtual nodes shown in vertical boxes covering possible host physical nodes for them; (g) the embedded VN request

with virtual nodes mapped into three different InPs; (h) the meta-VN request (GV

M
=

(

N
V

M
,LV

M

)

); (i) an InP-level view of the embedding

(note that, InP #2 has not embedded any virtual node but still it is in the embedding by being in an inter-domain virtual link).
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method [11]. All border nodes belonging to a single InP

are collapsed to one single node corresponding to that

InP (Figure 1c) in this representation resulting in a multi-

graph GW =
(

NW , LW
)

, where NW essentially is the set

of InPs in the underlay and LW (= LU) is a multiset of

inter-domain links that connect the InPs. GC =
(

NC , LC
)

is a simple graph (Figure 1d) referring to the controller

network [10], where NC(= NW ) represents the set of

Controllers in InPs and LC is the set of links between

Controllers obtained from the multiset LW .

2.2 VN request

Similar to substrate networks, we model VN requests as

weighted undirected graphs and denote a VN request

by GV =
(

NV ,EV
)

. We express the requirements on

virtual nodes and virtual links in standard terms [6,8].

Figure 1e depicts a VN request with virtual node and link

requirements.

Each VN request has an associated non-negative value

RV expressing how far a virtual node nV ∈ NV can be

placed from the location specified by loc
(

nV
)

[8], which

can be interpreted as the preferred geolocation of that vir-

tual node. Figure 1f shows the substrate nodes within the

preferred geolocation for each virtual node using dashed

vertical boxes.

2.3 VN assignment

From PolyViNE’s point of view, an end-to-end VN assign-

ment is performed on the controller network, GC .

The VN request GV =
(

NV , LV
)

is partitioned into K

subgraphs GV
k =

(

NV
k , LVk

)

such that NV = ∪kN
V
k and

LV =
(

∪kL
V
k

)
⋃

LVM, where LVM is the set of virtual links

that will cross domain boundaries. In this version of the

PolyViNE protocol, we also consider subsets of LVM, LV
M

aj
ai

where LVM = ∪0≤i≤k−1 ∪i<j L
V

M
aj
ai

. We define LV
M

aj
ai

to be the

set of all virtual links with a single incident virtual node

mapped in InPaj and another node mapped in InPal , 0 ≤

l ≤ j and an inter-domain pathmapping that crosses InPai .

Thus, LV
M

aj = ∪i≤jL
V

M
aj
ai

is simply the set of all virtual links

crossing inter-domain boundaries with one end mapped

InPaj .

In Figure 1g, K = 3: GV
1 = ({A} , {}), GV

2 = ({B} , {}),

GV
3 = ({C,D} , {CD}), and LVM = {AB,AC,BC,BD}. Each

subgraph GV
k can be collapsed into a single node to form

the meta-VN request GV
M =

(

NV
M, LVM

)

using a trans-

formation function F : GV
k → NV

M (Figure 1h) for

simplicity.

Now we can formally express inter-domain VN embed-

ding as two mappings, MN : NV
M → NC that embeds

each subgraph to different InP and ML : LVM → LC that

embeds inter-domain links in the InP controller network.

Figure 1(i) shows a possible InP-level embedding for the

VN request shown in Figure 1(e). Note that, InP#2 has not

embedded any virtual node but is still in the embedding

by being in an inter-domain virtual link.

3 PolyViNE overview
In this section, we discuss PolyViNE design decisions,

explain its workflow, and describe the distributed protocol

that coordinates the PolyViNE embedding process.

3.1 Design choices

We have made the following design choices for PolyViNE

aiming toward decentralization of the embedding process,

promotion of policy-based decision making, and support

for local agility within a flexible global framework.

3.1.1 Decentralized embedding

PolyViNE argues for using a distributed (decentralized)

VN embedding solution over a centralized broker-based

one. In a centralized solution, the broker will have to know

the internal details andmutual agreements between all the

InPs to make an informed embedding. However, InPs are

traditionally inclined to share as little information as pos-

sible with any party. A distributed solution will allow for

embedding based only on mutual agreements. Moreover,

in a distributed market there will be no single-point-of-

failure or no opportunity for a monopolistic authority

(e.g., the broker).

3.1.2 Local autonomywith global competition

PolyViNE allows each InP to use its own policies and algo-

rithms to take decisions without any external restrictions.

However, it also creates a high level of competition among

all the InPs by introducing competitive bidding at every

level of distributed VN embedding. Even though each InP

is free to make self-serving decisions, they have to pro-

vide competitive prices to take part and gain revenue in

PolyViNE. To keep track of the behavior of InPs over

time, a reputation management mechanism can also be

introduced [12,13].

3.1.3 Location-assisted embedding

PolyViNE decision making and embedding process is

deeply rooted into the location constraints that come with

each VN request. After an InP embeds a part of a VN

request, instead of blindly disseminating the rest of the

request, it uses geographic constraints as beacons to route

the request to other possible providers. PolyViNE aggre-

gates and disseminates location information about how

to reach a particular geographical region in the controller

network and which InPs might be able to provide virtual

resources in that region.

3.2 Workflow summary

PolyViNE is an enabling framework for multi-step

distributed embedding of VN requests across InP
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boundaries. In its simplest form, an SP forwards its VN

request to multiple known/trusted InPs; once they reply

back with embeddings and corresponding prices, the SP

chooses the VN embedding with the lowest price similar

to a bidding process.

However, a complete end-to-end VN request may not be

mappable by any individual InP. Instead, an InP can embed

a part of the request and outsource the rest to other InPs in

a similar bidding process giving rise to a recursive multi-

step biddingmechanism. Not only does such amechanism

keep a VN embedding simple for an SP (since the SP

does not need to contact all of the eventual InPs), but it

also ensures competitive prices due to bidding at every

step.

3.3 Restricting the search space

Through the PolyViNE protocol, when an InP receives a

request to map a virtual network, it selects a connected

subgraph of the VN to embed, and passes the remain-

ing portion of the VN graph to other InPs. The process is

started at the SP where it spawns off kSP instances of the

VN request. At each subsequent stage, InPai spawns off

kInPai copies of the remaining portion of the VN request

to an appropriate set of InPs determined by LAP.

The search space for all possible virtual network par-

titionings across the controller network is vast: O(Dn)

where D is the number of InPs in the controller network

and n is the number of nodes in the virtual network.

Thus, it is infeasible to attempt all possible partitionings

of a virtual network across all InPs. PolyViNE, instead,

takes a best effort approach to mapping virtual networks

onto substrate networks by exploring a constant subset of

partitionings.

The PolyViNE protocol attempts to navigate InPs for

solutions in a breadth-first-like manner, while fixing max-

imum depth, d, and varying branching factor based on the

pricing model discussed in 3.4, giving an upper bound of

O(kSP(kInPmax)d) visited InPs where kInPmax is defined to

be the maximum branching factor at participating InPs.

As discussed below, the budget for processing is fixed, and

effectively, so is kInPmax .

3.4 Pricing model

The PolyViNE protocol operates under the assumption

that every entity in the controller network is behaving in

its own best interest, attempting to maximize its profit.

Each entity provides a service (embedding reservation)

to its predecessor in the recursive process and requests

a service from its successors. It then selects the service

that provides the best price and rejects the other services.

However, when an InP reserves resources for a partial

embedding for its predecessor, it incurs an opportunity

cost: those reserved resources could have been used to

service another VN request. For simplicity, we assume

the opportunity cost is some constant per InP per VN

request. Thus, an InP charges its predecessor a processing

fee. This has the effect of producing a trade-off between

exploration of the space of possible embedding solutions,

and price. The more InPs visited and solutions explored,

the more processing fees incurred. Thus, a high branching

factor (kInP) at an InP can be extremely expensive while a

lower branching factor reduces the search space (poten-

tially increasing prices), and increases the chance of failure

(not finding a feasible solution to the VN constraints in

the search horizon).

In this model, the SP sets an upper bound on the pro-

cessing fees as a ratio relative to the embedding budget

(e.g. 1 : 2 processing fee to embedding fees). For example,

an InP may wish to embed a virtual network for a maxi-

mum of $5000 and pay no more than an additional $2500

for processing. The processing fee cap implicitly limits the

search space. We leave it up to the discretion of the InP

to choose how to distribute the processing fee allocation

to successors, and how many successors to relay the VN

request to (kInP). kInP may, for example, be expressed as a

function of the processing fee allocation such that as the

allocation grows so does the branching factor.

This model disincentivizes entities (SPs and InPs) from

flooding the controller network to search for a cheaper

solution. As each InP takes a processing fee, we eventually

run out of money in the processing fee allocation, effec-

tively reducing search depth. On the other hand, given a

fixed fee allocation, a smaller branching factor increases

search depth.

This model also provides InPs an additional incentive to

participate in finding an embedding for a given virtual net-

work as it will receive compensation for its work. When

an entity sends an EMBED message to another entity, it

enters a contractual agreement to pay a processing fee up

to an upper bound it specifies.

3.5 A running example

To illustrate the details of the PolyViNE protocol, we

introduce a simple running example in Figure 2. In this

example, an SP issues a VN request (Figure 2a) to InP #1.

InP #1 proceeds to map virtual node A, and B and virtual

link d in Figure 2 (b)(c). It then forwards the remaining

portion of the VN request to InP #2. InP # 2 is unable

to map nodes from the VN request, and so it serves as a

relay InP thatmay allocate bandwidth resources for virtual

links that span multiple domains as need be (links a and

c in this example). In turn, InP #2 forwards the remaining

portion of the VN request to both InP #3 (Figure 2b) and

InP # 4 (Figure 2c). In the recursive process, a sequence of

InPs that terminates in failure or ultimately finds a feasi-

ble solution that spans that sequence is called a flow (see

section 4.5). In the example in Figure 2, the solution of the
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Figure 2 Twomappings and associated prices (b)(c) of a virtual network (a). In the top mapping (b), VN (a) is mapped across InP#1, InP#2, and

InP#3, while in the bottommapping (c), the VN is mapped across InP #1, InP #2, and InP #4.

flows in Figures 2 (a) and (b) produce mappings costing

$500, and $600, respectively.

3.6 PolyViNE embedding protocol

In order to exchange information between the SP and the

InPs, and to organize the distributed embedding process,

a communication protocol must be established. We refer

to this protocol as the PolyViNE Protocol, which is based

on eleven types of messages. These messages are sent and

received asynchronously between concerned InPs and the

SP to carry out the embedding process from beginning to

end. The protocol messages are described in the following:

• EMBED (Req id, G,M, state table, budget
remaining, processing allocation remaining, InPSet) :
This message is sent from the SP to InPs to initiate

the embedding process of the VN request G with an

empty InPSet. Upon receipt of this message, an InPai
will decide whether to process the request, or report

failure based on its policies PS
ai
as well as

processing allocation remaining. If InPai determines

that it requires more money to process the message

than is allocated by the SP, then it will report failure.

If an InP processes the request but later determines

that the allocation would go over budget remaining,

it will cancel the reservation, and report failure.

An InP also uses this message to outsource the

unmapped part of the request after appending itself

to InPSet, and updating G and the partial embedding

M as necessary. Req id and state table together

uniquely identify a particular instance of the VN

request (see section 4.5).
• EMBED SUCCESS

(pred state id,M,Price(M), succ id, InPSet): Once

an embedding is successfully completed, an InP

replies back to its predecessor with a price andM.

pred state id is a unique identifier used to call up the

relevant state stored at the predecessor entity (SP or

InP). The succ id is a unique identifier indicating

which InP sent the message.
• EMBED FAILURE (pred state id, succ id,

error desc): In case of a failure, an InP replies back

with a description outlining the reason of failure

using error desc.
• EMBED REJECT (pred state id, pred id,

succ state id ): An InP may reject a mapping provided

by one of its successors if its mapping does not meet

the predecessor InP’s policy, PS(MS) == FAIL or a

better mapping has been discovered and chosen or

the predecessor InP has itself received an

EMBED REJECT message and so it must also

recursively reject successors.

• EMBED REJECT ACK (pred state id, succ id ):
When an InP is instructed to reject an embedding, it

first recursively rejects any partial embeddings by

successors, any inter-domain paths leading to it from

predecessors, and finally deallocates all resources

allocated locally for the given embedding request

instance. Once all that has completed, it reports an

acknowledgement to the predecessor that issued the

EMBED REJECT message.

• LINK

(

pred state id, succ id, succ state id, LV
M

aj
ai

)

:

Once an InP, InPaj finishes mapping a subgraph GV
aj
,

it sends a LINK message to each of its predecessors

InPai , 0 ≤ i ≤ j to map LV
M

aj
ai

if LV
M

aj
ai

�= ∅ , the set of

virtual links that map to inter-domain paths that pass

through InPai and end in InPaj .

• LINK SUCCESS (pred id, pred state id,
succ state id ): Once InPai successfully maps LV

M
aj
ai

, it

reports back the price of the link mapping to InPaj ,

along with pred state id, a unique identifier used to
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call up the latest allocations made at InPai for the

given VN request instance.
• LINK FAILURE (pred id, succ state id ): If InPai

fails to map LV
M

aj
ai

due to insufficient resources or

policy violations, it reports back LINK FAILURE to

InPaj .
• LINK REJECT (pred state id, succ id ): If any InPai

fails to map LV
M

aj
ai

or if InPaj ’s partial embeddingM is

rejected by an EMBED REJECT message, then InPaj
issues LINK REJECT to all InPai requesting they

release their reservations for LV
M

aj
ai

.

• LINK REJECT ACK (pred id, succ state id ): Once

InPai releases L
V

M
aj
ai

, it replies to InPai with an

acknowledgement for rejecting a successful partial

link embedding.
• EMBED ACCEPT (succ state id ): Once an SP

decides on an embedding after receiving one or more

EMBED SUCCESS messages, it will acknowledge the

embedding by directly contacting the InPs involved

using this message.

3.7 SPWorkflow

Since there is no centralized broker in PolyViNE, each

SP must know at least one InP to send the VN request

it wants to instantiate. However, sending the request to

only one InP can encourage monopolistic behavior and

reduce the likelihood of finding a feasible mapping. To

create a competitive environment, we argue that an SP

should send its VN request to kSP(≥ 1) InPs based on

direct contact. Figure 3 depicts an SP sending embed-

ding requests using the EMBED message to kSP = 1

InPs, for the sake of simplicity. As soon as the receiv-

ing InPs have viable embeddings (M) with corresponding

prices (Price (M)) or they fail, the kSP InPs reply back

with EMBED SUCCESS or EMBED FAILURE messages.

Once the SP selects an embedding, it proceeds toward

instantiating its VN by sending EMBED ACCEPT mes-

sages to the InPs involved in the selected embedding and

sends EMBED REJECT messages to the InPs involved in

unwanted embeddings.

4 InPWorkflow
While an SP’s workflow is straightforward with a single

decision at the end, it shifts much more work to the InPs.

An InP has to work through several steps of decision mak-

ing, organizing, and coordinating between heterogeneous

policies to complete the embedding process.

4.1 Local embedding

Upon receiving a VN request, an InPmust decide whether

to reject or to accept the request. It can reject a VN

request outright, in case of possible policy violations or

insufficient processing budget provided by the predeces-

sor, returning an EMBED FAILURE message to its prede-

cessor. Even if there are no discernible policy violations, it

might still need to reject a VN request if it fails to prof-

itably embed any part of that request or if it fails to find an

embedding that meets the budget constraints.

In order to decide which part of a VN request to embed,

if at all, the InP can use existing intra-domain VN embed-

ding algorithms [6,8] that can identify conflicting resource

requirements in a VN request. This can be done itera-

tively by looking into the output of the linear programs

used in both [6,8] withoutmodifying the actual algorithms

presented in those work, and trimming out parts of the

virtual network until a feasible solution is found. However,

we argue that this heuristic may not be sufficient for high

quality or even feasible partial embeddings. In particular,

we must ensure that if an InP maps a virtual link, it also

maps the two nodes incident to it. We also wish to mini-

mize the number of virtual links that map across multiple

domains as inter-domain paths tend to be long and thus

are more costly.

In case of a failure, the InP will send back an

EMBED FAILURE message (optionally with reasons for

the failure). However, sometimes the InP might know of

other InPs that it believes will be able to embed part or

whole of the VN request. In that case, it will relay the VN

request forwarding the EMBED message to that InP after

adding itself to the InPSet. In Figure 3, InP#2 is relaying

the VN request G’ to InP#3.

4.2 Reserving inter-domain paths

PolyViNE expects each InPaj to complete a mapping of

all virtual links in the set LV
M

aj prior to forwarding the

remainder of the VN request to new participants. This

ensures that no additional InPs will be brought in to par-

ticipate in the mapping before current participants are

sure inter-domain paths are feasible between them and

satisfy their respective policies.

At a given stage j of the embedding process, InPaj
receives an EMBED message that contains an ordered set

of InPs participating so far, InPset containing InPai , 0 ≤

i < j. For each virtual link, lmk ∈ LV
M

aj , InPaj must iden-

tify the predecessor InPam ∈ InPset, 0 ≤ m < j mapping

the other node incident to lmk . Once identified, InPaj adds

each lmk to LV
M

aj
ai

∀ m ≤ i ≤ j. Subsequently, for each set

LV
M

aj
ai

�= ∅, InPaj issues LINK messages containing that set

to each InPai instructing it to map the virtual links in LV
M

aj
ai

across its domain.

Once InPai receives the set LV
M

aj
ai

, it must decide how

to proceed with link mapping. For each virtual link lmk ∈
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Figure 3 Sequence diagram showing PolyViNE embedding process in action. This diagram illustrates the messages sequence involved in

mapping Figure 2(b).

LV
M

aj
ai

, InPai considers its index i in InPset relative to InPam

in InPset:

1. i = m: InPai must map a path from the virtual node

incident to lmk in InPam to the border node leading to

InPam+1 .

2. m < i < j: InPai must map a path from a border node

leading to InPai−1 to the border node leading to

InPai+1

3. i = j: InPai must map a path from the border node

leading to InPai−1 to the virtual node incident to l
m
k in

InPai .

If all the virtual links specified by the LINK message

are mapped successfully by the receiving InP (no policies

are violated and physical resources are available to sat-

isfy the paths), then it responds with a LINK SUCCESS to

the sender. Otherwise, the recipient will respond with a

LINK FAILURE message to the sender.

An embedding at a given InP is considered successful

if and only if at least one node is mapped by the InP and

all inter-domain paths are successfully mapped. If one or

more predecessor InPs are unable to map inter-domain

paths, then the resource reservations must be released.

The current InP issues a LINK REJECT message to all

InPs that responded with a LINK SUCCESSmessage. The

InP then waits for acknowledgement that resources have

been freed through a LINK REJECT ACK message. Once

all pending acknowledgements have been received, the

InP releases the resources it allocated locally and issues
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an EMBED FAILURE message to its direct predecessor

(see section 4.9 for more details on roll-back of resource

allocations).

4.3 Message complexity

The design of PolyViNE allows for a fairly straightfor-

ward analysis of message complexity. If we assume that

the implementation of the protocol at each InP does

not involve inter-domain paths through new InPs that

have not seen the given instance of the VN request,

then in the worst case, with n participating InPs, each

will visit all predecessors to map virtual links to inter-

domain paths. The number of participants is bounded

by d. Thus, the message complexity to map a virtual

network is O(min(n, d)2). PolyViNE attempts a total of

O(kSP(kInPmax)d) mappings (recall section 3.3) giving a

total complexity of O(kSP(kInPmax)dmin(n, d)2).

4.4 Revisiting our running example

Figure 3 continues our running example by demonstrat-

ing the message sequence involved in mapping the VN in

Figure 2 (a) corresponding to the flow in Figure 2 (b). A

sequence of 15 messages are exchanged:

1. The service provider issues a VN mapping request to

InP #1.

2. It performs a partial mapping of the VN request onto

its substrate network. The remaining portion of the

VN request is forwarded to InP #2.

3. InP #2 fails to map the VN request, and so it relays
the EMBED message to InP #3. Subsequently, InP #3

successfully maps the remaining portion of the

request, leaving virtual link to inter-domain path

mappings remaining.

4. InP #3 sends a LINK message to InP #1 containing

the virtual link reference set LV
M3

1

= {a, c}.

5. InP #3 sends a LINK message to InP #2 containing

the virtual link reference set LV
M3

2

= {a, c}.

6. InP #3 sends a LINK message to itself containing the

virtual link reference set LV
M3

3

= {a, c}.

7. InP #1 successfully maps paths for the virtual links in

LV
M3

1

= {a, c} from the substrate node resources

reserved for virtual nodes A and B to the B1 border

node. Additionally, it allocates sufficient bandwidth

for LV
M3

1

on the B2B3 inter-domain link (see Figure 2).

It reports back LINK SUCCESS to InP #3 including

the total cost of the mapping of LV
M3

1

.

8. InP #2 successfully maps paths for the virtual links in

LV
M3

2

= {a, c} from the B2 border node to the B3

border node. Additionally, it allocates sufficient

bandwidth for LV
M3

2

on the B3B4 inter-domain link

(see Figure 2). It reports back LINK SUCCESS to

InP #3 including the total cost of the mapping of

LV
M3

2

.

9. InP #3 successfully maps paths for the virtual links in

LV
M3

3

= {a, c} from the B4 border node to the

substrate node resources reserved for virtual nodes C

and D. It reports back LINK SUCCESS to itself

including the total cost of the mapping of LV
M3

1

.

10. InP #3 sees that all participating InPs have reported

back LINK SUCCESS and so the VN mapping is

complete. It accumulates the prices it received from

the LINK SUCCESS messages and adds the cost of

its own local mapping to produce a total that it sends

back to its predecessor InP #2 within an

EMBED SUCCESS message.

11. InP #2 receives InP #3’s EMBED SUCCESS message.

It compares the price it receives from InP #3 ($300)

with that of InP #4 ($400), rejects InP #4’s solution,

and selects InP #3’s solution (see Figure 4). It adds its

own local embedding price ($0 in this case, as it did

not map any nodes, and the link allocations in InP #2

were accounted for by InP #3’s offer) to produce a

total that it sends back to InP #1 within an

EMBED SUCCESS message.

12. InP #1 receives InP #2’s EMBED SUCCESS message.

In our example kInP1 = 1, and so InP #1 immediately

adds the cost of its local mapping ($200) to the price

of InP #2’s solution ($300). It reports the total price

of the mapping ($500) back to the SP.

13. After the solution in Figure 2(c) is rejected, the SP

accepts InP #1’s mapping, allowing the InP to

instantiate and setup virtual machines on substrate

nodes.

14. The SP accepts InP #2’s mapping, allowing the InP to

instantiate and setup virtual machines on substrate

nodes.

15. The SP accepts InP #3’s mapping, allowing the InP to

instantiate and setup virtual machines on substrate

nodes.

Figure 4 Propagation of multiple instances of the same VN

request in the controller network throughout the embedding

process. Each InP performs a partial embedding of a request instance

and outsources the rest to another InP. The dashed lines demonstrate

the back-propagation of accumulated prices toward the SP.
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The message sequence corresponding to the solution

in Figure 2 (c) would be very similar to the sequence

in Figure 3 save for the final few message exchanges.

The solution at InP #4 costs more than that at InP #3,

and so it will be rejected. In particular, at step 11, InP

#4 would receive an EMBED REJECT message from InP

#2, and would subsequently issue LINK REJECT mes-

sages to each of the participating InPs. InP #4 would wait

for LINK REJECT ACK from the participating InPs, and

then will report EMBED REJECT ACK to its predecessor,

InP #2 (see section 4.9 for more details on roll-back of

resource allocations).

4.5 Message flows

When an InP receives an EMBED message with virtual

network G and finds a mapping M of some subgraph

of G, the InP reserves those resources for that particular

VN request. The resources are reserved until either the

PolyViNE protocol determines that there are no succes-

sors that can satisfy the remaining portion of the request

or a predecessor has rejected the mapping provided by the

current InP. Subsequently, when an InP receives a LINK

message, it must call up the previous resource allocation

associated with the current instance of the virtual net-

work mapping request and bundle any link allocations it

performs with the previous resource allocations.

Continuing our running example: In Figure 5, InP #3,

and InP #4 both map subgraphs of the VN request issued

by the SP. They, then, both independently send LINK mes-

sages to InP #1 to map inter-domain paths from their

respective subgraphs to the subgraph mapped by InP #1.

We define a flow to be an ordered set of InPs vis-

ited to map a given virtual network VNij with a unique

identifier i, requested by some service provider, SPj . It

is evident that the flow f
VNij

1 = {InP#1, InP#2, InP#3}

and f
VNij

2 = {InP1, InP#2, InP#4} corresponding to our

running example in Figure 2 (b) and (c) respectively are

mutually exclusive, as they are two different instances of

the same VN request and, ultimately, at most one instance

will be accepted by the SP. Thus, while the two instances

share the same node embedding state produced by the

initial EMBED1 message, their subsequent link alloca-

tion state produced by the LINK messages are different

and independent. Thus, any implementation of PolyViNE

must be able to identify flows in order to be able to store

and call up the appropriate state specific to that flow. We

propose a solution to identify flows and their associated

state at an InP. At any point in the embedding process, an

InP only sees a prefix of a final InP set. After processing

an EMBED message, an InP will spawn off kInP mutually

exclusive instances of the VN request to map its remain-

ing portion. At this point, the kInP flows diverge but they

share a common prefix: the state formed in response to

the EMBEDmessage.

We propose bundling the allocations performed in

response to EMBED and LINK messages in transactional

state objects which we will call EmbeddingState objects

from this point forward. Allocating an EmbeddingState

object also reserves an associated unique state identifier,

called an EmbeddingId, which is used to call up state.

EmbeddingIds at each InP in the flow so far are bundled in

EMBED messages in a state table. The state table is sim-

ply a mapping from a unique InP identifier (such as an IP

address), to an EmbeddingId for the latest EmbeddingState

object for the flow at the given InP.

When a given InP, InPaj sends a LINK message to a

predecessor InPai , it includes the EmbeddingId associated

with the flow at InPai that it received through EMBED

message’s state table. InPai creates a new EmbeddingState

object, as a child of the previous EmbeddingState for that

flow, along with a new EmbeddingId.When the link alloca-

tion successfully completes, InPai reports LINK SUCCESS

back to InPaj along with the new EmbeddingId. As the

PolyViNE embedding process progresses, InPs participat-

ing in the process begin to form chains of EmbeddingState

objects associated with the flow. Flows that share a com-

mon prefix may share a prefix of an EmbeddingState

chain, but diverge at some point, thus forming an Embed-

dingState tree. Flows that do not share a prefix form

disconnected state at any given InP. Thus, for a given InP

and a given VN request, PolyViNE state consists of a forest

of state trees.

Figure 5 EmbeddingState trees generated by two flows at InP #1, InP #2, InP #3, and InP #4.
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In our running example, in Figure 5, the two flows f
VNij

1 ,

and f
VNij

2 generate four state trees at the four participating

InPs. For the sake of brevity, we carefully examine how just

InP #1’s state tree was formed:

1. When InP #1 maps a part of the VN request VNij, it

allocates an EmbeddingState object, stores the

mappingM1
G with the EmbeddingId 0.

2. The mapping (ID(InP#1) → 0) is stored in the state

table attached within the message EMBED2.

3. InP #3, and InP #4 send the messages LINK3 and

LINK6 respectively to InP #1 with the field

pred state id = EmbeddingId 0 allowing InP #1 to

call up the state associated withM1
G.

4. When InP #1 maps the link allocation,M3
1, it creates

a new EmbeddingState object with a InP-level unique

EmbeddingId 1 as a child to the EmbeddingState
object housing theM1

G mapping. Similarly, when

InP #1 maps the link allocationM4
1, it creates

another EmbeddingState object attached to the same

parent with EmbeddingId 2.

InP #1 responds to InP #3 and InP #4 with

LINK SUCCESS messages with pred state id =

1 and 2, respectively.

When a subsequent message requests state

associated with one of the two new EmbeddingId s,
we are able to disambiguate between the two flows,

despite their sharing a common subgraph mapping.

4.6 Resource management

Resource reservation blowup is amajor issue in any imple-

mentation of PolyViNE. In our implementation of a sim-

ulation of the PolyViNE protocol, we quickly realized that

in the worst case, the resources allocated in a single InP

could grow exponentially as a function of d, the maxi-

mum search depth. The total number of flows explored

by PolyViNE to find a good inter-domain VN embedding

is O(kSP(kInPmax)d). In a pathological case, some InP, InPaj
may be involved in as many as O(kSP(kInPmax)d) flows. If

an InP reserved resources for each flow of a given VN,

then we could very quickly end up in a situation where a

single, relatively simple VN request drains an InP of all its

available resources.

However, we note that for any given VN request, a ser-

vice provider will ultimately only accept a single flow of

the O(kSP(kInPmax)d) which will be explored. This means

that an InP only needs to reserve sufficient resources for

any one such flow per VN request. We denote the capac-

ities on all substrate nodes and links in InPaj , C(GS
aj
) =

(C(NS
aj

), L(NS
aj

)) with vectors C(NS
aj

) = {C(n0aj),C(n1aj), ...}

for nodes and C(LSaj) = {C(l0aj),C(l1aj), . . .} for links where

each component indicates the maximum capacity of that

resource. Each EmbeddingState object, Ekaj at InPaj with

EmbeddingId k can be thought to be composed of two

resource allocation vectors, one for nodes and one for

links, indicating the resources allocated by that state

object in addition to its parent state object: C(Ekaj) =

(C(Nk
aj

),C(Lkaj)) + C(Parent(Ekaj)).

The InP then simply applies a component-wise maxi-

mum (cmax) of the multiset representing all resource allo-

cation state for a given VN request, VNbi , E
bi
aj = {C(Ekaj) :

∀ EmbeddingId k ∈ VNbi} and reserves those resources.

As more allocations are made for VNbi at InPaj , the InP

updates its E
bi
aj multiset and adjusts its resource reser-

vations accordingly, leaving C(GS
aj
) − C(Ekaj) resources

available for other VN requests. As all the mutually exclu-

sive flows are for the same virtual network, the allocations

at any given InP will be relatively similar and so, the

component-wise maximum will typically not be much

more than those required of any one flow.

The internals of our running example: Let’s consider

the substrate network of InP #2 in Figure 6 of our running

example. Recall from Figure 5, InP #2 has three Embed-

dingIds (0, 1, and 2) associated with state for VNij. In

Figure 6, we look at the resources allocated by the map-

pings associated with each of the three EmbeddingIds.

EmbeddingId 0 has no associated resource reservations.

EmbeddingId 1 and 2 refer to mutually exclusive resources

allocated by InP #2 on behalf of InP #3 and InP #4

Figure 6 A look at the substrate network and resource reservation vectors of InP #2 in our running example.
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respectively. Both resource vectors correspond to map-

pings of virtual links a, and c from border node B2 to

border node B3. Note that the two resource vectors corre-

spond to similar, but not identical mappings onto InP #2’s

substrate network. At most, the SP will accept one of the

flows, and so we don’t need to allocate resources so that

all of the vectors can be satisfied simultaneously. Instead

we take the component-wise (i.e. per-resource) maximum

resource requirements and reserve that (CMAX) vector.

Note that the last row of the table in Figure 6 indicates

significant resource savings as a result of this technique.

Typically, we can expect the savings to grow linearly with

the number of flows, enabling much larger search spaces.

4.7 Forwarding

If an InP can only partially embed a VN request, it will

have to forward the rest of the request to other InPs in the

controller network in order to complete the VN request.

An InP should take care to not forward a VN request

to another InP already in the InPSet to avoid cycles. For

example, InP#1 in Figure 3 is forwarding the unmapped

VN request G’ to InP#2. Similar to SPs, InPs also forward

the request to kInP(≥ 1) InPs for similar reasons (e.g.,

competitive prices). While forwarding a request, an InP

can prefer to perform a transformation on the VN request

in order to hide the details of its mapping (as in Figure 1h).

At this point, it can use one of the two possible methods

for unmapped VN request forwarding:

• Recursive forwarding: In this case, when an InP

forwards a VN request, the receiver InP embeds part

of it based on its policies and forwards the rest

further away to another InP.
• Iterative forwarding: In iterative forwarding, the

receiver InP return the control back to the sender InP

once it is finished with embedding.

In any case, the forwarding decision is a non-trivial

one and requires careful consideration. We believe that

instead of blindly forwarding based on some heuristics, we

can do informed forwarding by utilizing the location con-

straints attached to all the virtual nodes in a VN request.

Details of this forwarding scheme are presented in the

next section.

4.8 Back-propagation

The VN request proceeds from one InP to the next,

until either the maximum number of participants d has

been reached, there are no available InPs to send the

request to or the VN request has been satisfied com-

pletely. In case of a successful embedding of a VN

request, the EMBED SUCCESS message carries back

the embedding details and corresponding price. At each

step of this back-propagation of EMBED SUCCESS and

EMBED FAILURE messages, the sender InP can select

mappings based on internal policies or lower price or

some other criteria and rejects the other successful

embeddings by issuing EMBED REJECT messages to the

appropriate successors.

As VN embeddings follow paths back to the SP, the

prices are accumulated and the SP ends up with multiple

choices (Figure 4).

4.9 Resource allocation roll-back

Within a single domain, a VN embedding is transactional

in nature, as an embedding must be completed as a whole,

or not at all. In the multi-domain scenario, each InP is

free to map a subgraph of the embedding and so the algo-

rithm used to perform that partial mapping may or may

not be transactional (it’s up to the discretion of the InP

how to implement it). However, from the SP’s perspective,

the multi-domain scenario is the same as that of the single

domain: it expects either a completed embedding reserva-

tion or a report of failure. In other words, in a given flow,

either all participating InPs succeed in reserving resources

or none of them reserve resources. This means that the

PolyViNE protocol itself must provide a mechanism to

roll-back the work done by other InPs in a given flow once

a failure or rejection occurs. An SP is expected to accept

only one flow, and reject all other flows. Rejection initiates

a roll-back process of all resources allocated for that flow.

Two messages in the protocol can initiate resource allo-

cations within an InP: EMBED, and LINK. Thus, corre-

sponding roll-back messages must exist in the protocol:

EMBED REJECT and LINK REJECT. In order to simplify

the implementation of a controller’s PolyViNE message

handling system and avoid race conditions, associated

acknowledgement messages EMBED REJECT ACK and

LINK REJECT ACK act as barriers to ensure that roll-

back occurs in the opposite order to allocation. Note

that link allocations corresponding to the set LV
M

aj for a

given InPaj are unordered as there are no dependencies

among them. However, state dependencies exist between

subgraph allocations on one InP and the next, and so

PolyViNE ensures that roll-back occurs in the opposite

order to allocation through the * ACK messages.

As previously discussed, an InP, InPaj , will report back

EMBED FAILURE in case it fails to map the remaining

portion of an embedding. Failure reasons include:

1. The embedding is incomplete at InPaj and no

successors are found or all successors fail for some

reason.

2. An InP participating in an inter-domain path

allocation on behalf of InPaj responds back to InPaj
with LINK FAILURE.

3. An embedding solution fails to meet the budget

constraints.
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4. The processing fee budget has been exhausted.

5. Internal InP policies do not allow the embedding to

proceed.

A variation of our running example: To illustrate the

roll-back process, we consider a variation of our run-

ning example shown in Figure 7. In this variation, we

assume that InP #2 is unable to map LV
M3

2

= {a, c} or

LV
M4

2

= {a, c} onto its substrate network. Thus, in step

8, InP #2 reports LINK FAILURE to InP #3 (and InP #4,

not shown). In the sequence digram, we see that InP #3

observes that InP #1 and InP #3 were able to map their

respective LINK requests, but InP #2 was not. As an inter-

domain embedding must either succeed wholly or release

all resources across all participating InPs, InP #3must now

begin the roll-back process.

InP #3 issues LINK REJECT messages to InPs #1

and itself (for consistency purposes) with the appro-

priate EmbeddingIds informing them to deallocate their

respective allocations for virtual links a and c. InP #1

and InP #3 release their link mappings, and report

LINK REJECT ACK to InP #3 (steps 12-13). Subse-

quently, InP #3 releases its subgraph embedding for the

VN request and reports EMBED FAILURE to its prede-

cessor, InP #2 (step 14). InP #2 also sees that InP #4 has

failed. Thus, InP #2 has seen that all its successors fail, and

so it must also fail. InP #2 has no subgraph embedding,

Figure 7 A variation of the running example: sequence diagram showing the roll-back of embedding reservations.
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and so it simply reports EMBED FAILURE to its prede-

cessor InP #1 (step 15). InP #1 has only one successor and

so it must fail as well. It releases its subgraph embedding

for the VN, and reports EMBED FAILURE to the SP.

5 Location aware forwarding
Naı̈vely an InP can forward a VN request to a set of InPs

in the controller network at random. However, this deci-

sion is blind to the location requirements of the virtual

nodes and the availability of virtual resources at the des-

tination InP to satisfy the constraints for the VN request.

This may result in high failure rate or prices well above

the fair value. To avoid flooding a VN request or send-

ing it to random InPs which might be unable to meet the

constraints of the request, we propose using location con-

straints associated with unassigned virtual nodes to assist

an InP in making this decision. Location constraints of the

virtual nodes together with the location information of the

underlay will allow informed VN request forwarding in

the controller network.

To accommodate such location aware forwarding, we

introduce a hierarchical geographic addressing scheme

with support for aggregation, named COST. InPs in

PolyViNEmust associate COST addresses with all the sub-

strate nodes and SPs must express location requirements

in terms of COST. Controllers in different InPs pub-

lish/disseminate information about the geographic loca-

tions of their nodes along with the unit price of their

resources. They can then aggregate and disseminate data

collected from all neighboring Controllers to build their

own knowledge bases of location to InP mappings, each

accompanied by path vectors of InPs in the controller

network and corresponding prices. We propose Location

Awareness Protocol (LAP) to perform this task. Careful

readers will notice in the following that COST and LAP

are significantly influenced by BGP.

5.1 COST addressing scheme

As outlined in the problem formulation (Section 2), each

virtual node in a VN request comes with a permissi-

ble geographic region in which it must be embedded.

One design question at this point is how to represent

and encode the geolocation. We have chosen a hierar-

chical geolocation representation scheme similar to [14]

with the form Continent.cOuntry.State.ciTy (hence the

name COST). Even though in this paper we are using a

simple postal address like scheme for simplicity, any hier-

archical geolocation representation system will work with

PolyViNE.

A virtual nodemay restrict its location preference to any

prefix in this addressing scheme. For example, to restrict a

node within Canada, one may assign the address NA.CA.*

to a virtual node. This indicates that beyond requiring that

the node be mapped within Canada, the SP does not care

where in the country it is ultimately mapped.

On the other hand, each substrate node has a complete

COST address associated with it. This address indicates

within which city lies the given substrate node. If an InP is

not willing to share the exact location, it can always choose

a higher level address. For example, instead of announcing

nodes in Toronto using NA.CA.ON.Toronto, the InP can

announce NA.CA.ON.*. However, such announcements

can result in receiving of VN requests that it may never be

able to satisfy, which will affect its reputation among other

InPs.

5.2 Location awareness protocol (LAP)

Location Awareness Protocol (LAP) is a hybrid of Gos-

sip and Publish/Subscribe protocols that assists an InP in

making informed decisions about which InPs to forward

a VN request to without making policy violations, and

thus progressing toward completing the VN embedding.

Controllers in different InPs keep track of the geoloca-

tions of their internal substrate nodes in COST format

and announce availability and prices of available resources

to their neighbors using LAP updates in the controller

network. This information is aggregated and propagated

throughout the controller network to create global view

of the resources in the underlay in each Controller’s LAP

database.

Initially, LAP operates as a path vector based gossip

protocol. Every InP in the controller network informs

its neighbors of where its nodes are located along with

estimated unit prices for its resources on a per location

basis. Whenever a Controller receives a LAP update, it

updates its LAP database and before announcing updates

to its neighbors it adds itself to the path vector. Note that

keeping complete paths allows avoiding unnecessary for-

warding toward and through InPs that might violate SP’s

policies or originating InP’s policies. InPs can also tune

this price to encourage or discourage VN request forward-

ing to them. In steady-state, each InP should know about

all the InPs with nodes in a given geographic region along

with price estimations of embedding on their substrate

networks. Figure 8 shows an example LAP database.

However, in a rapidly changing environment with con-

tinuously fluctuating prices, gossip may not be sufficient

to disseminate updated prices in a timely fashion. To

reduce the number of failures stemming from staleness of

pricing information, we propose extensions to LAP using

a Publish/Subscribe mechanism along with its basic gos-

sip protocol. By using this mechanism, any InP will be able

to subscribe to announcements of Controllers that are not

its direct neighbors. While we leave VN request routing

decisions to the discretion of InPs, an InP may use the

pricing information to prefer forwarding the VN request

to a lower priced InP, all other things being equal.
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Figure 8 LAP database at InP #1. InP #1 has two choices to forward to an InP with a node in New York state.

The question that remains open to more investigation

is why would an InP be honest when announcing pricing

estimates? We believe that a reputation metric – indicat-

ing long-term accuracy of an InP’s pricing estimate to the

actual cost of establishing a VN request – is necessary

to remedy this situation. We would like to integrate such

a reputation metric within LAP to allow dissemination

of path vectors attributed with corresponding prices and

overall reputation score of the InPs on the paths. An InP

will then be able to use pricing and reputation scores to

rank multiple paths to a common destination to make a

forwarding decision.

6 Numerical evaluation
We have written a 12000 line multi-threaded C++ sim-

ulator that allows independent responses from various

entities in the controller network. The simulation com-

prises a complete implementation of the entire set of

protocol messages discussed in section 3.6.

We examine four sets of experiments. In our first set of

experiments, we look at some of the properties of inter-

domain embeddings generated by PolyViNE as the VN

request size (node count) is varied. In our second set of

experiments, we look at some of the properties of the

PolyViNE embeddings as the pricing model attributes are

varied (embedding and processing budgets). In our third

set of experiments, we look at properties of PolyViNE

embeddings as we vary the maximum number of InPs

involved in a mapping. In our last set of experiments, we

examine the reliability of the PolyViNE protocol and the

cost of embeddings generated in the case of lost or stale

LAP information.

Each experiment is run to completion (a VN request has

completed) multiple times per data point to produce the

averaged results presented here. We found that that vari-

ation in tests was very small and so we did not include

confidence intervals. Unless otherwise specified, we have

used the following settings: For each experiment, we ran-

domly create a controller network with 60 InPs. Each InP

network consists of 120 to 150 nodes and 540 to 600

links on average. Each node has a maximum CPU capac-

ity uniformly chosen from 1 to 100 CPU units, and each

link has a maximum bandwidth capacity of 100 band-

width units. Locations of substrate nodes are sampled

from a normal distribution with amean, and variance cho-

sen uniformly from 0 to 255 representing 256 different

major cities. InPs with low variance location distributions

are effectively local or regional InPs, while high variance

InPs have nodes that span the globe. The per unit cost

per resource is chosen from a normal distribution with

a mean sampled from a prior, per InP, normal distribu-

tion (of mean 4, variance 1) and a variance of 1. This
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means that some InPs will tend to be cheaper than others,

on average.

Unless otherwise specified, each VN request has an

expected value of 30 nodes, and 120 links (±20%). Each

virtual node has amaximumCPU capacity uniformly cho-

sen from 1 to 25, and each virtual link has a maximum

bandwidth capacity of 1 to 15, chosen uniformly as well.

Locations are chosen uniformly from 256 major cities

represented in the controller network.

Each InP charges an embedding processing fee of 1 unit

(±20%). A maximum InP count per flow (d) is a prop-

erty of the VN request. Based on this property, an InP

estimates the maximum branching factor it can use so

that up to d InPs can be involved in a flow and uses that

branching factor. Thus, the entire processing budget is

always consumed. The processing fees are not refunded if

the flow fails.

6.1 Varying VN request size

We begin by varying the number of nodes in a VN request

and observing the properties of the embeddings and the

success rate of the flows. In each experiment, VN requests

have n nodes (where n is varied) and 4n links. We also fix

KSP = 7, maximum InPs per flow to 9, processing bud-

get : embedding budget to 0.75:1, and embedding budget

to 25000. The goal of this experiment is to test the lim-

its of PolyViNE’s ability to find solutions given a fixed set

of resources available to it (Large VN requests relative

to InP resources, limited processing and embedding bud-

gets, and thus limited search space). We expect that after

a certain point, VN requests will get so large that no map-

ping will be possible, either because the request hits InP

resource limits or it hits budget limits.

In our first experiment in Figure 9, we look at the num-

ber of nodes mapped by the first set of InP neighboring

the request-generating SP as we vary the VN request size.

Figure 9 demonstrates that the number of nodes mapped

by the first-hop InPs grows linearly with the size of the

VN request. With small requests, virtually the entire net-

work is mapped by the first InP. As request sizes approach

the limits of the resources available at the first-hop InP,

the number of nodes mapped by the first-hop InP flattens

out at about 35 nodes. When we attempted random VN

requests larger than 45 nodes, we found that no solutions

are found by the PolyViNE protocol, regardless of the size

of the search space.

In our second experiment in Figure 10, we looked at the

number of InPs that are involved in a successfully satisfied

VN request. In this experiment, we only consider InPs that

contribute substrate node resources to the VN mapping,

and not InPs that simply reserved bandwidth as relays. We

see that the the number of InPs involved appears to grow

linearly with the size of the VN request but with a very

small slope.

In our third experiment in Figure 11, we look at the

fraction of successful flows relative to the total number

of flows of a VN request. We see that up to 35 nodes, all

flows are successful. After 35 nodes the success rate drops

dramatically, and after 50 nodes (not shown), it reaches 0.

In our fourth experiment in Figure 12, we look at the

the impact on embedding cost as we increase the VN

request size. We see a linear relationship between the

VN request size and the embedding cost (as is expected),

where roughly each node added to a VN request costs

about 250 units. Somewhat surprisingly, the higher cost

of virtual links mapped across inter-domain paths is not

apparent here. This may be due to the relative sparseness

of the VN requests we have examined.

6.2 Varying embedding budget and processing fee budget

In this experiment, we vary the embedding budget

and processing budget of a VN request and observe

Figure 9 The number of nodes mapped by first-hop InPs increases linearly with the size of sparse VN requests (n nodes, 4n links).
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Figure 10 Number of InPs involved in a successful mapping with increasing VN request size.

their impact on the success rate and total embedding

cost (embedding + processing). In each experiment, VN

requests have 30 nodes and 120 links (± 20%). We also fix

KSP = 7, and maximum InPs per flow to 8.

In our first experiment of this set (Figure 13), we vary

both the processing budget and the embedding budget,

and observe their impact on the success rate of flows of

the VN request. We observe that relatively small changes

to the processing budget have little effect on the success

rate of a VN request flow, with significant variance up

and down as the processing budget increases. This can

be attributed to the high cost of increasing kInP at any

given InP. Given d, the target maximum number of InPs

visited per flow, each InP picks a kInP so that sufficient

money remains in the processing budget so that up to d

InPs are involved in a flow, if necessary. In other words,

for an InP to increase the branching factor kInP by x%, its

processing budget must increase by O((1 + x
100 )

dremaining )

where dremaining is the number of hops remaining to

reach the maximum d. Thus, small increases in process-

ing budget will have negligible impact on the search space

explored, except in InPad−1
of a given flow.

Budget allocation is distributed at each InP assuming a

full n-ary subtree. Thus, at least half of the InPs in the

search space are last hop InPs given a fixed search depth.

Since processing budget is evenly distributed across all

subtrees, to explore more space, the processing budget

would need to increase significantly (dependent upon the

current average branching factor on the second last hop).

However, we observe a much clearer correlation

between the embedding budget and the success rate. A

higher embedding budget tends to improve the flow suc-

cess rate. Also, we see that as we increase the embedding

budget, the variation in success rate between processing

budgets decreases, suggesting that a larger processing

budget does allow for more flows, but most of those new

Figure 11 Rate of successful flows with increasing VN request size.
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Figure 12 Embedding cost with increasing VN request size.

flows go above the embedding budget. As we increase the

embedding budget, fewer of the new flows go over the

embedding budget.

In our second experiment of this set (Figure 14), we

vary the processing and embedding budgets again but

this time, we observe their impact on the total cost of an

embedding. We observe a linear growth in total embed-

ding cost as we increase the processing budget and the

embedding budget. In our experiments we were unable

to find a peak that balances the tradeoff between the pro-

cessing budget (and hence the size of the search space)

and the total embedding cost. Looking at the results in

Figure 14 we see that much of the total embedding cost is

going into processing fees. As the processing budget is on

a per-first-hop InP basis, increasing kSP also increases the

processing costs.

In Figure 15, we drop the processing fees, and look at the

impact varying the budget and processing fees has on just

the embedding cost and not the total cost to the SP. We

observe that varying the processing budget has relatively

little impact on the cost of the embedding. This supports

the argument above that states that a large change to the

processing budget is necessary to observe a measurable

change to the search space. This suggests that under this

pricing model, an SP should pick its processing budget

high enough to produce an acceptable success rate, and

not to find cheaper solutions.

6.3 Varying maximum InPs per flow

The maximum number of InPs involved in a single flow

(d) impacts the size of the search space explored. As d

decreases, the branching factor per InP tends to increase.

Figure 13 Success rate with varying embedding and processing budgets.
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Figure 14 Total embedding cost with varying embedding and processing budgets.

In this experiment, we investigate the tradeoff between

increasing the number of flows (kInP) and the maximum

number of InPs involved per flow (d) given varying pro-

cessing budgets ratios (processing budget : embedding

budget), and a fixed embedding budget of 25,000.

In the experiment in Figure 16, we see that there is

a notable correlation between the maximum number of

InPs involved in a flow, and the success rate. Given a

fixed processing budget, increasing themaximumnumber

of InPs involved (and thereby decreasing the branching

factor kInP) tends to increase the success rate. This is sig-

nificant because it suggests it may be possible to lower the

processing budget without impacting the success rate by

increasing the value of d.

In Figure 17, we see there is a very weak correla-

tion between d and the total embedding cost on random

graphs.

6.4 Varying LAP update message drop rate

In the final set of experiments, we wish to assess the relia-

bility of the PolyViNE protocol when faced with InPs that

have stale LAP information. The propagation rate of LAP

data can vary by relationships between InPs and by loca-

tion and so we wish to ensure that PolyViNE is able to

function under a variety of conditions.

In Figure 18, we see that PolyViNE is extremely resilient

to dropped LAP update messages. The success rate is

largely unimpacted by dropped LAP updates until about

95% of updates are dropped after which, we see a signif-

icant drop in success rate of flows. PolyViNE is designed

to always forward VN requests to some neighboring InP,

even if it cannot find an InP that matches the location con-

straints of any of the unmapped nodes in the VN request.

If an InP cannot map any nodes, it acts as a relay and

then uses its own LAP data to determine where to forward

Figure 15 Embedding cost only (no processing fees included) with varying embedding and processing budgets.



Samuel et al. Journal of Internet Services and Applications 2013, 4:6 Page 19 of 23

http://www.jisajournal.com/content/4/1/6

Figure 16 Rate of successful flows with varying d and processing budgets.

next. This makes PolyViNE extremely resilient to failing as

a result of stale or lost LAP data. However, missing LAP

data might affect the quality (cost) of an embedding.

In Figure 19, we delve a bit deeper to see how PolyViNE

is so resilient. We observe that the number of flows

explored actually increases as the drop rate of LAP mes-

sages increases (with no changes to the processing budget)

This is very counterintuitive. How are we able to explore

more flows? Figure 20 sheds some light on this. We see

that the number of InPs involved per flow increases as

the LAP drop rate increases. This means that each InP is

mapping a smaller portion of the VN request, and so the

embedding budget allows for more InPs to be involved per

flow. Each additional InP spawns off kInP more flows.

In Figure 21, we look at the impact dropped LAP mes-

sages have on the embedding cost. Presumably, with less

LAP data at every InP, VN request forwarding is effectively

blind. We see that this intuition appears to be correct,

after about 80% of LAP updates are dropped. As we lose

LAP information, forwarding becomes less informed and

so partial mappings are not always done at the cheapest

InPs. 80% is also about when we begin to notice additional

flows (Figure 19), and so at least some of the increase

can be attributed to the additional inter-domain paths

required by partitioning the VN across more InPs.

7 Discussion
7.1 Pricing model

The simple pricing model we suggested in this report

succeeds in accomplishing the goal of incentivizing InPs

to participate in a highly competitive environment and

disincentivizing flooding the controller network to find

feasible, low-cost embeddings. However, we did not study

the practical implications of this pricing model. It may be

Figure 17 Total embedding cost with varying d and processing budgets.
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Figure 18 Rate of successful flows with increasing LAP Update message drop rate.

possible for an InP to abuse this model. For example, the

dth InP may be able to gouge prices, leaving the prede-

cessor with no option but to accept the higher price. In

the future, we will investigate alternative pricing models

that will accomplish our primary goals while studying the

strengths and weaknesses of each model.

7.2 Scalability

Scalability concerns in PolyViNE come from several

fronts: size of the search space, dissemination time of loca-

tion information, and storage of location and price infor-

mation among others. As the number of InPs increases

in the controller network, the amount of control traffic

will increase even with the tweaks proposed in this paper.

Moreover, the size of stored location and path information

will grow very quickly with more and more InPs joining

the controller network. We can limit the number of stored

paths to a certain destination based on some heuristics

(e.g., keep only the top M paths and flush the rest after

each update), but such loss can result in degraded embed-

ding. Finally, the freshness of the location information

is dependent upon the update frequency and the total

number of InPs in the controller network.

7.3 Performance

7.3.1 Response time

Recursive processes, by definition, can go on for a long

time in the absence of proper terminating conditions

resulting in unsuitable response times. Combining itera-

tive mechanism wherever possible and limiting the level

of recursion at the expense of search completeness can

improve the response time of PolyViNE. However, the

question regarding suitable response time depends on the

arrival rate and the average life expectancy of VN requests.

Figure 19 Number of flows with increasing LAP Update message drop rate.
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Figure 20 InPs per Flow with increasing LAP Update message drop rate.

7.3.2 Overheads

InPs participating in a PolyViNE embedding will face

major computation overheads while trying to map the

VN request and minor communication overheads due to

relaying of the rest of the request. Since for each VN

embedding every InP in each step except for the win-

ning bidder will fail to take part in the embedding, the

overheads can be discouraging. We are working toward

finding incentives for the InPs to partake in the embedding

process.

7.4 Trust and reputation

Since each InP will try to selfishly improve its own perfor-

mance and will not expose its internal information, InPs

can lie to or hide information from each other. From pre-

vious studies it is known that it is hard to use mechanism

design or game theory to thwart such behaviors in a large

scale distributed system [15]. Our solution against such

behavior is the use of competitive bidding at each step

of embedding to expose the market price of any leased

resource.

7.5 More informed forwarding

PolyViNE currently uses LAP for informed forwarding of

VN requests. However, location information is not the

only information available to an InP about other InPs.

An InP should be capable of “learning” from past experi-

ence. That is, it should be able to collect data on previous

embeddings, and make more informed decisions in the

future based on its observations of the past.

8 Related work
The VN embedding problem, with constraints on both

virtual nodes and virtual links, is known to be NP-hard

Figure 21 Embedding cost with increasing LAP Update message drop rate.
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[5,6]. A number of heuristics have appeared in the litera-

ture based on the complete separation of the node map-

ping and the link mapping phases [5-7]. Existing research

has also been restricting the problem space in different

dimensions: [5,7] consider the offline version of the prob-

lem; [7] ignores node requirements; [5,7] assume infinite

capacity in substrate nodes and links to obviate admis-

sion control; and [7] focuses on specific VN topologies.

Chowdhury et al. [8] proposed a pair of algorithms that

provide improved performance through increased corre-

lation between the two phases of VN embedding, while [9]

proposed a graph isomorphism-based integrated solution

that can take exponential time in the worst case. All these

algorithms address VN embedding as an intra-domain

problem and take advantage of a centralized embedding

entity.

Recently proposed V-Mart [16] framework approaches

the inter-domain VN embedding problem using an

auction-based model, where the SP performs the parti-

tioning task using heuristics for simplification. As a result,

V-Mart cannot enable local and inter-InP policy enforce-

ment and fine-grained resource management.

Unlike inter-domain VN embedding, inter-domain

lightpath provisioning [11,17] as well as cross-domain

QoS-aware path composition [12,18] are well studied

areas. UCLP [17] allows users to dynamically compose,

modify, and tear down lightpaths across domain bound-

aries and over heterogeneous networking technologies

(e.g., SONET/SDH, GMPLS etc.). Xiao et al. have shown

in [18] that QoS-assured end-to-end path provisioning

can be solved by reducing it to the classic k-MCOP

(k-Multi Constrained Optimal Path) problem. iREX archi-

tecture [12], on the other hand, uses economic market-

based mechanisms to automate inter-domain QoS policy

enforcement through negotiation between participating

domains. PolyViNE is similar to iREX in its allowance

of intra-domain policy-enforcement and in using market-

based mechanisms, but iREX is concerned about mapping

simple paths whereas PolyViNE embeds more compli-

cated VN requests. PeerMart [19] is another auction-

based marketplace for resource trading in a network

virtualization environment, but it basically deals only with

virtual links.

The geographic location representation and related in-

formation dissemination protocol proposed in PolyViNE

is inspired by the previous proposals of geographic

addressing and routing in IPv6 networks [14,20] as well

as the predominant global routing protocol in the Inter-

net, BGP [21]. However, unlike these works, PolyViNE

does not use the information for addressing or routing

purposes; rather it uses the location information to find

candidate InPs that will be able to embed part or whole

of the remaining unmapped VN request. Moreover, such

location information is disseminated between and stored

in Controllers instead of border routers as in BGP or

GIRO [14]. The concepts of Controllers in InPs and con-

troller network connecting multiple InPs’ Controllers are

discussed in the iMark framework [10].

9 Conclusions and future work
In this paper we have formally defined the inter-domain

VN embedding problem and presented PolyViNE – a

novel policy-based inter-domain VN embedding frame-

work – to address it. PolyViNE allows embedding of

end-to-end VNs in a distributed and decentralized man-

ner by promoting global competition in the presence of

local autonomy. We have laid down the workflows of InPs

and SPs throughout the PolyViNE embedding process

and identified the most crucial stage in the InP work-

flow, VN request forwarding. In this respect, we have

proposed a hierarchical addressing system (COST) and a

location dissemination protocol (LAP) that jointly allow

InPs to make informed forwarding decisions. We have

also presented preliminary performance characteristics of

PolyViNE through simulation.

In the future we would like to address issues such as

pricing models, InP interactions, reputationmanagement,

and incentives for InP truthfulness. Relative advantages

and disadvantages of contrasting choices (e.g., recursive

vs iterative forwarding) in different stages of InP workflow

should also be scrutinized. Finally, the scalability, stabil-

ity, and performance characteristics of PolyViNE require

further studies through larger simulations and distributed

experiments with a heterogeneous mix of intra-domain

VN embedding algorithms and policies.

Another interesting direction of research for this prob-

lem would be to model it as a distributed constrained

optimization problem (DCOP) and to try to solve that

with minimal information exchange between InPs.

10 Endnotes
aThe words ‘embedding’, ‘mapping’, and ‘assignment’ are

used interchangeably throughout this paper.
bWe will use the terms InP and substrate network inter-

changeably throughout the rest of this paper.
cEach InP uses its own pricing mechanism by which it

attaches a price to any embedding it provides.
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