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A special program developed by the authors, called Pombe, identifies protein coding regions in the Schizosaccha-
romyces pombe genome. Linear discriminant analysis was applied to predict 5*-terminal, internal, 3*-terminal exons
(coding-exon) and introns. The accuracy of the prediction was tested by cross verifications. The sensitivity, specificity
and correlation coefficient for the internal exon prediction were 98·5%, 99·9% and 98·3% respectively at the
nucleotide level. Open reading frames were studied and used to predict intron-less genes: 99·0% of such genes
were identified with correct stopping sites. The gene structure was determined by dynamic programming and
the prediction achieved 97·0% correlation coefficient at the nucleotide level. The program is available at
http://clio.cshl.org/genefinder. ? 1998 John Wiley & Sons, Ltd.
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INTRODUCTION exon boundaries and (2) identifying potential cod-
ing regions. A few tried to predict entire exon–
As the genomic DNA sequencing is scaled up to
the mega-base level, it becomes more and more
important to locate genes by fast and reliable
means. Several complex systems for predicting
gene structure have been developed in the last few
years. Current gene-finding systems, such as
SORFIND (Hutchinson and Hayden, 1992),
GeneID (Guigo et al., 1992), GRAIL (Uberbacher
and Mural, 1991; Xu et al., 1994; Lopez et al.,
1994), GeneParser (Snyder and Stormo, 1993),
FEX (Solovyev et al., 1994), and MZEF (Zhang
and Marr, 1994; Zhang, 1997), are mainly based
on a statistical or neural network approach. Many
of them have also been integrated with tools to
search databases for similarities.

Efforts to predict genes and gene structure
(Fickett and Tung, 1992; Fickett, 1995; Gelfand,
1995) have been made for more than a decade.
Although the number of existing algorithms is
large, they generally consist of (1) searching for

*Correspondence to: T. Chen, Department of Computer
Science, The State University of New York, Stony Brook,
? 1998 John Wiley & Sons, Ltd.
intron structure by heuristic exon assembly and
had limited success.

Fission yeast is an important model organism
for the study of biological processes at the cellular
level, in particular the regulation of the eukaryotic
cell cycle. It has become even more important in
comparative genomics due to the availability of the
budding yeast genome sequence. Although both
genomes are about 15 million nucleotide base pairs
in size, Schizosaccharomyces pombe has only three
chromosomes, while Saccharomyces cerevisiae has
16. The individual genes of each species are also
very different from one another. About one-third
of fission yeast genes contain introns, which are
very rare in budding yeast.

Most software available to the public was
developed for gene-finding in vertebrates.
Although FEX has been trained to a program
called FEXY to predict splicing sites and exons in
yeast DNA sequences, direct intron detection and
gene structure prediction were not incorporated.
Similar to some other lower eukaryotes, most
introns of fission yeast genes are short, and splicing
NY 11794-4400, U.S.A.
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occurs mainly in the intron-definition mode as
opposed to the exon-definition in vertebrates

We compared each entry sequence that did not
satisfy the criteria with the sequence in the original

Redundancy removal
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(review by Krizman and Berget, 1993). In fact, the
first fission yeast gene prediction was done by an
interactive program called INTRON.PLOT
(Zhang and Marr, 1994). In Pombe, we use
dynamic programming to combine exon and
intron predictions into gene structure and improve
overall accuracy.
DATA SETS

SOME FISSION YEAST CHARACTERISTICS
A high quality data set is required for building a
good prediction system. Public databases contain
various types of errors, such as sequencing errors,
human editing errors and typing errors. Many
statistical measurements are very sensitive to these
errors so it is important to remove them from
the data set. Redundancy also causes trouble. A
database may contain many similar genes, and
these genes will bias the prediction to them while
ignoring other more important but rare ones. So
identifying similar genes is another necessary step
of selecting a high quality data set. In the following
sections, we discuss how our learning data are
extracted from GenBank and checked for errors
and similarities.

Data extraction

Database entries containing S. pombe genomic

DNA sequences were taken from GenBank release
95.0, and only those with split coding regions were
extracted for training. The training set had 131
entries.

Annotation checking
METHODS

Incorrect annotations happen quite frequently

in GenBank. Generally, there is no good way to
correct all of them without checking the original
publications. However, we can limit possible errors
by assuming each entry with a correct annotation
should satisfy:

- The initiation site is ATG.
- The donor site is GT.
- The acceptor site is AG.
- The stopping site is either TAA or TAG or

TGA.
- No stop codon interrupts the open reading

frames.
- The length of coding regions is a multiple of

three.
? 1998 John Wiley & Sons, Ltd.
published paper. The following entries were
checked and corrected accordingly: S64907,
SPGCH1, SPRHP6, SPU52080, SPVATPA and
YSPRPIIS3. Three entries were discarded because
references were not available, leaving 128 entries in
the data set.
Similar genes discovered by different research
groups exist redundantly in GenBank. We define
two genes to be similar if they share more than
90% identical nucleotide base pairs. FASTA, a
fast sequence comparison program, was used to
identify them. Five groups of entries were found to
be similar. We selected one entry from each group
based on whether it was genomic, had more
nucleotide base pairs, or was published more
recently.
Several distinctive characteristics of fission yeast
were discovered during the process of building the
prediction system. For instance, the arrangement
of genes is compact, with a density of about
2000 bp per gene. There are very few overlapped
genes. Most complex genes have a short 5*-
terminal exon and a long 3*-terminal exon. The
length of introns is between 40 and 700 nucleotide
bp and each intron seems to contain a fairly
conserved branch-site 10–30 bp upstream of its
acceptor site.
Discriminant analysis
We applied linear discriminant analysis to
identify patterns between two alternative classes,
C1 (sites, introns or exons) and C2 (pseudo sites,
pseudo introns or pseudo exons). Linear dis-
criminant analysis provides a linear function that
separates two classes while minimizing misclassifi-
cation. Assuming a p-feature variable x={x1, x2,
. . ., xp} is given, then the linear discriminant
function
 . 14: 701–710 (1998)



classifies x into class C1 if y§c, and into class C2 Oligonucleotide preferences
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if y<c. The optimal selection of á={á1, á2, . . ., áp}
and constant c can be determined by maximizing
the ratio of between-class-variation to within-
class-variation. If ì1 is the sample mean vector for
class C1 and ì2 is the sample mean vector for class
C2, the optimal á and c are given by

á=S"1(ì1"ì2)

and

c=á(ì1"ì2)/2

where S is the pooled covariance matrix

and S1 is the covariance matrix for class C1 and S2
is the covariance matrix for class C2, n1 and n2 are
the number of samples for C1 and C2 respectively.

Exons and introns are recognized by two linear
discriminations: initiation sites, donor sites and
acceptor sites are identified before they are
combined into introns and exons. Combination of
linear functions is more powerful than a single
linear function because it can approximate a
non-linear discriminant function. Figure 1 shows
a non-linear classification problem which can
be approximated by three linear discriminant
functions. Our exon and intron predictions are
built on this model.
Figure 1. Approximating a non-linear two-class separation by three linear
discriminant functions.
? 1998 John Wiley & Sons, Ltd.
Oligonucleotide composition plays an important
role in distinguishing sites and functional regions,
for example, splicing sites, introns and coding
regions.

Generally a pattern p=p1p2 p3 . . . pl of length l
is to be discriminated between two classes, C0
and C1. We can estimate the likelihood that
pattern p belongs to class C1 by the Bayesian
method:

where P(C1) and P(C0) are the a priori prob-
abilities of two classes, C0 and C1. P(pPC1) and
P(pPC0) are the a posteriori probabilities for
pattern p to occur in class C1 and class C0; PC1

(p)
and PC1

(p) are the frequencies of pattern p in
class C1 and class C0. P(C1) and P(C0) are assumed
to be equal: P(C1)=P(C0). P(C1Pp) is the prefer-
ence of p in C1.

To estimate the likelihood that a string
S=s1s2 . . . sn belongs to class C1 as against class
C0, we can average the preferences of all patterns
{Si} of S:
 . 14: 701–710 (1998)



Open reading frames
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where Si is the ith pattern of S and m is the number
of patterns.

In our prediction system, the oligonucleotide
preference of a DNA sequence S is measured by all
of its b length substrings, called oligonucleotide
compositions. Thus Si=sisi+1 . . . si+l"1 and m=
n"l+1. The oligonucleotide (l=6) composition
preferences are used to identify splicing sites, exons
and introns. A variation of the formula is to pick a
subset of {Si} as patterns for likelihood measure-
ment, for example, in-frame hexamer preferences.
In-frame hexamer preferences are used to predict
coding regions and one in-frame hexamer nucleo-
tide is exactly two adjacent codons.

Positional triplet preferences
Measurement
Triplet composition of sequences adjacent to a
particular site position may be used to discriminate
such a site. We characterize functional boundaries,
such as initiation sites, donor sites and acceptor
sites, by the measurement of positional triplet
preferences on a window around these sites.

Let Fi
t,k and Fi

f,k be the frequencies of a specific
triplet k at the ith position of a window (L, R) in
the true sites t and the pseudo sites f respectively.
The triplet type k ranges from 1 to 64, representing
all the possible triplets. Similar to the measurement
in the oligonucleotide preferences, the probability
of k at ith position belonging to a true site can be
measured as

For each splicing site, at some positions only
certain triplets will appear. If the number of learn-
ing samples is not enough, we can just count those
triplets who show significant difference in fre-
quency between true sites and false sites. In a
random sequence, each triplet is equally present at
any position, thus Pk(i) is 0·5.

The likelihood of a window (L, R) as a true site
can be calculated by the following function:
? 1998 John Wiley & Sons, Ltd.
where m is the number of triplets, and k is the
triplet at ith position. Positional triplet preferences
are used in the recognition of donor sites, acceptor
sites and initiation sites.
Open reading frames (ORFs) divide a DNA
sequence into continuing, non-overlapped triplets,
called codons. If an ORF appears in the coding
region with the right frame, each codon will be
translated into an amino acid. Three triplets, TAA,
TAG and TGA, represent stop of translation. If a
DNA sequence is random, on average, there is a
stop codon for every 21 triplets (or 64 nucleotides).
Therefore, the probability that an ORF has L
triplets is (1"1/21)L~e"L/21. The probability of
an ORF having 133 triplets (or 400 nucleotides) is
less than 0·25%, which is highly significant.

For fission yeast, by assuming an ORF must
contain a coding region if its length is above a
certain threshold, we were able to identify many
coding regions.
Figure 2. Measurement of internal exon prediction.
In pattern recognition, typically distinguishing
class 1 from class 0, the performance of a predic-
tion system can be measured by the following
statistics: true positive (TP), true negative (TN),
false positive (FP) and false negative (FN).

The internal exon prediction measurement on
the nucleotide base pair level is shown in Figure 2,
and the intron prediction measurement is shown
in Figure 3. We did not consider regions outside
the gene because these are either unknown or
unreliable.

The accuracy of a prediction system is measured
by sensitivity (Sn), specificity (Sp) and correlation
co-efficiency (CC) as follows:
 . 14: 701–710 (1998)
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ISCUSSION threshold to retain all the true sites, and excess
false positives would be dealt with through a
Prediction hierarchy
Figure 4 shows the hierarchy of the prediction.

Splicing site linear discriminant functions were
applied to predict sites before these sites were
paired into regions and another level of LDA
functions were used to identify functional regions.
Finally these regions were assembled into a gene
structure.

Splicing site prediction
Figure 3. Measurement of intron prediction.
Figre 4. Prediction hierarchy.
A linear discriminant recognition system was
built to distinguish true splicing sites from pseudo
sites. Three features were measured: positional
triplet preference, upstream hexamer preferences,
and downstream hexamer preferences. We chose a
ns, Ltd.
second level linear discriminant system after these
sites were assembled into introns or exons.

To identify donor sites, we extracted 261 true
donor sites and 15,522 GT-containing pseudo sites
from 116 genes in the data set. Three characteris-
tics around these sites were used for developing
and testing fission yeast donor site discriminant
function. They were: the positional triplet prefer-
ences at the reserved region ["5, +9]; the hexamer
composition preferences in the potential coding
region (upstream) ["54, "1]; the hexamer com-
position preferences in the potential intron region
(downstream) [+1, +54]. All these features were
observed to be statistically different in two
classes.
 . 14: 701–710 (1998)



We built a linear discriminant function on these

Table 1. Optimal donor site linear discriminant func-
tion

Table 2. Putative branch-site consensus

function
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features. The optimal classification is shown in
Table 1.

The LDA score of each GT site was calculated
to range between 0 and 1. The minimum score for
all 261 true donor sites was 0·09. In order to keep
all the splicing sites, we chose the threshold 0·01,
leaving 388 donor site candidates.

Similar calculations were done for acceptor sites
and AG-containing pseudo sites. We extracted
261 acceptor sites and 16,140 pseudo sites. Four
features were measured: the positional triplet
preferences in the conserved region ["18, +3], the
hexamer composition preferences in the potential
upstream intron region ["54, "1], the hexamer
composition preferences in the potential down-
stream coding region [+1, +54], and the branch-
site consensus preferences in the window ["30,
"5] upstream of AG.

An important feature of a correct acceptor
splicing site is the branch-site, which has a con-
served consensus pattern and is roughly located in
the region ["30, "5], upstream of the acceptor
site. Using the weight matrix in Zhang and Marr
(1994), we found the putative branch-site of each
intron with the highest score, and aligned them to
generate a new eight-nucleotide base pair matrix,
shown in Table 2.

The branch-site preference was scored by the
preference of a branch-site consensus vs a random
8-tuple. The actual position of the consensus is
unknown and varies among different genes, so we
scored all the 8-tuple nucleotide base pairs within
the window ["30, "5] upstream of the AG site
and selected the highest score as the putative
branch-site preference.

We built a linear discriminant function to
distinguish the acceptor sites from the pseudo sites.
The optimal classification is shown in Table 3.

The LDA score of each AG site was calculated
to range between 0 and 1. The minimum score for
? 1998 John Wiley & Sons, Ltd.
all 261 true acceptor sites was 0·002. We chose
threshold 0·001 for a candidate acceptor site and
we got 937 of them.

Splicing site linear discriminant analysis
identified more than 95% of the pseudo sites. The
remaining 5%, along with all the true sites, were
kept into the next level predictions. This largely
eliminated a combinatorial explosion of intron or
exon sample space due to large number of pseudo
splicing sites.

Intron prediction
Total
number

Classification

True
sites

Pseudo
sites

Donor sites 261 222 39
Pseudo sites 15,522 77 15,445
Position A C G T

1st 13·64 0·00 0·00 86·36
2nd 3·03 0·00 0·00 96·97
3rd 75·76 0·00 12·12 12·12
4th 0·00 100·00 0·00 0·00
5th 0·00 0·00 0·00 100·00
6th 96·97 0·00 3·03 0·00
7th 100·00 0·00 0·00 0·00
8th 0·00 78·79 0·00 21·21
Random 30·25 19·04 20·78 29·94

Table 3. Optimal acceptor site linear discriminant
Total
number

Classification

Acceptor
sites

Pseudo
sites

Acceptor sites 261 248 13
Pseudo sites 16,140 50 16,090
All the donor site candidates and the acceptor
site candidates selected from the splicing site
discriminant functions were paired as boundaries
of potential introns. Unlike exons, which have a
restriction of at least one ORF, introns do not
have a general known constraint. However,
analysis showed that all introns lie within the
length range of [30, 700]. A possible explanation of
the lower bound may be the physical hindrance
constraints.

We paired 388 donor site candidates and 937
acceptor site candidates into regions within the
above length constraint and obtained 1478 intron
candidates. 261 of them were correct introns (with
 . 14: 701–710 (1998)



correct boundaries) and the rest either overlapped level correlation coefficiency, 0·959, is higher than

Table 4. Optimal intron linear discrimination function Table 5. Intron and base pair level measurement of
intron classification by excluding overlap
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true introns or did not. As we have mentioned
above, all the boundaries (sites) were selected
based on their high scores, and some of the pseudo
splicing sites may have higher scores than some
of the true splicing sites. So, in addition to the
splicing site features, the compositional hexamer
preferences were added for intron discrimination.
The compositional hexamer preferences of a
region measure the difference between the com-
positional hexamer frequencies of introns and the
compositional hexamer frequencies of exons.

The final intron prediction combined all the
features of donor sites, acceptor sites, and the
compositional hexamer preferences. The optimal
discriminant function had the performance in
Table 4.

Although we identified only 177/261=67·8%
true introns (sensitivity) and 177/(177+53)=77·0%
correct classification (specificity), we observed that
most of the pseudo introns, which were classified
as putative introns, largely overlapped the true
introns. An easy way to improve our results is to
lower the threshold and exclude overlaps of
introns. Only the highest score intron survived if
two or more intron candidates overlapped. This
idea is consistent with the intron-definition mode
gene expression of yeast cell, because the cell is
able to identify introns without ambiguity.

We tested our classification by cross validations
on five test sets. Each set of tests was constructed
in this way: among all training sequences,
randomly select 80% for building a linear discrimi-
nant function and use it to predict introns on the
remaining 20% of sequences.

The average sensitivity, specificity, and
correlation coefficiency are shown in Table 5. On
the intron level, 92·9% of introns were correctly
predicted and 96·3% of predictions were introns.
On the base pair level, 93·2% of intron base pairs
were correctly predicted and 99·6% of predicted
base pairs were intron base pairs. The base pair
? 1998 John Wiley & Sons, Ltd.
other existing systems, to our knowledge. The
linear discriminant function is very robust.

Internal exon prediction
Total
number

Classification

Introns
Pseudo
introns

Introns 261 177 84
Pseudo introns 1217 53 1164
Measurement Sn Sp CC

Intron level 0·929 0·963
Base pair level 0·932 0·996 0·959

Sn, sensitivity; Sp, specificity; CC, correlation efficiency.
As with intron discriminant analysis, internal
exons also have flanking splicing boundaries: the
acceptor splicing sites at the 5*-end and the donor
splicing sites at the 3*-end. Potentially all of the
selected donor site and acceptor site candidates
can be paired to form exon boundaries. However,
there are ORF constraints on the exon region,
namely there must exist at least one ORF for each
exon. Besides the splicing site and the ORF con-
straints, exons have a strong bias to in-frame
hexamer frequencies. These in-frame hexamer fre-
quencies are very important to identify long stretch
exons but are much less sensitive to short exons,
which are difficult to detect. So we added the
length of exons as a separate feature in the
discriminant analysis.

The number of internal exons in a gene is one
less than the number of introns, and not every gene
has an internal exon. In our learning data set, there
are only 145 internal exons. If we paired 388
selected donor site candidates and 737 selected
acceptor site candidates, we got another set of 374
pseudo exons, each with at least one ORF.

The in-frame hexamer preferences were
measured between exon in-frame hexamer fre-
quencies and intron compositional hexamer
frequencies. The final internal exon prediction
combined all the features of donor sites and
acceptor sites, with the in-frame hexamer prefer-
ences and the log of exon length. The optimal
discriminant function had the performance in
Table 6.

If a true exon scores very high, the pseudo exons
overlapping to it will also score high, and some-
times even higher than some true exons in other
regions. To eliminate these clustering pseudo
exons, we lowered the threshold of the optimal
 . 14: 701–710 (1998)



discriminant function and excluded overlap of

triplet preferences, upstream hexamer prefer-

Table 6. Optimal internal exon linear discriminant
function

intron classification by excluding overlap

Table 8. The relationship between the length of ORFs
and the number of ORFs, exons and genes
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exons, as we did in intron prediction. Only the
highest score exon survives if two or more exon
candidates overlap.

We tested our classification by cross validation
on five test sets. Each set of tests was constructed
in this way: among all training sequences,
randomly select 80% for building a linear discrimi-
nant function and use it to predict introns on the
remaining 20% of sequences.

The average sensitivity, specificity, and
correlation coefficiency are shown in Table 7. On
the exon level, 94·2% of exons were correctly
predicted and 96·0% of predictions were exons. On
the base pair level, 98·5% of intron base pairs were
correctly predicted and 99·9% of predicted base
pairs were intron base pairs. The base pair level
correlation coefficiency, 0·983, is higher than other
existing systems, to our knowledge.

Almost every exon statistic is higher than that of
the introns. We observed that only a small set of
fission yeast genes have internal exons, and more-
over, each internal exon is surrounded by two
regulated introns with strong statistics. Thus the
internal exon prediction is better.

Initial exon prediction

We built a linear discriminant recognition

system to classify initiaton sites (ATG) from
pseudo sites. Similar to what we did on the splicing
sites, three features were measured: positional
? 1998 John Wiley & Sons, Ltd.
ences, and downstream hexamer preferences. We
extracted 116 true initiation sites and 4204 pseudo
sites and the linear discriminant function had the
optimal classification. All 116 initiation sites were
identified correctly, and among 4204 pseudo sites,
4188 were identified and 16 were misclassified as
true initiation sites.

Fortunately, we did not miss any true initiation
sites in this classification, and we had only 16
incorrect initiation sites. Since our intron predic-
tion is very accurate, the initial exon can be
identified by the following strategy. For each ini-
tiation site candidate, we checked its ORF and
compared it with the predicted introns. If they
overlapped, the candidate was predicted as a true
site, and its ORF was predicted as an initial exon.
This strategy can eliminate some pseudo initiation
sites, and others can be later judged in gene
assembly.

Open reading frames
Total
number

Classification

Exons
Pseudo
exons

Exons 145 108 37
Pseudo exons 374 24 350

Table 7. Exon and base pair level measurement of
Measurement Sn Sp CC

Exon level 0·942 0·960
Base pair level 0·985 0·999 0·983

Sn, sensitivity; Sp, specificity; CC, correlation coefficiency.
Length
(§bp)

No. of
ORFs

No. of
exons

No. of
genes

120 1308 285 116
180 490 216 112
240 247 174 108
300 176 146 100
360 142 130 96
420 118 112 92
480 105 101 87
540 92 90 83
600 88 86 80
680 80 79 74
720 71 71 67
As discussed above, ORFs are among the most
important features to identify the location of
genes. They can work independently without need-
ing extra information. We searched all the ORFs
in the data set (Table 8).

Table 8 showed a strong correlation between the
length of ORFs and the real exons: the longer an
ORF, the more likely it is to be an exon. If we set
a threshold of 420 bp for an ORF to be the
putative location of a gene, solely based on this, we
were able to determine 112 exons and 92 genes.
The gap between 116 ORFs and 112 exons is small.
 . 14: 701–710 (1998)



Table 9. Final exon open reading frame discriminant
analysis

Table 10. Gene assembly statistics on gene, exon,
intron and base pair levels
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However, the actual gap is even smaller because
one exon may have more than one ORF and some
other genes may not be discovered but may be
sequenced in the data.

Final exon prediction
Intron-less genes
Among 116 genes, 112 have the longest ORFs in
the final exons. We built a linear discriminant
function to identify true ORFs and a final exon
would be found if a predicted intron overlapped a
predicted ORF.

We set a threshold of 210 bp for ORFs and
obtained 334 non-coding ORFs and 112 coding
ORFs. The linear discriminant function had two
features, the in-frame hexamer preferences and the
log of ORF length. The optimal classification is
shown in Table 9.

We observed that all the coding ORFs we clas-
sified were true but 14 coding ORFs were missed
and most of them were shorter than 210 bp. Thus,
we chose to change the length threshold to include
more ORFs and let the gene assembly program
decide which are true.

Gene assembly

Gene assembly is an option in our program. The

assembly combined all the predictions of 5*, inter-
nal, 3* exons and introns. Since we had the intron
prediction, the gene assembly can be easily done
through dynamic programming with four rules in
the following order: (1) a gene must have at least
one ORF; (2) a gene with more components of
exons or introns has an advantage over a gene with
fewer components; (3) a gene with an initial exon
has an advantage over a gene without an initial
exon; (4) a gene with a final exon has an advantage
over a gene without a final exon.

There is no danger of assembling multiple genes
into one because the intron prediction limits the
size of a gene in two ways. One is the length
? 1998 John Wiley & Sons, Ltd.
constraint on introns and another is that if two
exons were adjacent in a gene there should exist an
intron joining them.

The algorithm first translated framed exons
and introns into vertices in a graph, with weights
as the scores of the linear discriminant function.
An adjacent exon and intron pair was translated
into a directed edge in the graph. Each path in the
graph was weighted according to the four rules
described above. Dynamic programming was ap-
plied to find all the non-overlapped maximal
weight paths, each of which gave the structure of a
gene.

We tested the program in our 116 training data
and obtained the statistics in Table 10.

We predicted 78% genes with correct splicing
structure. The exon level and intron level predic-
tion statistics are also very high and the base pair
level correlation coefficiency is 0·972.
Total
number

Classification

Coding
ORFs

Non-coding
ORFs

Coding ORFs 112 98 14
Non-coding ORFs 334 0 334
Measurement Sn Sp CC

Gene level 0·784 1·00
Exon level 0·920 0·946
Intron level 0·942 0·957
Base pair level 0·987 0·999 0·972

Sn, sensitivity; Sp, specificity; CC, correlation efficiency.
The intron-less genes were predicted by the same
function for the final exons, except that we also
considered any ORFs longer than 600 bp as genes.
Also taken into account were ORFs that did not
overlap with any introns and satisfied two rules:
(1) the ORF has an ATG in the reading frame and
(2) the distance from the first ATG to a stop codon
is at least 360 bp.

So 204 intron-less genes were extracted from
GenBank and they all had coding regions on the
forward strand with correct boundaries and
correct reading frames. We predicted 156 (76·5%)
genes with correct initiation and stopping sites and
202 (99·0%) genes with correct stopping sites (and
also reading frames). We had no false predictions.
These 204 genes had not been used for training
statistics.
 . 14: 701–710 (1998)
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Final output of gene arrangements combined
gene assembly results with intron-less genes. The
strategy was to fill the gaps between complex genes
(with at least one intron) with intron-less genes.
Overlapped genes on the same strand were not
permitted, but we accepted genes with less than
20% overlaps on the different strands.
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