

Imperial College
OF SCIENCE, TECHNOLOGY AND MEDICINE

Department of Computing
180 Queen’s Gate, London SW7 2BZ, U.K.

Ponder:
A Language for Specifying Security

and Management Policies for
Distributed Systems

The Language Specification

Version 2.3
Imperial College Research Report DoC 2000/1

20 October, 2000

Nicodemos Damianou, Naranker Dulay, Emil Lupu, Morris Sloman
Contact: policy-99@doc.ic.ac.uk

http://www-dse.doc.ic.ac.uk/policies

Ponder Version 2.3 2

 ABSTRACT

This document defines a declarative, object-oriented language for specifying policies for the security
and management of distributed systems. The language includes constructs for specifying the
following basic policy types: authorisation policies that define permitted actions; event-triggered
obligation policies that define actions to be performed by manager agents; refrain policies that define
actions that subjects must refrain from performing; and delegation policies that define what
authorisations can be delegated and to whom. Filtered actions extend authorisations and allow the
transformation of input or output parameters to be defined. Constraints specify limitations on the
applicability of policies while meta-policies define semantic constraints on permitted policies. Policy
groups define a scope for related policies to which a common set of constraints can apply. Roles
define a group of policies relating to positions within an organisation. Relationships define a group of
policies pertaining to the interactions between a set of roles. Management structures define a
configuration of role instances as well as the relationships between them. This document defines the
grammar for the various types of policies in EBNF and provides simple examples of the constructs.

Keywords: Management, security, policy, delegation, role, management configuration

Ponder: to give thorough or deep consideration (to); mediate (upon)

Ponder Version 2.3 3

CONTENTS
1 INTRODUCTION...5

1.1 Policy Concepts Overview ..5

2 PRELIMINARIES ..7
2.1 Syntax ...7
2.2 Lexical Conventions ..7

2.2.1 Comments..7
2.2.2 Identifiers ...7
2.2.3 Paths..8
2.2.4 Keywords ...8
2.2.5 Operators ...8
2.2.6 Literals ...8

2.3 Pre-defined Types and Constants...9
2.4 Expressions...9

2.4.1 Precedence Rules ...9
2.5 Domain Scope Expressions ..9

3 PONDER SPECIFICATIONS..12
3.1 Ponder Policies ...12
3.2 Scope ..13
3.3 Policy Type Definitions..13
3.4 Policy Instance Declarations ...13
3.5 Domain Statements...14
3.6 Import Statements...14

3.6.1 Scripts ..15
3.7 Event Definitions ...15
3.8 Constraint Definitions ..16
3.9 Constant Definitions ..17
3.10 External Specifications..17
3.11 Parameters..18

3.11.1 Formal Parameters ..18
3.11.2 Actual Parameters ...19

4 BASIC POLICIES..20
4.1 Policy Elements...20
4.2 Authorisation Policies..20

4.2.1 Positive Authorisation Policies...20
4.2.2 Negative Authorisation Policies ...22

4.3 Obligation Policies...23
4.3.1 Obligation Actions..23
4.3.2 Events ..24

Ponder Version 2.3 4

4.3.3 Exceptions ...24
4.3.4 Selecting Subjects ...24

4.4 Refrain Policies ...26
4.5 Delegation Policies..26

4.5.1 Associated Authorisation ...27
4.5.2 Subjects, Targets and Grantees..27
4.5.3 Delegated Access Rights...27
4.5.4 Cascaded Delegation ..27
4.5.5 Delegation Constraints ..28

5 COMPOSITE POLICIES ...30
5.1 Groups...30
5.2 Roles ...31
5.3 Relationships...31
5.4 Management Structures..32
5.5 Policy Type Specialisation ..33

6 META-POLICIES ..35

7 CONSISTENCY RULES ...38
7.1 Basic Policies ..38
7.2 Composite Policies..38

8 OBJECT LIBRARIES ...39
8.1 Timer ...39
8.2 Time ..40
8.3 Domain ..40

9 FUTURE WORK..41

10 REFERENCES..42

11 FURTHER EXAMPLES ..43

12 ANNOTATED BASE-CLASS DIAGRAM ...49

Ponder Version 2.3 5

1 INTRODUCTION
This document acts as an informal language reference for Ponder, a language for specifying security
and management policies for distributed systems. Ponder is derived from earlier policy specification
notations developed at Imperial College over a number of years. (Sloman 1994b; Marriott and Sloman
1996; Marriott 1997). Ponder is a declarative, object-oriented language for specifying different types of
policies, for grouping policies into roles and relationships, and then defining configurations of roles
and relationships as management structures. Ponder can be used to specify security policies with
role-based access control, as well as general-purpose management policies. It is intended to be
extensible to cater for future types of policies. This document describes the grammar of the language
and demonstrates its features through small examples. Some rationale for the design decisions is
also included. Background information on the various language constructs can be found in the
references given in section 10, although the syntax of the policy language has changed significantly.

Ponder is a declarative language with an object-orient model. Ponder does not assume a particular
implementation platform; rather Ponder can map to, and co-exist with, one or more existing underlying
platforms. We envisage a variety of ‘back-ends’ will be available. For example, we plan to provide
back-ends that generate filters and access control lists for implementing security policy on various
security aware platforms, e.g. operating systems such as Windows NT and Linux, distributed
programming environments such as CORBA and JAVA, and technologies such as firewalls. Ponder
can be used to manage one or more of these platforms simultaneously. Ponder could also be used to
generate IETF policy schema for quality of service related policies, XML for transport across the
network and ease of viewing via XML aware browsers.

1.1 Policy Concepts Overview
In Ponder, a policy is a rule that can be used to change the behaviour of a system. Separating
policies from the managers that interpret them allows the behaviour and strategy of the management
system to be changed without re-coding the managers. The management system can then adapt to
changing requirements by disabling policies or replacing old policies with new ones without shutting
down the system.

Ponder supports an extensible range of policy types. Authorisation policies are essentially security
policies related to access-control and specify what activities a subject is permitted or forbidden to do,
to a set of target objects. They are designed to protect target objects so are interpreted by access
control agents or the run-time systems at the target system. Obligation policies specify what activities
a subject must do to a set of target objects and define the duties of the policy subject. Obligation
policies are triggered by events and are normally interpreted by a manager agent at the subject.
Refrain policies specify what a subject must refrain from doing and are similar to negative
authorisation policies but are interpreted by the subject. Delegation policies specify which actions
subjects are allowed to delegate to others. A delegation policy thus specifies an authorisation to
delegate. Composite policies are used to group a set of related policy specifications within a
syntactic scope with shared declarations in order to simplify the policy specification task for large
distributed systems. Four types of composite policies are provided: groups, roles, relationships and
management structures. Constraints can be specified to limit the applicability of policies based on
time or values of the attributes of the objects to which the policy refers. Meta-policies are policies
about which policies can coexist in the system or what are permitted attribute values for a valid policy.
For example, a semantic conflict may arise if there are two policies which increase and decrease
bandwidth allocation when the same event occurs, or a conflict of duty may arise if there is a policy
permitting the same manager to both sign cheques and authorise payment.

Domains provide a means of grouping objects to which policies apply and can be used to partition the
objects in a large system according to geographical boundaries, object type, responsibility and
authority or for the convenience of human managers (Sloman and Twidle 1994a; Sloman 1994b).
Membership of a domain is explicit and not defined in terms of a predicate on object attributes. A
domain does not encapsulate the objects it contains but merely holds references to object interfaces.
A domain is thus very similar in concept to a file system directory but may hold references to any type
of object, including a person. A domain, which is a member of another domain, is called a sub-
domain of the parent domain. Objects can be members of multiple domains i.e. domains can overlap.
Path names are used to identify domains. In figure 1, domain D can be referred to as /A/B/D or
/A/C/D as an object may have different local names with multiple parent domains, where / is used
as a delimiter for domain path names. Policies normally propagate to members of sub-domains, so a
policy applying to domain C will also apply to members of domains D and E.

Ponder Version 2.3 6

A C

EDB

A

B C

D E

Figure 1. Domains
Organisational structure is often specified in terms of organisational positions such as regional, site
or departmental network manager, service administrator, service operator, company vice-president.
Specifying organisational policies for people in terms of role-positions rather than named persons
permits the assignment of a new person to the position without re-specifying the policies referring to
the duties and authorisations of that position. The tasks and responsibilities corresponding to the
position are grouped into a role associated with the position (which is essentially a static concept in
the organisation). The position could correspond to a manager or a user of a network or services. A
role is thus the position, the set of authorisation policies defining the rights for that position and the
set of obligation policies defining the duties of that position as defined in the Imperial College role-
based management framework (Lupu 1998). All policies within a role have the same subject domain.
A person or automated agent can then be assigned to or removed from the subject domain without
changing the policies, as explained (Lupu and Sloman 1997b; Lupu and Sloman 1997c).

 Subject Domain

Target Domains &
Managed Objects

Role Authorization &
Obligation Policies

Role

Figure 2. Management Roles
It is useful to group the policies, constraints and interaction protocols relating to common relationships
between a number of roles. For example a supervision relationship between a head of department
and group leader or a lecturer–student relationship. Role relationships specify policies about the
interaction between roles, policies relating to shared objects and the protocols for interaction.

Organisations often have branches or departments with similar roles and relationships e.g. a branch
of a bank or university department. Management structures are used to define configurations of role
and relationship instances within an organisational unit. The management structure can then be
instantiated for each branch.

Ponder Version 2.3 7

2 PRELIMINARIES

2.1 Syntax
The syntax of Ponder is defined using the EBNF notation as specified in ISO/IEC 14977:1996(E). The
most important features of EBNF used in this document are as follows:

• Terminal identifiers/symbols are quoted

• [and] indicate optional elements

• { and } indicate repetition. Zero or more elements

• (and) group items together

• | is the definition separator symbol. It separates alternatives in a grammar rule

• = is the defining symbol. On the left-hand side is the name of the grammar rule, and on the
 right-hand side is the definition of that name

• ; is the terminator symbol. Every rule is terminated by this symbol

• , is the concatenate symbol. Different terms in the same rule are separated by this symbol

• { and }- represents a sequence of one or more of the elements specified within the braces

The grammar syntax rules are indicated in constant width font type. Examples are presented in
italic constant width font type with language keywords in bold.

2.2 Lexical Conventions
2.2.1 Comments
The characters /* start a multi-line comment which terminates with the characters */. The
characters // start a single-line comment which terminates at the end of the line on which they occur.
The characters /* and // have no special meaning within a multi-line comment, and the characters
//, /* and */ have no special meaning within a single-line comment, so they are treated as part of
the comment text.

2.2.2 Identifiers
An identifier in Ponder is an arbitrarily long sequence of letters and digits. The first character of an
identifier must be a letter, other than the underscore _, which is also considered a letter. Upper and
lower case letters are distinguished, and all characters are significant.

ident = letter, { letter | digit | '_' } ;
letter = l_case | u_case ;
u_case = 'A' | 'B' | 'C' | 'D' | 'E' | 'F' | 'G' | 'H' | 'I' | 'J' |

'K' | 'L' | 'M' | 'N' | 'O' | 'P' | 'Q' | 'R' | 'S' | 'T' |
'U' | 'V' | 'W' | 'X' | 'Y' | 'Z' ;

l_case = 'a' | 'b' | 'c' | 'd' | 'e' | 'f' | 'g' | 'h' | 'i' | 'j' |
'k' | 'l' | 'm' | 'n' | 'o' | 'p' | 'q' | 'r' | 's' | 't' |
'u' | 'v' | 'w' | 'x' | 'y' | 'z' ;

digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;

Examples

Managers x_coord year_2000 SATURDAY

Ponder Version 2.3 8

2.2.3 Paths
Paths in Ponder are used to indicate the location of an object, policy type definition or policy instance
in the domain hierarchy (see section 2.5 Domain Scope Expressions). Paths are either absolute or
relative and defined similarly to Unix file pathnames.

path = absolute_path | relative_path ;
absolute_path = '/.' | ('/', (path_seq | (path_seq, {'/',path_seq}-)),

['/' | '/-']) ;
relative_path = ('../', [path_seq]) | ['../'], ((path_seq, '/', ['-']) |

(path_seq, {'/' path_seq}-, ['/' | '/-'])) ;
path_seq = non_digit, {digit | non_digit} ;
ident_or_path = ident | path;

Examples

/dept/sales/salesmen
secretaries/
/. // the root

2.2.4 Keywords
The following symbols (mostly identifiers) are reserved for use as keywords:

action auth+ auth- boolean catch constraint
deleg+ deleg- do domain event extends
extern grantee group hops import in
inst int meta mstruct oblig on
raises refrain rel result role set
spec string subject target type user
valid when

The following identifiers are keywords adopted from the Object Constraint Language - OCL (OMG
1999):

and bag collection else endif enum
false implies not or sequence then
true xor

2.2.5 Operators
The following characters are used as operators. No white-space is permitted between two character
operators.

@ ! -> || && ^ = <> < <= > >= +
- * /

The following characters are used as operators and/or for punctuation:

| .. () { } [] . : , ;

2.2.6 Literals
The following literals (often referred to as constants) are supported by the grammar. The literals
supported are the same as those defined in (OMG 1999).

Integer-constant – consists of a sequence of digits and is taken to be decimal (base ten).

Real-constant – consists of an integer part, a decimal point, a fraction part and an optional
exponent part. The integer and fraction parts both consist of a sequence of decimal digits. The
exponent part contains an e or E, an optional sign (+ or -) and an integer number.

String-constant – a sequence of characters surrounded by double quotes.

Ponder Version 2.3 9

Boolean-constant – takes the values true or false, denoted by the reserved keywords true and
false.

Examples

999 3.14159265385 10E+12 “administrator” true

2.3 Pre-defined Types and Constants
The following types are predefined in Ponder:

int, real, string, boolean, domain, set, event, action, constraint,
auth+, auth-, oblig, refrain, deleg+, deleg-, group, role, rel, mstruct,
meta.

Two constants are also pre-defined: true and false.

2.4 Expressions
Expressions in Ponder follow the Object Constraint Language version 3 (OCL) syntax (OMG 1999).
Ponder includes a subset of OCL with minor features of OCL not currently included. These are: Time-
expressions, the context specification part which in Ponder is always implied (it is the current policy
scope), and the let-expression.

2.4.1 Precedence Rules
The precedence order for the operators in Ponder expressions is:

• dot and arrow operations: ‘.’, ‘->’

• unary ‘not’ and unary minus ‘-’

• ‘*’ and ‘/’

• ‘+’ and binary ‘-’

• ‘if-then-else-endif’

• ‘<’, ‘>’, ‘<=’, ‘>=’

• ‘<>’ and ‘=’

• ‘and’, ‘or’ and ‘xor’

• ‘implies’

Parenthesis ‘(’ and ‘)’ can be used to change precedence.

2.5 Domain Scope Expressions
Domain scope expressions are used to combine domains to form a set of objects for applying a policy
to. The set of objects (i.e. the domain scope expression) to which a policy applies is evaluated each
time that the policy is interpreted because domain membership can change dynamically. Note: in
practice, implementation optimisations are used to minimise run-time evaluation.

The different domain scope expression operators are explained in table 1. Note: the set union,
difference and intersection operators have equal precedence and are evaluated left to right. The
unary operators ‘*’ and ‘@’ have higher precedence.

domain_scope_expression =
domain_object |
'{', domain_object, '}' |
'*', [int_value], domain_object |
'@', [int_value], domain_object |
'(', domain_scope_expression, ')' |
domain_scope_expression, '+', domain_scope_expression |

Ponder Version 2.3 10

domain_scope_expression, '-', domain_scope_expression |
domain_scope_expression, '^', domain_scope_expression ;

domain_object := ident_or_path, { ('.', object_attr) |
('.', action_call) |
('->', feature_call) } ;

object_attr = 'subject' | 'target';
action_call = ident, '(', [actual_parameters], ')' ;

feature_call is an action call on Collections defined in the OCL version 3 specification. It is
included in domain-scope-expressions to allow the selection of subsets for subject and target
specifications. See section 4.3 on obligation policies for an example.

Syntax Explanation
D Returns all non-domain members of the domain-object d and all distinct non-

domain members of all nested sub-domains recursively traversed all levels down
the domain structure.

@d

@nd
If d is a domain, returns a set that contains all non-domain members of the
domain. The integer constant n specifies that the domain structure is to be
traversed n levels down, e.g. n = 1 specifies only direct members, whereas n = 2
would include distinct members of the sub-domains of d also. If n is omitted, all
nested sub-domains are recursively traversed.
If d is a non-domain object, returns a set that contains the non-domain object.

*d
*nd

Returns a set that contains all non-domain and all domain members of the domain
d, including the domain itself. The integer constant n specifies that the domain
structure is to be traversed n levels down. If n is omitted, all nested sub-domains
are recursively traversed.

{c} Returns a set that contains the object c.
a+b Returns a set that contains all distinct members of a and b (Set Union).
a^b Returns a set that contains only members that are in both a and in b (Set

Intersection)
a-b Returns a set that contains members of a that are not also in b (Set difference)

Table 1. Domain Scope Expressions

A domain-object can be:

• A path

• A name declared within the same scope, of type domain or set, that is assigned a domain path

• A domain library call on a name of type domain declared within the same scope; such a call
evaluates to a domain. E.g. myDomain.get(“b/c”) evaluates to the domain b/c relative to the
domain already assigned to the name myDomain.

Examples
Given:

Domain Direct Members
A {B, C, a1, ab, ac, x}
B {D, b1, ab, bc, bd, x}
C {D, E, c1, ac, bc, cde, x}
D {d1, bd, cde, x}
E {e1, cde, x}

Ponder Version 2.3 11

A

B C

D E

level 1

level 2

level 3

Figure 3. Domain structure

Domain Scope Expression Resulting Set
/A {a1, ab, ac, x, b1, bc, bd, c1, cde, d1, e1}
/A/B {b1, ab, bc, bd, x, d1, cde}
/A/C {c1, ac, bc, cde, x, d1, bd, e1}
/A/B + /A/C {b1, ab, bc, bd, x, d1, cde, c1, ac, e1}
/A/B + /A/C - /A/B/D {b1, ab, bc, x, c1, ac, e1}
*/A {A, B, C, D, E, a1, ab, ac, x, b1, bc, bd, c1, cde, d1, e1}
*/A/B {B, D, b1, ab, bc, bd, x, d1, cde}
*/A/C {C, D, E, c1, ac, bc, cde, x, d1, bd, e1}
*/A/B ^ */A/C {D, bc, bd, x, d1, cde}
@1/A {a1, ab, ac, x}
*2/A {A, B, C, D, E, a1, ab, ac, x, b1, bc, bd, c1, cde}
domain current = /A;
@2 current.get(“/B”) {b1, ab, bc, bd, x, d1, cde}

Ponder Version 2.3 12

3 PONDER SPECIFICATIONS
A Ponder specification consists of type definitions, instance declarations, domain statements and
import statements.

ponder_specification =
{import_or_domain | type_or_instance} ;

import_or_domain = (import_statement | domain_statement) ;

type_or_instance =
('type', {type_definition}-) | ('inst', {inst_declaration}-) ;

3.1 Ponder Policies
Ponder supports the following kinds of policies:

Basic policies Keyword
Positive Authorisation Policy auth+

Negative Authorisation Policy auth-

Obligation Policy oblig

Refrain Policy refrain

Positive Delegation Policy deleg+

Negative Delegation Policy deleg-

Composite policies Keyword
Group group

Role role

Relationship rel

Management Structure mstruct

Other Keyword
Meta-Policy meta

Table 2. Ponder Policies

Ponder policies can be visualised as base classes forming an inheritance hierarchy. Classes in italic
font in the following diagram (figure 4) are abstract classes. There is a concrete class for each of the
Ponder policies specified in table 2. Users can create instances of concrete classes directly, or use
type definitions to effectively create user-defined sub-classes of the corresponding base-class. Base-
classes can be thought of as templates from which instances and types can be created in an object-
oriented fashion.

Extending the Ponder language to cater for new kinds of policies is simplified using an underlying
object-oriented implementation. Ponder can be extended by adding new base sub-classes to the
existing ones, or by adding new attributes to existing base classes

Ponder Version 2.3 13

Object

MetaPol CompositePolicyBasicPolicy

auth oblig refrain deleg role rel mstruct

auth+ auth- deleg+ deleg-

group

Figure 4. Ponder Base-Class Diagram

3.2 Scope
A name declared in a syntactic block (typically in a policy) is local to that block and can be used within
it. Forward references to identifiers declared later in the same scope are allowed.

3.3 Policy Type Definitions
A type definition introduces a new user-defined policy type, from which one or more policy instances
of that type can be created. The name of the policy type is specified as an identifier, or as a domain
path to indicate the place within the domain structure where the type definition will be stored. In the
case of an identifier or a relative path, the policy type is stored relative to the current working domain,
which can be specified with the domain definition (see section 3.5).

type_definition = (policy_type | group_type | role_type | rel_type |
mstruct_type | meta_type) ;

policy_type = pos_auth_type | oblig_type | neg_pol_type | deleg_type ;

Examples

type
oblig allocBwT(subject m, target o) {

on perfDegradation(bw,source);
do bwReserve(bw+10);

} // allocBwT

3.4 Policy Instance Declarations
A policy instance declaration creates an instance of a user-defined policy type. The name of the policy
instance is specified either as an identifier, or as a domain path to indicate the place within the domain
structure where the policy instance will be stored. In the case of an identifier or a relative path, the
policy instance is stored relative to the current working domain. A policy instance in Ponder can also
be specified inline without specifying a user-defined policy type.

instantiation = ident_or_path , '=', actual_call_decl, ';' ;

actual_call_decl = ident_or_path, '(', [actual_parameters], ')' ;

inst_declaration = (policy_inst | group_inst | role_inst | rel_inst |

Ponder Version 2.3 14

mstruct_inst | meta_inst), [';'] ;

policy_inst = pos_auth_inst | oblig_inst | neg_pol_inst | deleg_inst ;

Examples
The following example shows the declaration of two instances of the user-defined obligation policy
type allocBwT with different subjects and targets and a third policy instance declared in-line.

inst
oblig site1/perf = allocBwT(site1/netOp, site1/edgeRtr);
oblig site2/perf = allocBwT(site2/netOp, site2/edgeRtr);
oblig allocBW {

subject site3/netOp;
target site3/edgeRtr;
on perfDegradation(bw,source);
do bwReserve(bw+10);

} // allocBW

3.5 Domain Statements
A domain statement has two distinct uses:

• To introduce a short local name for a longer domain path.

• To set the current working domain, which defines the domain where policy types and policy
instances will be stored when no explicit domain path is given in their definition/declaration. The
current working domain applies to subsequent type definitions and instance declarations within
the current scope or until another domain statement is encountered in the current scope. The
default current working domain is the root.

domain_statement = 'domain', {(path | (ident, '=', path) |
(ident, '.', action_call)), ';'}- ;

Examples

In the following example, the serviceFailT group policy instance is stored in /region/branchA,
whereas the auth+ policy instance serviceConfig is stored in /region/branchB.

domain a = /region/branchA; // a is a name for /region/branchA

inst group a/serviceFailT {
import /typeRepository/serviceDefT;
inst oblig serviceReset {

subject a/brManager;
on e; …

}
} // a/serviceFailT

domain /region/branchB; // set current working domain

inst auth+ serviceConfig { … }

3.6 Import Statements
The import statement is used to bring into the current scope, policy type definitions, policy instances,
constant definitions, event definitions and scripts (see below) stored in other domains. An import
statement specifies a path to the domain, or to the particular definition/declaration that is to be
imported. A domain path followed by a /- will cause all the definitions/declarations within the
specified domain to be imported. The import statement does not import definitions from sub-domains
of the specified domain path.

'import', {ident_or_path, ';'}- ;

Ponder Version 2.3 15

Examples

type group serviceDefT (set s1, set t1) {
import /myEvents/timeoutEvent; // imports single event
import /myTypes/-; // imports all definitions
event e = 3*timeoutEvent(s);
inst auth+ a = serviceReset (s1, t1);

} // serviceDefT

3.6.1 Scripts
A script is an externally-defined code object that can be imported into a Ponder specification from a
domain, and invoked as an action in an obligation policy, as a filter in a positive authorisation policy,
as an exception in obligation policies and meta-policies, or in the when-clause (i.e. the constraint) of a
basic policy. Scripts are typically used when it is necessary to perform a more complex set of actions
than is possible with Ponder. Any suitable programming/scripting language can be used for writing
scripts. Since scripts are objects, Ponder policies can be applied to script objects.

3.7 Event Definitions
Events in Ponder are used to trigger obligation policies. It is convenient to be able to define events
separately, and re-use them in multiple obligation policies. Event expressions can be used to combine
basic events into more complex ones.

Table 3 specifies the event composition operators that can be specified in event expressions. All
event operators have equal precedence and evaluation is strictly left to right.

Operator Explanation
e1 && e2 Occurs when both e1 and e2 occur irrespective of their order
e + time-period Occurs a specified period of time after the occurrence of event e
{e1 ; e2} ! e3 Occurs when e1 occurs followed by e2 with no interleaving e3
e1 | e2 Occurs when either e1 or e2 occurs irrespective of their order
e1 -> e2 Occurs when e1 occurs before e2
n * e Occurs when e occurs n times, where n is an integer value

Table 3. Event Composition Operators

Event parameters define new names within the scope of the policy object in which the event is
specified. These names can then be referenced within the policy, i.e. within the constraint of the policy
(see example that follows).

event_def = ident, [event_params], '=', event_expr, ';';

event_expr =
basic_event |
(basic_event, next_event) |
(int_value, '*', event_expr) |
('{', event_expr, ';', event_expr, '}', '!', event_expr) ;

next_event =
(event_op, event_expr) | ('+' int_value) ;

event_op = '&&' | '|' | '->' ;

basic_event = (ident, [auth_params_decl]) | (ident, '.', action_call) |
'(', event_expr, ')' | '[', expression, ']' ;

event_params = '(', [formal_parameters], ')' ;

Ponder Version 2.3 16

Examples
In the following, a Timer object for generating time-based events is used. The first event occurs at a
particular date (15 Dec. 2001) and time (22:15:00), the second event occurs every 24 hours at 07:20.
The third event circuitFailure(h,x,y) demonstrates the use of parameters in the definition of
an event. The named event receives three parameters (h,x,y) that can be referenced in the
obligation policy that uses this event. The first parameter corresponds to the parameter of the
envAlarm(h) while the second and third to the two parameters of rFailure(x,y). The two
events that are used in the event expression are assigned to the new event. You can see how the first
parameter is used in the specification of the target in the obligation policy resetCircuit.

event a = Timer.at("2001:12:15", "22:17:00");
event b = Timer.every(“24 hours”, "07:20");
event circuitFailure(h,x,y) = (envAlarm(h) -> rFailure(x,y));

inst oblig resetCircuit {
subject brEngineer/ ;
on circuitFailure(h,x,y) ;
do resetCircuit() ;
target brCircuits/h;

} // resetCircuit

3.8 Constraint Definitions
Constraints are used to limit the applicability of basic policies e.g. in the constraint part of these
policies – the when-clause (see section 4.1). Constraint definitions allow constraints to be separately
defined and multiply used. A constraint in Ponder is an OCL expression. In the specification of
constraints, Time is a predefined object on which operations such as between, before or after
can be invoked related to the current time (see section 8.2). The distinction between time and other
constraints is helpful for conflict analysis of policies.

constraint_def = ident, [constraint_params],'=', constraint_spec, ';';

constraint_params = '(', [formal_parameters], ')';

constraint_spec = ocl_expression;

Examples
In the following example, two constraints are specified, which are both used in the specification of the
constraint on the obligation policy serviceReset. The first constraint takes a parameter s, which is
used in its specification. The second constraint workHours, is a time constraint, and is valid only
between 8:00am and 4:00pm.

constraint active(s) = s.isActive() and s.isEnabled();
constraint workHours = Time.between(“08:00:00”, “16:00:00”);

type oblig serviceReset(subject s, target t) {
on e ;
do t.reset() ;
when active(s) and workHours;

} // serviceReset

The second example demonstrates the use of a more complicated constraint limiting the applicability
of the policy specified. The constraint is directly specified in the when clause of the policy.

type oblig perfIncreaseT (subject s, target t) {
on perfDegradation(bw, source);
do t.bwReserve(bw) -> s.log(bw, source);
when (s.a>5 and (t.b+7)<10 and

Time.between(“12:00:00”,”14:00:00”))

Ponder Version 2.3 17

or (s.a>15 and (t.b+7)<20 and
Time.between(“02:00:00”, “04:00:00”))

or active(s) ;
} // perfIncreaseT

3.9 Constant Definitions
Constants can be defined in Ponder. A type identifier can be used to indicate the user-defined type for
which a constant is declared. The set type defines a domain scope expression, which can be used to
specify subject, target and grantee attributes in basic policies. A set can be followed by the definition
of the type of the objects in the set. This is usually the IDL type of subjects and targets.

constant_def = constant_def_aux ;
constant_def_aux =

'int', {ident, '=', expression, ';'}- |
'real', {ident, '=', expression, ';'}- |
'string', {ident, '=', expression, ';'}- |
'boolean', {ident, '=', expression, ';'}- |
'set', [set_type], {ident, '=', domain_scope_expr, ';'}- |
'user', type_ident {ident, '=', expression, ';'}- |
'extern', type_ident {ident, '=', expression, ';'}- ;

set_type = '<', ident, '>' ;

Examples
Any of the types shown in the syntax can be specified. Here are a few examples.

int y = 5;
string x = managerX.getName();
string str1 = "this is a string";
set targetSet1 = /subnetA/routers;
set <EdgeRouter> targetSet2 = /subnetB; // All objects of type EdgeRouter
user myRoleType myRole1 = /branchA/roles/role1;
extern Router router1 = /routers/router1;

3.10 External Specifications
External specifications are used to embed non-Ponder text into a Ponder specification. Unlike
comments which are un-named and ignored by the Ponder compiler, external specifications are
named and preserved by the Ponder compiler and runtime system. Such specifications can be
accessed by external tools either at compile-time and/or run-time. External specifications are typically
used to develop Ponder variants/extensions or attach non-Ponder definitions, code, scripts,
performance and protocol requirements, structured documentation etc. with a Ponder specification.

external_spec = ident, '<<<' any-sequence-of-characters '>>>', ';' ;

Examples

In the following example, an external specification named refs, associated with an authorisation
policy specifies references to related obligation policies for which it is required as well as a parent
policy from which it is refined and child policies which are derived from it. An analysis tool can extract
the specification, parse it and interprete it accordingly.

Ponder Version 2.3 18

inst auth+ net_config {
subject netOp/;
action setStrategy ;
target qEdgeRtr/ ;

spec refs <<<
related net_config2, net_config3;
parent config
child router_config

>>> ; // refs
} // net_config

3.11 Parameters
This section defines the syntax of formal parameters and actual parameters.

3.11.1 Formal Parameters
All policy types can be parameterised. Parameters can be one of the predefined types (e.g. int, string,
domain, set, event, role) or of a user-defined type. If the type of a parameter is omitted then the type
will be inferred either at compile-time or run-time. The set type is used to define sets of objects for
subject, target or grantee specification. A set type can be optionally followed by the IDL type of the set
of objects. Subject, target and grantee can be specified instead of set, although they are not types
themselves; they are modifiers used to additionally declare the subject, target or grantee attribute of a
basic policy. A user defined policy type can be specified following the user keyword, whereas an
external, IDL type can be specified following the extern keyword. The possible types that can be
specified or declared in Ponder are given by type_decl below. Note that the
comp_type_formal_call_decl production rule is used for composite policy types only.
Composite policy types can extend other composite policy types whereas basic policy types can not.
See section 5.5 for more on inheritance of composite policy types.

type_decl =
'int' | 'double' | 'char' |
'string' | 'boolean' | 'domain' |
'constraint' | 'event' | 'action' |
'auth+' | 'auth-' | 'oblig' |
'refrain' | 'deleg+' | 'deleg-' |
'role' | 'rel' | 'group' |
'mstruct' | 'meta' | 'set', [set_type] |
'subject', [set_type] | 'target', [set_type] | 'grantee', [set_type]|
('user', 'extern'), type_ident ;

type_ident = ident_or_path;

formal_call_decl =
ident_or_path, '(', [formal_parameters] ,')';

comp_type_formal_call_decl = formal_call_decl, [extends_type] ;

formal_parameters = formal_param, {',', formal_param};

formal_param = [type_decl], ident ;

Examples

auth+ myAuthPolicy (subject a, int b, event e) {
...

}

/* restrict the subject to those objects of type NetOp. */

oblig myObligPolicy (subject <NetOp> s, set targetSet, myRole r) {

Ponder Version 2.3 19

...
}

3.11.2 Actual Parameters
Actual parameters are used in instance declarations, action calls and exception-clauses. An actual
parameter can be an expression or a domain-scope-expression. Actual parameters must correspond
in number and type to the formal parameters of the corresponding formal parameter. Domain scope
expressions passed as actual parameters must be enclosed within square brackets.

actual_parameters = actual_param, {',', actual_param} ;

actual_param = expression | '[', domain_scope_expr, ']';

Ponder Version 2.3 20

4 BASIC POLICIES
Basic policies Keyword
Positive Authorisation Policy auth+

Negative Authorisation Policy auth-

Obligation Policy oblig

Refrain Policy refrain

Positive Delegation Policy deleg+

Negative Delegation Policy deleg-

4.1 Policy Elements
The body of a basic policy consist of one or more policy elements. Several of these elements are
common to all basic policy types: the subject, the target, the when-constraint, as well as import
statements, constant definitions and external specifications. Other policy elements are specific to a
particular policy type. Policy elements can be specified in any order.

The subject and the target for a basic policy are specified using domain scope expressions or by a
formal identifier of type set. Actual parameters for subjects and targets are domain scope
expressions. A subject or target keyword can be optionally followed by the IDL type of the objects
specified. A name can also be assigned to subjects and targets in order to reuse it in expressions
within the policy. The keywords subject and target themselves can also be used to refer to the
current subject/target during the execution of the policy.

Each basic policy can also optionally specify a when-constraint element that limits the applicability of
the policy.

policy_elements = policy_elements_aux, ';' |
basic_common_element_spec ;

policy_elements_aux =
'subject', [set_type], subj_target |
'target', [set_type], subj_target |
'when', constraint_spec |
import_statement ;

subj_target = [ident, '='], domain_scope_expr ;

basic_common_element_spec =
'constraint', {constraint_def}- |
'spec', {external_spec}- |
constant_def |
import_or_domain ;

common_elemnent_spec =
'event', {event_def}- |
basic_common_element_spec ;

4.2 Authorisation Policies
An authorisation policy specifies access control for security. A positive authorisation policy defines
the actions that a subject is permitted to perform on a target. A negative authorisation policy specifies
the actions that a subject is forbidden to perform on a target. Positive authorisation policies may also
include filters to transform the parameters associated with their actions. Authorisation policies are
implemented on the target host by an access control agent (ACA) utilising an access control decision
facility associated with the target objects.

4.2.1 Positive Authorisation Policies
Positive Authorisation Policies define the actions subjects are permitted to perform on target objects.

Ponder Version 2.3 21

pos_auth_type =
'auth+', formal_call_decl, '{', {pos_auth_type_body}, '}' ;

pos_auth_inst =
('auth+', ident_or_path, '{', {pos_auth_type_body}, '}') |
('auth+', {instantiation}-) ;

pos_auth_type_body =
policy_elements | ('action', pos_auth_actions, ';') ;

Authorisation Actions
Actions represent the operations defined in the interface of a target object. The permitted/forbidden
actions are listed separated by commas. In an authorisation policy the actions can alternatively be
specified using '*'. This means that the subject is authorised to perform all of the actions visible on
the target object interface thus this feature should be treated with caution.

pos_auth_actions = (pos_auth_action_decl, {',', pos_auth_action_decl}) |
'*' ;

pos_auth_action_decl = auth_action, {filter};

auth_action = [ident_or_path, '.'], ident, [auth_parameters_decl] ;

auth_parameters_decl = '(', ident_list, ')' ;

ident_list = ident, {',', ident} ;

For authorisation policies, parameters can be omitted from the action even though the action may
actually have parameters. This indicates that we don't care about the parameters. In general,
parameters for authorisation policies are specified as a list of identifiers. The identifier can then be
used within the policy constraint clause to indicate a restriction on the parameter value. Authorisation
action names can be optionally prefixed with the target object/domain of the policy.

Examples
The following is a simple example to demonstrate the syntax for specifying positive authorisation
policies.

type auth+ serviceManT(subject s, target t) {
action resetSchedule, enable, disable;

} // serviceManT

inst auth+ brService = serviceManT (brManager/, brServices/);

Authorisation Filters
Filters specify optional transformation of parameters related to an action only for positive authorisation
policies as no transformation need take place if the action is forbidden. Filters may transform or select
subsets of the information provided in the in and out parameters or the result of the invocation.
Multiple filters can be associated with each action in the authorisation policy. Filters consist of two
parts:

• An optional condition based on subject/target state, action parameters or time specified using
OCL for consistency with other types of constraints.

• The specification of a transformation expression or (external) function to be applied to the in, out
or result parameters of the action call.

When the authorised action to which a filter is associated is invoked, the filter condition will be
evaluated. If it evaluates to true, or it was omitted, then the filter will be executed.

filter = ['if', ocl_expression], '{', {filter_body, ';'}-, '}' ;

filter_body =

Ponder Version 2.3 22

'in', ident, '=', expression |
'out', ident, '=', expression |
'result', '=', expression ;

Examples

In the following example, the subject s is authorised to perform the operation lookup(x,y) on the
target of the policy t. The if-clause of the filter associated with lookup checks whether the subject
belongs in the group extUsers. It modifies the value of the second parameter y, which is both input
and output to the action lookup(x, y). It also transforms the result of the action, by calling an
external function selectBuilding(result) for example to remove room details from the result.

type
auth+ filterLocationT (subject s, target t) {

action lookup(x,y) if belongs(s, extUsers) {
in x = x-1;
out y = maths.abs(y);
result = selectBuilding(result); // external

}; // lookup
} // filterLocationT

The following example demonstrates the specification of two filters on the same action (print). The
first filter applies in all cases. The second filter applies only when the first parameter of the action
(pages) is greater than 100. In that case the parameter is forced to be equal to 100, so that the action
print can never get a number of pages greater than 100.

type auth+ printAuth(subject S, target T, int maxpages) {
action print(pages, error) {

in pages = Maths.max(pages, maxpages);
out error = PrintLog.add(S, T, pages, error);

}
if pages > 100 { // 2nd filter on the same action

in pages = 100;
};

}

4.2.2 Negative Authorisation Policies
Negative Authorisation Policies define the actions subjects are forbidden (not permitted) to perform on
target objects. They are are commonly used in many systems such as database and Web access
control and in systems where the default policy permits access by anyone unless explicitly forbidden.
Negative authorisation policies can also be used to temporarily restrict rights for a sub-domain or an
individual object as an exception to the normal positive authorisation, which applies for a parent
domain. For example suspension of access to the computer service for a week as a punishment for a
student who has abused the system.

Note that allowing negative and positive policies can lead to conflicts and the need for precedence
relationships between types of policies as discussed in (Lupu 1999). These issues are not part of the
language although the policy precedence could be specified as a meta-policy.

Actions
The actions specify the operations that the subject is forbidden to perform on the target. The
specification of negative authorisation actions is the same as for positive actions except there is no
need for filters. The '*' character can be used to indicate all actions on the interface of target
objects.

Negative authorisation policies have exactly the same syntax as refrain policies.

neg_pol_type =
('auth-' | 'refrain'), formal_call_decl, '{', {neg_type_body}, '}' ;

neg_pol_inst =
(('auth-' | 'refrain'), ident_or_path, '{', {neg_type_body}, '}') |

Ponder Version 2.3 23

(('auth-' | 'refrain'), {instantiation}-) ;

neg_type_body =
policy_elements |('action', neg_pol_actions, ';') ;

neg_pol_actions = (auth_action, {',', auth_action}) | '*' ;

Examples

Note that in the adminConfig policy applies only on target objects within the links domain whose
class is Mbps10, indicating that they are links with a data transmission rate of 10 Mpbs.

type auth- serviceWithdrawT (subject s, target t) {
action t.unload, t.remove;

} // serviceWithdrawT

inst
auth- brWithdraw = serviceWithdrawT (brEngineer/, brServices/);

auth- adminConfig {
subject configAgent/;
action setBW, reset;
target<Mbps10> links/;

} // adminConfig

4.3 Obligation Policies
Obligation policies specify the action that a subject must perform on a set of target objects when an
event occurs. Obligation policies are always triggered by events, since the subject must know when to
perform the specified action. Unlike authorisation policies, obligation policies are interpreted by
subjects. An exception can be used to specify an alternative action to cater for network or target
object failures.

oblig_type = 'oblig', formal_call_decl , '{', {oblig_type_body}, '}';

oblig_inst = ('oblig', ident_or_path , '{' {oblig_type_body}, '}') |
('oblig', {instantiation}-) ;

oblig_type_body =
policy_elements_aux, ';' |
common_element_spec |
oblig_type_body_aux, ';' ;

oblig_type_body_aux =
event_spec |
'do', oblig_actions |
'catch', exception_spec ;

4.3.1 Obligation Actions
An obligation action consists of actions separated with concurrency operators indicating whether the
actions are to be performed sequentially or in parallel. The action can be prefixed with the name of the
object on which the action is called, as actions may be on the target, internal to the subject or part of
the subject’s interface. If no prefix is specified, the action is assumed to be internal to the subject or
part of the subject’s interface by default. An object prefix is an identifier/path. An identifier/path
indicates a specific object/domain on which the method is called. If one wishes to designate that an
action is on the subject or target, a name must be assigned to the subject or target accordingly, and
that name can then be used to reference the subject/target in prefixing the action. If the obligation
policy is specified within a role (in which case a subject declaration is not allowed – see section 7.1),
the name of the role can be used as a prefix to an action to mean that the action is specified on the
subject of the role which is the subject of the policy.

Ponder Version 2.3 24

An obligation policy may not contain a target. In that case the actions of the policy must only be
actions internal to the subject, part of the subject’s interface or scripts. If a target is specified, actions
that are part of the target’s management interface can also be specified.

The concurrency operators for obligation policy actions are given in the following table. All
concurrency operators have equal precedence and evaluation is strictly left to right. Parenthesis can
be used to change the default precedence.

Operator Explanation
a1 -> a2 a2 must follow a1. If any of the actions fails or is not allowed by a refrain

policy, the execution stops.
a1 || a2 a1 and a2 may be performed concurrently. Execution continues when

either has finished.
a1 && a2 a1 and a2 may be performed concurrently. Execution continues when

both have finished. If any of the actions fails or is not allowed by a
refrain policy, the execution stops.

a1 | a2 a1 is performed. If it fails or is not allowed by a refrain policy, a2 is
performed. If a1 succeeds, execution stops.

Table 4. Concurrency Operators

oblig_actions = basic_oblig_action, [next_oblig_action] ;

next_oblig_action = concurrency_op, oblig_actions ;

basic_oblig_action = oblig_action_decl | '(', oblig_actions, ')' ;

oblig_action_decl =
oblig_action_name, '(', [actual_parameters], ')' ;

oblig_action_name = [object_prefix], ident;

object_prefix = (ident_or_path, '.') | (oblig_action_decl, '.') ;

concurrency_op = '->' | '|' | '||' | '&&' ;

4.3.2 Events
The specification of events in the body of an obligation policy define the trigger for the action.

event_spec ='on', event_expr ;

Details of event_expr are specified in section 3.7.

4.3.3 Exceptions
An exception specifies an optional single action (which can be a script) to be performed in case of
failure of the normal obligation actions. An exception "parameter" from the runtime exception system
is passed as an argument to the exception action.

exception_spec = ident, '(', [actual_parameters] ,')';

4.3.4 Selecting Subjects
There is a need to select the objects in the subject or target domains to which an obligation policy
applies. For example only one, possibly the least loaded, of the potential objects in the subject
domain should perform the action specified in an obligation policy. The action may need to be applied
to all or none objects in the target domain as an ‘atomic action’. Domain scope expressions (section
2.5) allow the use of a feature call from OCL to specify feature calls on collection types in order to
select or reject objects from a collection of objects. Since domain scope expressions result in sets of
objects, we can use the semantics of those OCL operations to choose the subjects and targets of an

Ponder Version 2.3 25

obligation policy (see examples). The policy writer can thus specify the semantics of action execution
for obligation policies. If no selection is specified on subjects, targets of the policy, then the default
semantics are applied: The actions are performed by all subject objects on all target objects. Note that
we can use this feature to also select the targets of an authorisation policy in order to indicate a
runtime selection of which objects within the target domain the subjects have access to, based on
arbitrary constraints (e.g. object state).

Examples

In the first example the actions are specified in the obligation policy type perfIncreaseT. The policy
is triggered by a performance degradation event perfDegradation(bw, source) and the event
parameters (bw, source) and reused in the specification of the actions. The subject of the policy
invokes the action bwReserve(bw) on the target object followed by the action log(bw, source),
which is implemented on the interface of the subject. Note the assignment of the names s and t for
the subject and target respectively in policy perfIncrease, in order to use them in the specification
of the actions. The target of the policy type in the example is restricted only to those targets whose
IDL type is Router. This is specified within angle-brackets next to the specification of the target
attribute of the perfIncreaseT policy type.

type oblig perfIncreaseT (subject s, target<Router> t) {
on perfDegradation(bw, source);
do t.bwReserve(bw) -> s.log(bw, source);

} // perfIncreaseT

inst
oblig pl = perfIncreaseT(brEngineer, coreRouter/+edgeRouter/);

oblig perfIncrease {
subject s = brEngineer;
target t = coreRouter/ + edgeRouter/;
on perfDegradation(bw, source);
do t.bwReserve(bw) -> s.log(bw, source);

} // perfIncrease

Consider the following obligation policy type instantiated as da1 which indicates that when the
patient's temperature exceeds 37 degrees, a nurse should administer analgesics to that patient. In
this case only one of the nurses in wardA must administer the drug as if all the nurses performed the
action the patient would probably die.

type oblig drugsAdminT1 (subject s, target t) {
on [t.temperature > 37];
do administer(analgesics);

} // drugsAdminT1

inst oblig da1 = drugsAdminT1(/wardA/nurse, /sectionD/patient/stevens);

The following examples demonstrate the use of OCL collection operations to select the
subjects/targets involved in the action execution of obligation policies. In the printJob policy, the
sender (of the print job), executes the job on targets (printers within domain T) which are idle. The
second obligation policy (backupFiles) obliges backup administrators (backupAdmins) to backup
files located on the logServer every day at 8:00pm. However, we only want one of the
administrators to execute the backup. The select operation on the subject domain selects only one
object from the set of subject objects. This is indicated by an empty select expression. A select
operation of the form: S->select(s1,s2|) would select two objects from the set subject set S,
where as a non-empty expression after the bar would select those subject objects from which the
expression evaluates to true.

type oblig printJob (set S, domain T, int maxpages) {
on print(job, sender)
subject S ^ {sender};
target T->select(t | t.state = ‘idle’);
do print(job) -> sender.mail("job re-directed");
when job.pages > maxpages;

Ponder Version 2.3 26

}

inst oblig backupFiles {
domain S = backupAdmins/;
on Timer.at(“20:00:00”)
subject S->select(s1|);
target /logServer;
do backup();

}

4.4 Refrain Policies
Refrain Policies define the actions that subjects must refrain from performing (must not perform) on
target objects and like obligations they are implemented by the subject. Refrain policies are used for
situations where negative authorisation policies are inappropriate as the targets do not wish to be
protected from the subject. A refrain can also be used when the subject is permitted to perform the
action but is asked to refrain from doing so when particular constraints apply. Refrain policies are
syntactically the same as negative authorisation policies. See section 4.10.2 for the grammar.
Subjects and targets in refrain policies are specified as domain scope expressions. If no prefix is
defined for the action of a refrain policy, it is by default an action internal to the subject or part of the
subject’s interface.

Examples

In this example the HQStaff are assumed to be permitted to set up video conferences, but a refrain
policy states they must not do so to any destination on Fridays.

inst refrain politeBehaviour {
subject HQStaff/;
target /-; // Any target
action videoconference;
when Time.day() = “fri”;

} // politeBehaviour

4.5 Delegation Policies
A Delegation policy specifies which actions subjects are allowed to delegate to others. A delegation
policy is thus specifying an authorisation to delegate. Subjects must already possess the access
rights to be delegated. Delegation policies are aimed at subjects delegating rights to servers or third-
parties to perform actions on their behalf and are not meant to be the means by which security
administrators would assign rights to subjects. A negative delegation policy identifies what delegations
are forbidden. With a delegation policy, we need to specify the following information:

• The authorisation policy from which delegated rights are derived,

• Grantors – the subjects who can delegate these access rights

• Grantees – the objects to whom the access rights can be delegated

There are two types of delegation policy, positive and negative. Note that positive delegation policies
contain delegation constraints specified using the valid-clause and the hops-clause. More on
delegation constraints in section 4.5.5.

deleg_type =
('deleg+', deleg_formal_call_decl, '{', {deleg_plus_type_body}, '}')|
('deleg-', deleg_formal_call_decl, '{', {deleg_type_body}, '}');

deleg_formal_call_decl =
ident_or_path, '(', ['auth+'], [type_ident], ident, ')',

'(', [formal_parameters], ')' ;

deleg_inst = deleg_inst_def | deleg_instantiation ;

deleg_inst_def =

Ponder Version 2.3 27

('deleg+', ident_or_path, '(', ['auth+'], ident_or_path, ')',
'{', {deleg_plus_type_body} ,'}') |

('deleg-', ident_or_path, '(', ['auth+'], ident_or_path, ')',
'{', {deleg_type_body} ,'}') ;

deleg_instantiation = ('deleg+' | 'deleg-'), {deleg_actual_call_decl}-;

deleg_actual_call_decl = ident_or_path, '=', ident_or_path,
'(', ident_or_path, ')', '(', [actual_parameters], ')', ';' ;

deleg_type_body =
policy_elements |
('grantee', [set_type], subj_target, ';' |
'action', deleg_access_rights), ';' ;

deleg_plus_type_body = deleg_type_body |
('valid', constraint_spec) |
('hops', deleg_hops) ;

deleg_access_rights = neg_auth_actions ;

deleg_hops = (int_value | identifier) ;

4.5.1 Associated Authorisation
The syntax of a delegation policy type declaration has a different format from that of the other policy
types. The authorisation and/or delegation policy involved in the delegation is specified separately
before the list of other formal parameters to the policy preceded by the optional keyword auth+. The
policy specified is that from which the access rights of the subject are derived.

4.5.2 Subjects, Targets and Grantees
The grantee entry allows the specification of the subject to which the policies are delegated. The
subject of a delegation policy is what we call the grantor. It specifies who is authorised to delegate.
The delegation policy allows the specification of a separate target to override the target of the
authorisation policies. If a target is specified, then this should be a subset of the target in the
associated authorisation policies. This allows the subject delegating access rights to restrict the
targets to which the grantee can execute those access rights.

4.5.3 Delegated Access Rights
The delegated access rights must be a subset of those defined in the associated authorisation policy.
An action being delegated may have a filter which will be executed when the action is invoked by the
grantee on the target. Delegation policies are not allowed to override filters on delegated actions.

4.5.4 Cascaded Delegation
Cascaded delegation is allowed provided that both the grantor and the grantee are in the grantee
scope of the delegation policy. There is one other kind of "cascading" which can be specified by
passing a delegation policy as a parameter to a delegation policy. In that case the grantee of a
"cascaded" delegation might not be a subset of the grantee of the original delegation.

Ponder Version 2.3 28

S1 G
a,b

auth+

S2 G1

S T
a, b, c

a,b
T1

T2

deleg+

deleg+ a a

Passed as a
parameter

(explicit authorisation policy)
Implicit
Authorisation
policy

(Delegate)

(Delegate)

Figure 5. auth+ and deleg+ policies as parameters to Delegation Policies

In the above figure, the following relations are true: S1 ⊆ S, T1 ⊆ T, S2 ⊆ G, T2 ⊆ T1.

4.5.5 Delegation Constraints
Delegation constraints specify restrictions on when the delegation performed is valid, or on when a
cascaded delegation is valid. Only positive delegation policies contain delegation constraints; they
make no sense in negative delegation policies.

Delegation constraints are:

• Time restrictions (duration, validity period) to specify the duration or the period over which the
delegation should be valid before it is revoked.

• Any arbitrary constraint based on system attributes or subject/target/grantee or action
attributes.

• Maximum number of cascading delegations allowed (maximum number of delegation hops or
levels)

These constraints are specified following either of two keywords: ‘valid’ or ‘hops’. The first two types of
constraints are specified in the valid attribute of the delegation policy whereas the maximum number
of cascading delegations allowed is specified in the hops attribute. See the example that follows.

To enforce delegation, it is sufficient to be able to control two things:

• When a subject attempts to delegate certain access rights to a grantee, this action must be
subject to access control driven by the specified delegation policies.

• When a subject tries to execute an action on a target, the system must be able to restrict that
access not only based on authorisation policies, but also on delegation policies.

A delegation policy thus maps to two authorisation policies: The first at the specification time, and the
second at run-time. The first authorisation policy authorises the subject (grantor) to execute the
method 'delegate' on the run-time system with grantee as a parameter of the method. At run-time,
when the subject executes the delegate method, a separate authorisation policy is created by trusted
components of the access control system, with grantee as the subject. Similarly the revoke method
deletes or disables that second authorisation policy. A delegation constraint is anything that can be
specified as a constraint on the authorisation policies on which the delegation policy maps at runtime.

Examples

In the following example, the subject (the grantor in the delegation policy), delegates only a subset
of his/her access rights to the grantee. The delegation rights are derived from the associated
authorisation policy.

type
auth+ serviceManT (subject s, target t) {

action t.resetSchedule, t.enable, t.disable;
} // serviceManT

deleg+ sDelegT (serviceManT a)(subject grantor, grantee granteeD) {

Ponder Version 2.3 29

action resetSchedule;
} // sDelegT

inst
auth+ serviceMan = serviceManT(brManager/, brServices/);
deleg+ sDeleg = sDelegT(serviceMan)(brEngineer/+brSys/, brServices/);
deleg+ sDeleg2 = sDelegT(sDeleg)(brEngineer/, resetAgent/);

The following example shows a delegation policy with simple delegation constraints to limit the validity
of the delegated access rights. The when-clause constraint acts as in other basic policies: it
constraints the validity of the policy itself. In this case the policy is valid between the hours 06:00am
and 6:00pm, which is implicitly a constraint on when a subject can perform the delegate action. The
valid-clause constraint is a time-duration delegation constraint. It limits the time period over which the
grantee can use the access rights. So after 24 hours the delegation must be revoked. The maximum
number of delegation hops specified following the ‘hops’ keyword, specifies that the grantee can not,
in this case, delegate the access rights any further.

inst deleg+ D (A1) {
grantee granteeD/ ;
when Time.between(“06:00:00”, “18:00:00”);
valid Time.duration(24, “hour”) ;
hops 1 ;

}

Ponder Version 2.3 30

5 COMPOSITE POLICIES
Composite policies Keyword
Group group

Role role

Relationship rel

Management Structure mstruct

There is a need to group a set of related policy specifications within a syntactic scope with shared
declarations in order to simplify the policy specification task for large distributed systems. This is a
common concept in many programming environments and is the main motivation behind composite
policy types in Ponder. At run-time, the set of policies defined in a composite policy, together with any
constraints applying to the composite policy would be stored within a domain.

All composite-policies can include types and instance definitions as well as nested groups. However
roles cannot include nested roles, relationships or management structures, and relationships cannot
contain nested relationships or management structures. All composite-policies can be specified as
types from which multiple instances can be created.

comp_pol_body = common_element_spec ;

comp_nested_elem = ('type', {comp_type_nested_elem}-) |
('inst', {comp_inst_nested_elem}-) ;

comp_type_nested_elem = (group_type | policy_type | meta_type) ;

comp_inst_nested_elem = (group_inst | policy_inst | meta_inst) ;

5.1 Groups
This is a syntactic scope used to declare a set of policies and constraints which are grouped together
as they have some semantic relationship and should be instantiated together. For example they may
reference the same targets, relate to the same department or relate to a particular application. A
group can contain any basic-policy or nested group specifications.

group_type = 'group', comp_type_formal_call_decl, '(', {group_body},')';

group_inst = ('group', ident_or_path, '(', {group_body}, ')') |
('group', {instantiation}-) ;

group_body = comp_pol_body | comp_nested_elem ;

Examples

type group serviceFailT (set s1, set t1, event e) {
inst

auth+ sReset {
subject s1; action resetSchedule; target t1;

} // sReset

oblig failReset {
subject s1;
on e; do resetSechedule();
target t1;

} // failReset
} // serviceFailT

inst
group brS_A = serviceFailT(brManager/, brServices/, failure);
group brS_B = serviceFailT(opManager/, deliveries/, lateDelivery);

Ponder Version 2.3 31

5.2 Roles
A role groups the policies specifying the duties and rights relating to a position within an organisation.
A role is thus a particular type of group in which all policies have the same subject domain. A role can
contain basic policies and groups of basic policies but not nested roles, relationships or management
structures.

The role instantiation declaration may specify an optional path name, which is to be used as the
subject domain for the role. This assumes the subject domain has already been created in the domain
hierarchy. If the subject domain is not specified then a domain with the name of the role instance is
implicitly created and used as the subject domain i.e. the subject for policies within the role.

role_type = 'role', comp_type_formal_call_decl, '(', {role_body}, ')' ;

role_inst = (('role', ident_or_path, '(', {role_body}, ')') |
('role', {role_instantiation}-)), [subject_domain] ;

role_body = comp_pol_body | comp_nested_elem ;

role_instantiation =
ident_or_path, '=' , actual_call_decl, [subject_domain], ';' ;

subject_domain = '@', ident_or_path ;

Examples

In the following example role brManagerT, extends the previously defined role ManagerT to provide
specialisation. The brManagerT inherits all the definitions from ManagerT. The @ following the
instantiation of the role branchManager, indicates that the subject domain of the role is located at
/sd/brManagers.

type role brManagerT (set brServices) extends ManagerT {
inst oblig review {

on failure(service); do brServices.resetSchedule();
} // review

} // brManagerT

inst role branchManager = brManagerT(branchA/position/backupServices)
@ /sd/brManagers;

5.3 Relationships
Relationships specify policies pertaining to the relationship rather than the individual participating
roles. Relationships can define roles, but cannot contain other relationships or management
structures.

rel_type = 'rel', comp_type_formal_call_decl, '(', {rel_body}, ')' ;

rel_inst = ('rel', ident_or_path, '(', {rel_body}, ')') |
('rel', {instantiation}-) ;

rel_body = comp_pol_body | rel_nested_elem ;

rel_nested_elem = ('type', {rel_type_nested_elem}-) |
('inst', {rel_inst_nested_elem}-) ;

rel_type_nested_elem = comp_type_nested_elem | role_type ;

rel_inst_nested_elem = comp_inst_nested_elem | role_inst ;

Ponder Version 2.3 32

Examples
The following is an instance of a relationship between two roles that are "hard-coded" into the
definition of the relationship. This relationship can only be used between the two declared roles. The
two roles are already defined outside the relationship and are thus just referenced in the relationship
using their full path name in the domain structure.

inst rel qSupervision {
inst

oblig report {
subject /net/edge/qConfig.subject;
on Timer.at(“18:00:00”); do report(q_info);
target netOp;

} // report

auth+ config {
subject /net/oam/netOperator.subject
action setStrategy; target qEdgeRtr;

} // config
} // qSupervision

5.4 Management Structures
A management structure defines the configuration of roles and relationships in organisational units in
terms of the required instances of the roles. For example it would be used to define a management
structure (type) for creating branches in a bank or departments in a university. Management
structures can include any nested composite-policy.

mstruct_type = 'mstruct', comp_type_formal_call_decl,
'(', {mstruct_body}, ')' ;

mstruct_inst = ('mstruct', ident_or_path, '(', {mstruct_body}, ')') |
('mstruct', {instantiation}-) ;

mstruct_body = comp_pol_body | mstruct_nested_elem ;

mstruct_nested_elem = ('type', {mstruct_type_nested_elem}-) |
('inst', {mstruct_inst_nested_elem}-) ;

mstruct_type_nested_elem = comp_type_nested_elem |
(role_type | rel_type | mstruct_inst) ;

mstruct_inst_nested_elem = comp_inst_nested_elem |
(role_inst | rel_inst | mstruct_inst) ;

Examples

In the following example a management structure instance is defined oam/traffic, which contains
another management structure inside it (qos). The oam/traffic also contains the specification of
two roles and two relationships. The second relationship configAdmission (which is specified in
full), relates the netOp role instance, created within the outer management structure oam/traffic,
with the admControl role, created within the qos management structure.

inst
mstruct oam/traffic {

inst
role netOp {…}
role qEdgeRtr {…}
rel qSupervision {…}
mstruct qos {

inst
role admControl {…};
role trShaping {…};

Ponder Version 2.3 33

rel selectTraffic {…};
} // qos

rel configAdmission {
inst auth+ setClass {

subject netOp; target admission;
action set(trClass, qos.admControl);

} // setClass
} // configAdmission

} // oam/traffic

5.5 Policy Type Specialisation
Ponder allows specialisation of policy types through the mechanism of inheritance; types can extend
other types. The specification of the formal parameters in a type definition can be followed by an
extends-clause to provide inheritance by specialisation. The type to be extended can be specified as
a path indicating it's position in the domain structure. The syntax of the extends-clause can be the
same as that of the actual_call_declaration (see section 3.4). The type that extends some
other base type, can pass parameters to the base type with the extends clause in order to
parameterise the base type.

When a type extends another type, it inherits all the attributes (policy elements) of the base type, and
can add new ones. Ponder does not currently support polymorphism or dynamic binding.

Multiple inheritance is also supported. The problem with multiple inheritance is that of multiple policies
with the same name coming from different base-types. This can be solved by either the compiler
warning the policy writer of this situation, so that the policy writer can choose not to inherit one of the
two policies or change the names of the policies in the base-types if possible, or by requiring to prefix
the names of the policies with the name of the type from which they are inherited. This is a common
way of resolving similar name-conflicts from multiple inheritance in object-oriented languages. Ponder
currently does not support multiple inheritance for relationship structures. For a discussion on issues
of single and multiple-inheritance for roles and relationships see (Lupu 1998).

extends_type = 'extends', extends_clause, {',' extends_clause};

extends_clause = (actual_call_decl | ident_or_path),
['cancels', (ident_list)] ;

Examples

In the following example, the specialised_nurseT role type, extends (specialises) the
specification of the role type nurseT.

type
role nurseT (set t) {

type
oblig adminT(target t1) {

on [t.temperature > 37];
do administer(analgesics);

} // adminT

inst
oblig admin1 = adminT(t);
oblig drugsAdmin {

on administer_drugs;
do update();
target /drugs_db;

} // drugsAdmin
} // nurseT

role specialised_nurseT (set t) extends nurseT(t) {
inst

oblig cat1_drugsAdmin {

Ponder Version 2.3 34

on administer_Cat1_drugs ;
do update() -> check_availability();
target /drugs_db;

} // cat1_drugsAdmin
} // specialised_nurseT

In the following example, a mobile-station service engineer (MSserviceEngineer) extends a
service engineer (ServiceEngineer) for a mobile telephone company. Note how the
MSserviceEngineer role adds a new obligation policy.

type role ServiceEngineer (CallsDB callsDb) {
inst oblig deactivateAccount {

on customer_complaint(mobileNo)
do t.deactivateAccount(mobileNo);
target t = callsDb // calls register

}

oblig service_complaint {
. . .

}

inst auth+ serviceActionsAuth { . . . }

// other policies
. . .

} @ /Engineers

type role MSserviceEng(CallsDb cdb, SqlDB eqRegistry)
extends ServiceEngineer(cdb) {

inst oblig maintain_MobileStation_problems {
on MS_failure(equipmentId) // MS == Mobile Station
do updateRecord(equipmentId)
target eqRegistry // Equipment registry

}
}

Ponder Version 2.3 35

6 META-POLICIES
Meta-policies specify constraints, over a set of policies, on the permitted types of policies or their
policy elements. Meta-policies can be defined within a composite-policy to apply to all policies within
the scope of the composite policies. Meta-policies may also apply to all policies within a domain
subtree. The Object Constraint Language (OCL) is used to specify meta-policies. The body of the
meta policy (meta_body) specifies the constraint as a series of OCL constraints separated by
semicolons. The constraints can be boolean constraints or navigation constraints. If any of the
boolean constraints evaluates to true, the action following the raises-clause is executed. This
way, a series of related constraints can be specified within the same meta policy. Note that the result
of an OCL expression can be named so that it can be passed to the exception action as a parameter
(see example), or reused in subsequent constraint expressions.

A Meta policy could alternatively consist of a series of concurrency constraint expressions. In this
case, the raises clause is not specified. A concurrency constraint expression consists of sequences of
activities separated with concurrency constraints. The concurrency constraints, and their semantics,
are the same as those used to separate actions in obligation policies (see section 4.3.1). An activity
is:

• An action in an obligation policy

• An obligation policy

In the latter case, this means that all of the actions of the obligation policy are subject to the
concurrency constraint specified (See examples that follow).

meta_type =
'meta', formal_call_decl, 'raises', action_call, '{', meta_body, '}'|
'meta', formal_call_decl, '{', meta_body_conc, '}' ;

meta_body = meta_expression, {';', meta_expression};

meta_expression = ['[', ident, ']', '='], ocl_expression, ';';

meta_inst =
('meta', ident_or_path, 'raises’, action_call, '{', meta_body, '}') |
('meta', ident_or_path, '{', meta_body_conc, '}') |
('meta', {instantiation}-) ;

meta_body_conc =
concurrency_expression, {';', concurrency_expression}, ';';

concurrency_expression =
activity, [concurrency_op, concurrency_expression] ;

activity =
[path, '.'], {ident, '.'}, ident | '(', concurrency_expression, ')' ;

Examples
The example meta-policy shown here, specifies an instance of the separation of duties principle. Two
actions and a target type are passed as parameters to the meta-policy. Within its body, the meta-
policy checks all pairs of policies in its scope, for possible conflicts. If there exists a pair of policies
with common subjects, who have actions act1 and act2 respectively in their action entry, and whose
target intersection is of the given tarType, then there is a conflict and the conflict action
conflictSepD(z) is called. This action takes the set of pairs of policies resulting in conflict (the
result of the OCL expression) as a parameter, so that it can act on them. In order to check the type of
the target intersection we use the oclIsKindOf method defined in OCL.

type
meta dutyConflictT(act1, act2, tarType) raises conflictSepD(z) {

Ponder Version 2.3 36

[z] = self.policies->select(pa, pb |
pa.subject->intersection(pb.subject)->notEmpty and
pa.action->exists(act | act.name = act1) and
pb.action->exists(act | act.name = act2) and
pb.target->intersection(pa.target)->

oclIsKindOf(tarType)) ;

z -> notEmpty;
} // dutyConflictT

inst
meta dc = dutyConflict(“execute”, “authorise”, “payment”);
meta bwDc = dutyConflict(“addBandwidth”, “use”, “service”);

oblig notifyConflict {
subject policyService;
on conflictSepD(z);
do policyService.notify(manager);

} // notifyConflict

The following example shows a meta-policy used within a role to specify a simple constraint on the
policies within the role; in this case, a constraint on the instantiation of the role: the number of patients
for which the nurse is responsible must be less than 10.

type group nurseT(set <patient> p) {

inst auth+ mealSchedule {
target p;
action updateMealSchedule;

}

oblig administer {
target p;
on Time.at(“08:00:00”);
do administerDrugs() -> checkTemperature();

}

inst meta maxNoOfPatiends raises errorInPatients(p) {
p->size < 10;

}
}

This final example, demonstrates the use of a meta policy to specify concurrency constraints which
involve a set of policies. The paymentConcurrency meta policy, specifies two concurrency
constraints which involve individual actions between different policies.

inst role accountant {

inst oblig paymentPol {
on paymentRequest(p);
target t = Payments_registry;
do t.registerPayment(p) || t.updateRecords(p);

}

oblig chequeIssuePol {
on paymentTransactionInit(t);
target db = backupDB;
do issueCheque() || db.backupRecords(t);

}

inst meta paymentConcurrency {
// must register payment before issuing the cheque
paymentPol.registerPayment -> chequeIssuePol.issueCheque;

Ponder Version 2.3 37

// cannot update and backup records at the same time
(paymentPol.updateRecords -> chequeIssuePol.backupRecords) |
(chequeIssuePol.backupRecords -> paymentPol.updateRecords)

}
}

Ponder Version 2.3 38

7 CONSISTENCY RULES
The following are rules that must be true for a specification to be complete.

7.1 Basic Policies
Basic policies cannot contain other policies. Although they usually need an explicit subject an
exception is when a basic policy is specified as part of a Role, in which case the subject domain of the
Role is the implicit subject.

Authorisation policies
For both positive and negative authorisation policies, the specification of the following policy elements
is required. An authorisation policy must contain the following policy elements:

• subject (except in roles)

• target

• action

Obligation policies
An obligation policy must contain the following policy elements:

• subject (except in roles)

• action

• event

Refrain policies
A refrain policy must contain the following policy elements:

• subject (except in roles)

• action

Delegation policies
One or more positive authorisation and/or delegation policies must always be associated with a
delegation policy (both positive and negative).

The only required policy element for a delegation policy is the specification of a grantee. Subjects and
targets, if not specified, default to the subjects and targets of the associated authorisation/delegation
policy. If actions to be granted are not specified they default to those of the associated
authorisation/delegation policy. If specified within a role, the associated authorisation/delegation policy
must also be part of the role so that the subject is the position domain of the role.

7.2 Composite Policies
Roles
When authorisation, obligation and refrain policies are specified within a role, their subject is the
position domain of the role. In this case the subject is implicit.

A role must not contain other roles, relationships or management structures.

Relationships
A Relationship should not contain other relationships or management structures.

Groups
A Group should not contain roles, relationships or management structures.

Ponder Version 2.3 39

8 OBJECT LIBRARIES
This section describes the functions for the library objects, which are currently part of the Ponder
specification. The functions for objects of type integer (int), real and string are taken from the Object
Constraint Language specification (OMG 1999). See this specification for a complete listing /
explanation of all the functions defined for the standard OCL types adopted in Ponder as well as for
the collection types (collection, set, bag and sequence).

8.1 Timer
The timer library object is used to specify events. It contains functions that can be used to specify
time-point events, repeated events based on the duration, and repeated events at specific time-points.

For both, Timer and Time objects, the following are true:

Date is a string of the form: “dd:mm:yyyy”. Any of the sub-strings of date can be specified as ‘*’ which
is used as a wildcard character. So, “01:*:2000” means the 1st of each month in the year 2000.

Time is a string of the form: “hh:mm:ss”.

Period is a string from one of the following: “msec”, “sec”, “min”, “hour”, “day”, “week”, “year”.

DayOfWeek is a string from one of the following: “mon”, “tue”, “wed”, “thu”, “fri”, “sat”, “sun”.

Month is a string from one of the following: “jan”, “feb”, “mar”, “apr”, “may”, “jun”, “jul”, “aug”, “sep”,
“oct”, “nov”, “dec”;

Function Name Parameters Operation

at (Date), Time Specifies an event that occurs at a specific date
and time. The date cannot include wildcard
characters, but can be ommitted to mean any
date. The function thus has an overloaded
version with only a Time parameter. E.g.
Timer.at(“08:00:00”) specifies an event that
occurs at 8:00am.

every Number (duration), Period Specifies an event that occurs repeatedly every
specified period of time. E.g. Timer.every(5,
“min”) specifies an even that repeats every 5
minutes.

everyDate Date Specifies an event that occurs repeatedly every
specific date. E.g. Timer.everyDate(“01:*:*”)
specifies an event that occurs every 1st of each
month.

everyDay DayOfWeek, Date Specifies an event that occurs repeatedly on
the specific day of the week. The date
parameter can be left blank to indicate any
date. E.g. Timer.everyDay(“mon”, “*:01:*”)
specifies an event that occurs on every Monday
during January.

everyAt Number (duration), Period,
Time

Specifies an event that occurs repeatedly every
specified period of time at a specific time. E.g.
Timer.everyAt(2, “day”, “18:00:00”) specifies an
event that occurs other day at 6:00pm.

everyDateAt Date, Time Specifies an event that occurs repeatedly every
specified date at a specific time. E.g.
Timer.everyDateAt(“01:12:*”, “12:00:00”)
specifies an event that occurs every first of
December at noon.

Ponder Version 2.3 40

everyDayAt DayOfWeek, Date, Time Specifies an event that occurs repeatedly every
specified day of the week at a specific time.
E.g. Timer.everyDayAt(“wed”, “*:*:*”,
“12:00:00”) specifies an event that occurs every
Wednesday at noon.

8.2 Time
The time library object is used to provide utility functions for time-based constraints.

Function Name Parameters Operation

between (Date), Time – to specify first
time-point

(Date), Time – to specify
second time-point

Specifies a time range. This function is
overloaded. It also accepts only 2 parameters
of type Time (instead of four) – the dates can
be ignored. E.g. Time.between(“01:01:*”,
“12:00:00”, “01:05:*, “12:00:00”) specifes a
range between 1st of January at 12:00am and
1st of May at 12:00am

after (Date), Time Specifies a time range after a specified time-
point. The function is overloaded to accept
only 1 parameter, the Time – the date can be
ommitted. E.g. Time.after(“18:00:00”), means
after 6:00pm

before (Date), Time Specifies a time range before a specified
time-point. The function is overloaded to
accept only 1 parameter, the Time – the date
can be ommitted. E.g.
Time.before(“01:10:2000”, “02:30:00”), means
before the 1st of October 2000 at 2:30am.

date None Returns a string for the current date

month None Returns a string for the current month

dayOfWeek None Returns a string for the current day

time None Returns a string for the current time

duration Number, Period Specifies a duration. E.g. Time.duration(5,
“hour”) to indicate a duration of 5 hours.

8.3 Domain
The following are functions that are defined on any domain object.

Function Name Parameters Operation

get String: The name of an
object in the domain

Returns the object within the current domain
whose name is given. E.g.
Printers.get(“printer1”), returns the object
“printer1” from a domain called Printers.

getDomain String: The relative path to a
sub-domain of the current
domain

Returns a sub-domain of the current domain,
whose relative path is given. E.g.
Printers.get(“floor4/color”), returns the sub-
domain: <Printers>/floor4/color.

Ponder Version 2.3 41

9 FUTURE WORK
Future versions of Ponder will include improvements in the following areas:

Relationships. Interaction protocols are not included in the current version of Ponder. This will be an
important addition to the language.

Meta-Policies. Meta policies are a very powerful feature. Experimentation with various application-
specific constraints specified as meta policies is needed to reach a more definite specification. Meta
policies may include a when-clause to restrict their applicability; an event to trigger them or possibly
other policy elements. User-to-role assignments might be specified as meta-policies.

Inheritance. The inheritance mechanism for policy types currently does not allow overriding of policy
elements. We are currently investigating a suitable inheritance model to support this feature in a
future version of Ponder; the current inheritance model is under evaluation.

Library objects for various utility functions (Time, Timer, Domain) are still under development and will
be extended in future versions of Ponder.

Policy Refinement. We are actively working on providing tool support for policy refinement from
goals or service level agreements to implementable policies and on analysis of policies for conflicts
etc (SecPol)

Ponder Version 2.3 42

10 REFERENCES
Note: Imperial College papers are available from http://www-dse.doc.ic.ac.uk/policies

 Ponder SableCC grammar is available from http://www-dse.doc.ic.ac.uk/policies/ponder.html

Lupu, E. C. and M. S. Sloman (1999b). Conflicts in Policy Based Management Systems. IEEE
Transactions of Software Engineering, Nov 1999

Lupu, E. C. (1998). A Role-Based Framework for Distributed Systems Management. Department of
Computing. London, U. K., Imperial College.

Lupu, E. C. and M. S. Sloman (1997b). Towards a Role Based Framework for Distributed Systems
Management. Journal of Network and Systems Management 5(1): 5-30.

Lupu, E. C. and M. S. Sloman (1997c). A Policy Based Role Object Model. 1st IEEE International
Enterprise Distributed Object Computing Workshop (EDOC'97), Gold Coast, Queensland,
Australia.

Marriott, D. A. (1997). Policy Service for Distributed Systems. Department of Computing. London, U.
K., Imperial College.

Marriott, D. A. and M. S. Sloman (1996). Implementation of a Management Agent for Interpreting
Obligation Policy. 7th IFIP/IEEE International Workshop on Distributed Systems Operations
Management (DSOM'96), L' Aquila, Italy.

OMG (1999), Object Management Group. Object Constraint Language Specification, Chapter 7 in
OMG Unified Modelling Language Version 1.3, June 1999.

Sloman, M. and K. Twidle (1994a). Domains: A Framework for Structuring Management Policy.
Chapter 16 in Network and Distributed Systems Management (Sloman, 1994ed): 433-453.

Sloman, M. S. (1994b). Policy Driven Management for Distributed Systems. Journal of Network and
Systems Management 2(4): 333-360.

http://www-dse.doc.ic.ac.uk/policies
http://www-dse.doc.ic.ac.uk/policies

Ponder Version 2.3 43

11 FURTHER EXAMPLES
This section provides more complete examples.

A Ponder Specification
The example below demonstrates the structure of a Ponder specification. Note that type and instance
definitions can be nested. Import and domain statements can be placed anywhere within the
specification.

In this example a role type helpDeskT is defined for a cellular GSM network company. Suppose that
the network is divided into regions and each region is further subdivided into branches. Each region
has a database called EIR (Equipment Identity Database) for the equipment of the region. Each
branch has a database called HLR (Home Location Register) for the subscribers to the network.

The helpDeskT role includes an obligation policy (customer_complaints) to handle customer
complaints; a group hlr_managementT specifying policies that relate to the management of an HLR
database for a branch; a group billing_and_abnormal that contains policies related to cases of
unpaid bills, stolen equipment etc. The first group is created as a type and then instantiated for the
various HLR databases corresponding to each branch.

The authorisation policies that authorise the access to the HLR and EIR databases are not specified
directly within the role. They are instead specified as a group HD_authorisationsT outside the
role. This could be the case if there is a need to reuse those authorisations in other roles or anywhere
else within the policy specification. The role helpDeskT then imports the HD_authorisationsT
group, and instantiates it for the different HLR and EIR databases to which it needs access.

domain /policies/groups/types;

type
group HD_authorisationsT (set hd, HLR_type hlr, EIR_type eir) {

inst
auth+ HD_auth_HLR {

subject hd;
target hlr;
action add_new_customer(), update_record(),

traceHomeSubscriberInHLR();
} // HD_auth_HLR

auth+ HD_auth_EIR {
subject hd;
target eir;
action blacklistEquipment();

} // HD_auth_EIR
} // HD_authorisationsT

domain /tr/rr/rc/HD;

type
role helpDeskT(EIR_type eir) {

import /policies/groups/types/HD_authorisationsT;

inst
oblig customer_complaints {

on customer_complaint(complaint);
do /* import complaint */
helpDeskT.investigate_complaint(complaint);

} // customer_complaints

type
group hlr_managementT(HLR_type hlr) {

inst
oblig record_update {

Ponder Version 2.3 44

on new_service_subscription(x);
do updateRecord(x.customer, x.service);
target hlr;

} // record_update

oblig consistency_loss {
on unrecognised_customer_in_HLR(imsi);
do hlr_managementT.checkRecord(imsi);

} // consistency_loss
} // hlr_managementT

inst
group hlr_managementBrA = hlr_managementT(hlr_branchA);
group hlr_managementBrB = hlr_managementT(hlr_branchB);

group billing_and_abnormal {
inst

oblig notify_subscriber {
on unpaid_bills(imsi);
do notifySubscriber(imsi);
target emailServer;

} // notify_subscriber

oblig stolen_equipment {
on reported_stolen(imei);
do blackListEquipment(imei);
target eir;

} // stolen_equipment
} // billing_and_abnormal

group hlr_auth1 = HD_authorisationsT(this.pd,
hlr_branchA, eir);

group hlr_auth2 = HD_authorisationsT(this.pd,
hlr_branchB, eir);

}

domain roles/HelpDesk;

inst
role helpDeskRegionA = helpDeskT(eir_regionA) @ pd/HD/HD1;
role helpDeskRegionB = helpDeskT(eir_regionB) @ pd/HD/HD2;

Filters
The following is a hypothetical class-diagram of the information stored in a departmental server.

Ponder Version 2.3 45

Meeting
date : string
place : string
topic : string

Agenda
planning : string
deadlines : string

Expense
date : string
amount : integer

Project
pname : string
duration : string
budget : string
status : string
participants *

Department
employees *
resource
funds *
reports *

Employee
name : string
ssn : string
salary : string
agenda
meetings*
expenses *
project

prjInfo()
wrkView()
chargeExp()

Fund

Resource

Report

getEmp(ssn)

Figure 6. Departmental Information Class Diagram

The getEmp(ssn) method returns an Employee object given its ssn-number. Assume there is an
authorisation policy authorising subjects to execute the method getEmp(ssn) on objects of type
Department on the departmental file server. Depending on the subject of the authorisation, there is a
filter that allows the subject to see only part of the information returned:

• The General Manager can see all of the information.

• The Departmental manager cannot see the agenda of the employee.

• Another fellow Employee cannot see the salary, his agenda and the budget of the projects to
which the employee is assigned.

• A person outside the organisation can see only the name, project names and meeting topics of
the employee.

Here are the authorisation policies to specify this.

inst
auth+ GMgetEmployeeAuth {

subject General_Manager;
target DeptFile_Server;
action getEmp(ssn);

} // GMgetEmployeeAuth

auth+ DMEmployeeAuth {
subject Dept_Manager;
target DeptFile_Server;
action getEmp(ssn) {result = reject(result, agenda);};

} // DMEmployeeAuth

auth+ employeeAuth {
domain e = /employees;
domain other = /external;

subject e + other;
target DeptFile_Server;

action getEmp(ssn) if (subject = e) {
result = reject(result, salary, agenda, projects.budget);

Ponder Version 2.3 46

} // getEmp
if (subject <> e) {

result = ext_select(result, name, project.pname,
meeting.topic);

}; // getEmp
} // employeeAuth

Delegation
Consider the following hypothetical domain structure.

/
(Root)

Employees Servers Printers Files

Print
Server

Color
Printers

Managers Payroll
Files

FileA

Alice

Bob

Printer1 Printer2

FileB

File
Server

Dept.
Managers

General
Managers

Fred

Figure 7. A hypothetical domain

Suppose that the following authorisation policies are in place:

type
auth+ fileAccess (subject S, target files) {

action read, write;
} // fileAccess

inst
auth+ managerFileAccess =

fileAccess(Employees/Managers, Files/PayrollFiles);

auth+ employeeFileAccess = fileAccess(/Employees-Employees/Managers,
/Files-Files/PayrollFiles);

type
auth+ printAccess (subject S, target printer) {

action print;
} // printAccess

domain man = /Employees/Managers;

inst
auth+ GMprintAccess =

printAccess(man/GeneralManagers, Printers/ColorPrinters);

auth+ employeePrintAccess =
printAccess(/Employees, /Printers-Printers/ColorPrinters);

Ponder Version 2.3 47

auth+ fileServerAccess {
subject /Employees;
target Servers/FileServer;
action *;

} // fileServerAccess

auth+ printServerAccess {
subject Employees;
target Servers/PrintServer;
action *;

} // printServerAccess

The following delegation policy specifies that departmental managers are not allowed to delegate the
access rights specified by the managerFileAccess policy to employees that are not managers.

inst
deleg- invalidDeleg1 (managerFileAccess) {

subject /Employees/Managers/DeptManagers ;
grantee /Employees - /Employees/Managers ;

} // invalidDeleg1

The following delegation policy specifies that general managers are not authorised to delegate the
write access right specified by the managerFileAccess policy.

inst
deleg- invalidDeleg2 (managerFileAccess) {

subject /Employees/Managers/GeneralManagers ;
grantee /Employees - /Employees/Managers;
action write;

} // invalidDeleg2

Finally, the last delegation policy specifies that general managers are authorised to delegate the
print access right specified by the GMprintAccess, to departmental managers. Note the use of
the maximum delegation-hop constraint specified at the end of the policy following the 'hops' keyword.
Since the maximum number of cascading hops allow is 1, this disallows cascaded delegation for this
policy.

inst
deleg+ colorPrintDeleg (GMprintAccess) {

subject /Employees/Managers/GeneralManagers;
grantee /Employees/Managers/DeptManagers;
action print;
when time.between(“18:00:00”, “07:00:00”);
hops 1 // do not allow cascading

}

The following scenario (see figure 7) is based on the hypothetical domain structure of figure 6. The
scenario is deliberately made more complicated than could have been in real situations just to
demonstrate different aspects of the delegation policy. In order for the FileServer to be able to
access the requested file, it must be delegated the access rights from the subject that requires the
access to the file. The same is true for the PrintServer. In order for it to be able to print to a
particular printer, it must be delegated the access right by the user requesting the print.

Now consider the following scenario. A general manager (Fred) wants to print a payroll file (fileA)
on a color printer (Printer1). Fred first needs to delegate the access right to the PrintServer to
print on ColorPrinters, the right to access the FileServer and request a read on payroll FileA,
and the right to access payroll files. The PrintServer then needs to further delegate the right to
read PayrollFiles to the FileServer in order for the file server to be able to read FileA.

Ponder Version 2.3 48

File
Server

Fred FileA

Printer1Print
Server

Delegate print
to ColorPrinters

print(FileA)
On Printer1

Delegate read
on FileServer

Delegate read
PayrollFiles

read(FileA)

read(FileA)

print(FileA)

Delegate read
PayrollFiles

1
2

3

4

Figure 8. Delegation: Actions involved in printing a payroll file on a colour printer

The following delegation policies must then be in place in order for Fred to be able to print FileA on
Printer1.

type
deleg+ GMtoPrintServerT(auth+ authPol)(action actionToDelegate) {

subject /Employees/Managers/GeneralManagers;
grantee /Servers/PrintServer;
action actionToDelegate;

} // GMtoPrintServerT

inst
deleg+ GMtoPrint1 = GMtoPrintServerT(GMprintAccess)(print);

deleg+ GMtoPrint2 = GMtoPrintServerT(fileServerAccess)(read);

deleg+ GMtoPrint3 = GMtoPrintServerT(managerFileAccess)(read);

deleg+ printStoFileS(GMtoPrint3) {
subject /Servers/PrintServer;
grantee /Servers/FileServer;
action read;

} // printStoFileS

The first delegation policy (GMtoPrint1) states that a general manager can delegate the right to print
to colour printers coming from the GMprintAccess authorisation policy. The second (GMtoPrint2),
that it can call the action read on the file server, and the third (GMtoPrint3) that it can read payroll
files.

The last delegation policy (printStoFileS) states that the print server can delegate the right to
read payroll files to the file server. On the attempt to do so, the access control system would check
that the print server has already been delegated this access right. The GMtoPrint3 delegation policy
only states that a general manager is authorised to delegate to the print server the referenced access
right; it does not automatically mean that the print server has that right.

Ponder Version 2.3 49

12 ANNOTATED BASE-CLASS DIAGRAM

Object

 name : identifier

Meta

 metaExpression : OCLexpression
 raisedAction : Action

BasicPolicy

 subject : DSE
 target : DSE
 constraint : OCL-constraint
 ref : policyList
 constraints : Constraint
 constants : Constant
 policies : Policy

auth oblig

 event : Event
 exception : Exception

refrain

 action : RefrAction

deleg

 grantee : DSE
 accessRights : NegAuthActions

role

 subject_domain : dse

rel

 roles : role

mstruct

 roles : role
 rels : rel
 mstructs : mstruct

auth+

 action : PosAuthAction

auth-

 action : NegAuthAction

deleg+ deleg-

CompositePolicy

 events : Event
 constraints : Constraint
 constants : Constant
 policies : SinglePolicy
 metaPolicies : Meta
 groups : group

group

1..
n

1..
n

1..n

	Imperial College
	Department of Computing
	Imperial College Research Report DoC 2000/1

	Introduction
	Policy Concepts Overview

	Preliminaries
	Syntax
	Lexical Conventions
	Comments
	Identifiers
	Paths
	Keywords
	Operators
	Literals

	Pre-defined Types and Constants
	Expressions
	Precedence Rules

	Domain Scope Expressions

	Ponder Specifications
	Ponder Policies
	Scope
	Policy Type Definitions
	Policy Instance Declarations
	Domain Statements
	Import Statements
	Scripts

	Event Definitions
	Constraint Definitions
	Constant Definitions
	External Specifications
	Parameters
	Formal Parameters
	Actual Parameters

	Basic Policies
	Policy Elements
	Authorisation Policies
	Positive Authorisation Policies
	Authorisation Actions
	Authorisation Filters

	Negative Authorisation Policies
	Actions

	Obligation Policies
	Obligation Actions
	Events
	Exceptions
	Selecting Subjects

	Refrain Policies
	Delegation Policies
	Associated Authorisation
	Subjects, Targets and Grantees
	Delegated Access Rights
	Cascaded Delegation
	Delegation Constraints
	Examples

	Composite Policies
	Groups
	Roles
	Relationships
	Management Structures
	Policy Type Specialisation

	Meta-Policies
	Consistency Rules
	Basic Policies
	Composite Policies

	Object Libraries
	Timer
	Time
	Domain

	Future Work
	References
	Further Examples
	A
	Annotated Base-Class Diagram

