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Abstract

We present pomegranate, an open source machine learning package for probabilistic modeling in

Python. Probabilistic modeling encompasses a wide range of methods that explicitly describe

uncertainty using probability distributions. Three widely used probabilistic models implemented

in pomegranate are general mixture models, hidden Markov models, and Bayesian networks. A

primary focus of pomegranate is to abstract away the complexities of training models from their

definition. This allows users to focus on specifying the correct model for their application instead

of being limited by their understanding of the underlying algorithms. An aspect of this focus

involves the collection of additive sufficient statistics from data sets as a strategy for training

models. This approach trivially enables many useful learning strategies, such as out-of-core learning,

minibatch learning, and semi-supervised learning, without requiring the user to consider how to

partition data or modify the algorithms to handle these tasks themselves. pomegranate is written

in Cython to speed up calculations and releases the global interpreter lock to allow for built-in

multithreaded parallelism, making it competitive with—or outperform—other implementations of

similar algorithms. This paper presents an overview of the design choices in pomegranate, and

how they have enabled complex features to be supported by simple code. The code is available at

https://github.com/jmschrei/pomegranate
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1. Introduction

The Python ecosystem is becoming increasingly popular for the processing and analysis of data.
This popularity is in part due to easy-to-use libraries such as numpy (van der Walt et al., 2011),
scipy (Jones et al., 2001), and matplotlib (Hunter, 2007) that aim to provide fast general purpose
functionality. However, equally important are the libraries that are built on top of these to provide
higher level functionality, such as pandas (McKinney, 2010) for data analysis, scikit-image (van der
Walt et al., 2014) for computer vision, Theano (Theano Development Team, 2016) for efficient
evaluation of mathematical expressions, gensim (Řehůřek and Sojka, 2010) for topic modeling in
natural language processing, and countless others. Naturally, many machine learning packages have
also been developed for Python, including those that implement classic machine learning algorithms,
such as scikit-learn (Pedregosa et al., 2011), mlpy (Albanese et al., 2012), shogun (Sonnenburg et al.,
2017), and xgboost (Chen and Guestrin, 2016).

pomegranate fills a gap in the Python ecosystem that encompasses building probabilistic machine
learning models that utilize maximum likelihood estimates for parameter updates. There are several
packages that implement certain probabilistic models in this style individually, such as hmmlearn
for hidden Markov models, libpgm for Bayesian networks, and scikit-learn for Gaussian mixture
models and naive Bayes models. However, pomegranate implements a wider range of probabilistic
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models and does so in a more modular fashion than these other packages, having two main effects.
The first is that the addition of a new probability distribution in pomegranate allows for all models
to be built using that distribution immediately. The second is that improvements to one aspect of
pomegranate immediately propagate to all models that would use that aspect. For example, when
GPU support was added to multivariate Gaussian distributions, this immediately meant that all
models with multivariate Gaussian emissions could be GPU accelerated without any additional code.
pomegranate currently includes a library of basic probability distributions, naive Bayes classifiers,
Bayes classifiers, general mixture models, hidden Markov models, Bayesian networks, Markov chains,
as well as implementations of factor graphs and k-means++/|| that can be used individually but
primarily serve as helpers to the primary models.

There are several already existing Python libraries that implement Bayesian methods for prob-
abilistic modeling. These include, but are not limited to, PyMC3 (Salvatier et al., 2016), PyStan
(Stan Development Team, 2016), Edward (Tran et al., 2016), pyro (Inc., 2017), and emcee (Foreman-
Mackey et al., 2013). Bayesian approaches typically represent each model parameter as its own
probability distribution, inherently capturing the uncertainty in that parameter, whereas maximum
likelihood approaches typically represent each model parameter as a single value. An example of this
distinction is that a mixture model can either be represented as a set of probability distributions and
a vector of prior probabilities, or as a set of probability distributions that themselves have probability
distributions over their respective parameters (such as the mean and standard deviation, should
these distributions be normal distributions) and as a dirichlet distribution representing the prior
probabilities. The first representation typically specifies models that are faster to both train and
perform inference with, while the second is illustrative of the type of models one could build with
packages that implement Bayesian methods, such as PyMC3. Both representations have strengths
and weaknesses, but pomegranate implements models falling solely in the first representation.

pomegranate was designed to be easy to use while not sacrificing on computational efficiency.
Models can either be specified by writing out each of the components individually if known beforehand,
or learned directly from data if not. Key features, such as out-of-core learning and parallelization, can
be toggled for each model independently of the definition or method calls, typically by simply passing
in an optional parameter. The core computational bottlenecks are written in Cython and release the
global interpreter lock (GIL), enabling multi-threaded parallelism that typically Python modules
cannot take advantage of. Lastly, linear algebra operations such as matrix-matrix multiplications are
implemented using BLAS with the ability to toggle a GPU if present.

All comparisons were run on a computational server with 24 Intel Xeon CPU E5-2650 cores
with a clock speed of 2.2 GHz, a Tesla K40c GPU, and 256 GB of RAM running CentOS 6.9. The
software used was pomegranate v0.8.1 and scikit-learn v0.19.0. pomegranate can be installed using
pip install pomegranate or conda install pomegranate on all platforms. Pre-built wheels
are available for Windows builds, removing the sometimes difficult requirement of a working compiler.

2. The API

pomegranate provides a simple and consistent API for all implemented models that mirrors the
scikit-learn API as closely as possible. The most important methods are fit , from_samples ,

predict and probability . The fit method will use the given data and optional weights to
update the parameters of an already initialized model, using either maximum-likelihood estimates
(MLE) or expectation-maximization (EM) as appropriate. In contrast, the from_samples method

will create a model directly from data in a manner similar to scikit-learn’s fit method. For simple
models like single distributions this corresponds only to MLE on the input data, but for most other
models this corresponds to an initialization step plus a call to fit . This initialization can range
from using k-means for mixture models to structure learning for Bayesian networks. The predict

method returns the posterior estimate argmaxMP (M |D), identifying the most likely component of
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the model for each sample. The probability method returns the likelihood of the data given the

model P (D|M). The other methods include predict_proba which returns the probability of each

component for each sample P (M |D), predict_log_proba which returns the log of the previous

value, and summarize and from_summaries that jointly implement the learning strategies detailed
below.

3. Key Features

pomegranate supports many learning strategies that can be employed during training, including
out-of-core learning for massive data sets, semi-supervised learning for data sets with a mixture of
labeled and unlabeled data, and minibatch learning. In addition, one can employ multithreaded
parallelism or a GPU for data-parallel speedups. These features are made possible by separating out
the collection of sufficient statistics from a data set (using the summarize method) from the actual
parameter update step (using the from_summaries method).

Sufficient statistics are the smallest set of numbers needed to calculate some statistic on a data
set. As an example, fitting a normal distribution to data involves the calculation of the mean and
the variance. The sufficient statistics for the mean and the variance are the sum of the weights of

the points seen so far
(

n
∑

i=1

wi

)

, the sum of the weighted samples
(

n
∑

i=1

wiXi

)

, and the sum of the

weighted samples squared
(

n
∑

i=1

wiX
2

i

)

. The mean and variance can then be directly calculated from

these three numbers using the following two equations:

µ =

n
∑

i=1

wiXi

n
∑

i=1

wi

σ2 =

n
∑

i=1

wiX
2

i

n
∑

i=1

wi

−









n
∑

i=1

wiXi

n
∑

i=1

wi









2

(1)

Out-of-core Learning: The additive nature of the sufficient statistics means that if one were to
summarize two batches of data successively and then add the sufficient statistics together, they would
get the same sufficient statistics as if they were calculated from the full data set. This presents
an intuitive way to handle data sets that are too large to fit in memory, by chunking the data
set into batches that do fit in memory and summarizing them successively, adding the calculated
sufficient statistics together afterwards. This can be done by passing in a batch_size parameter to

your training method, for example model.fit(X, batch_size=10000) would train a pre-initialized
model on more data than can fit in memory by successively summarizing batches of size 10,000 until
the full data set has been seen. The summarize and from_summaries methods can also be used
independently to implement custom out-of-core strategies.

Minibatch Learning: A natural extension of the out-of-core strategy is minibatch learning, where
a parameter update is done after one or a few batches, instead of the full data set. This is in contrast
to batch methods that calculate an update using the entire data set, and stochastic methods that
typically update using only a single sample. Minibatching can be specified by passing values to both
batch_size and batches_per_epoch parameters when using fit or from_summaries , where

the batches_per_epoch is the number of batches to consider before making an update.

Semi-supervised Learning: Semi-supervised learning is the task of fitting a model to a mixture
of both labeled and unlabeled data. Typically this arises in situations where labeled data is sparse,
but unlabeled data is plentiful, and one would like to make use of both to learn an informed model.
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pomegranate supports semi-supervised learning for HiddenMarkovModel , BayesClassifier , and

NaiveBayes models as a combination of EM and MLE. Models are initialized using MLE on the
labeled data. Next, a version of EM is used that combines the sufficient statistics calculated from
the labeled data using MLE with the sufficient statistics calculated from the unlabeled data using
EM at each iteration until convergence. This is automatically toggled whenever -1 is present in the
label set, following scikit-learn conventions.

This EM-based approach compares favorably to scikit-learn. To demonstrate, we generate a data
set of 100k samples in 10 dimensions from 2 overlapping Gaussian ellipses with means of 0 and 1
respectively and standard deviations of 2. It took pomegranate ∼0.04s to learn a Gaussian naive
Bayes model with 10 iterations of EM, ∼0.2s to learn a multivariate Gaussian Bayes classifier with a
full covariance matrix with 10 iterations of EM, whereas the scikit-learn label propagation model
with a RBF kernel did not converge after ∼220s and 1000 iterations, and took ∼2s with a knn kernel
with 7 neighbors. Both pomegranate models achieved validation accuracies over 0.75, whereas the
scikit-learn models did no better than chance.

Parallelism: Another benefit of the use of additive sufficient statistics is that it presents a clear
data-parallel way to parallelize model fitting. Simply, one would divide the data into several batches
and calculate the sufficient statistics for each batch locally. These sufficient statistics can then be
added together back on the main job and all parameters updated accordingly. This is implemented by
dividing the data into batches and running summarize on each of them using separate threads and
then running from_summaries after all threads finish. Typically, the global interpreter lock (GIL)
in Python prevents multiple threads from running in parallel in the same python process. However,
since the computationally intensive aspects are written in Cython the GIL can be released, allowing
for multiple threads to run at once. On a synthetic data set with 3M samples with 1K dimensions
it takes ∼65 seconds to train a Gaussian naive Bayes classifier using pomegranate with 1 thread,
but only ∼17 seconds with 8 threads. For comparison, it takes ∼53 seconds to train a Gaussian
naive Bayes classifier using scikit-learn. On another synthetic data set with 2M samples and 150
dimensions it takes pomegranate ∼470s to learn a Gaussian mixture model with a full covariance
matrix with 1 thread, ∼135s with 4 threads, ∼57s with 16 threads, and ∼200s using a GPU. Lastly,
we compared the speed at which pomegranate and hmmlearn could train a 10 state dense Gaussian
hidden Markov model with diagonal covariance matrices. On a synthetic data set of 100 sequences,
each containing 1,000 10 dimensional observations, it took hmmlearn ∼25s to run five iterations of
Baum-Welch training, while it only took pomegranate ∼13s with 1 thread, ∼4s with 4 threads, and
∼2s with 16 threads.

4. Discussion

pomegranate aims to fill a niche in the Python ecosystem that exists between classic machine learning
methods and Bayesian methods by serving as an implementation of flexible probabilistic models.
The design choices that were made early on while building pomegranate allowed for a great number
of useful features to be added later on without significant effort.

A clear area of improvement in the future is the handling of missing values, because many
probabilistic models can intuitively modify the EM algorithm to infer these missing values. For
example, when trying to learn a Bayesian network over a data set with missing values, one can identify
the best structure over the incomplete data set, infer the missing values, and relearn the structure,
iterating until convergence. Given the prevalence of missing data in the real world, extending
pomegranate to handle missing data efficiently is a priority.
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